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Abstract—Failure localization serves as a key to an effective
fault management plane in the Internet backbone. This paper
investigates a novel failure localization approach, namely Instance
Correlation based Fault Diagnosis (IC-FD), for achieving efficient
fault management in Optical Transport Networks (OTN). The
IC-FD is aimed at real-time localization of failed components
in the optical layer of OTN through correlation of alarms and
status changes of network devices (referred to as instances) via
a learned binary classifier. The outcome of IC-FD is one or
multiple instance correlation trees (ICT) where the instances
corresponding to the faulty network devices are taken as the tree
roots. Notably, the proposed binary classifier is characterized by
an intelligent feature extraction of historical instance correlation
in dimensions of time, board/alarm attribute, network topology,
and traffic distribution. Extensive case studies are conducted to
demonstrate the advantages gained by IC-FD in terms of its high
precision and low computation complexity, as well as analysis of
its performance due to various environmental turbulence such as
network topology, traffic diversity and noise alarms.

Index Terms—failure localization, correlation analysis, similar-
ity learning, optical transport networks (OTN)

I. INTRODUCTION

Telecommunication networks, particularly the Internet op-
tical backbones, have gone through significant expansions in
the past decades not only in their capacity and geographi-
cal coverage, but also in their heterogeneous nature where
a multi-service and multi-tenant environment is supported.
Optical transport network (OTN) is a standard control and
management framework under ITU-T that serves as the basis
of facilitating such expansions by enabling various service
flows multiplexed via individual optical flows [1]. The OTN
control plane provides a suite of rigid alarming mechanisms
at each device and fiber segment (generally termed board
in the following context) in response to any failure event
detected by the sensor associated with the board. For example,
a transponder board triggers an alarm reported to the network
management system (NMS) when any irregularity affecting the
quality of the received lightpath is identified. Another example

is that the failure of a fiber segment board would propagate
to the receiving fiber interface unit (FIU) board that in turn
reports an alarm to the NMS.

In general, a failure event could happen at any board that
unexpectedly affects the optical signals traversing through
the board. At this moment, the failure event may propagate
through multiple boards in vicinity and/or that in geographi-
cally remote areas due to the traffic distribution. In addition, an
alarm may be triggered at a board not only due to an identified
failure event, but also in response to a notification alarm
issued by another remote board. The two sources of alarms
could cause a vast number of alarms that significantly boost
the complexity of alarm correlation and failure localization.
This situation becomes even worse because of the large
geographical coverage and huge number of network entities
of the current Internet backbone.

Alarm correlation has been considered an effective approach
to achieve the required precision in identifying dependency for
each pair of collected alarms. With those dependencies, most
dependent alarms can be removed such that the failure event(s)
can be inferred/pinpointed with much reduced complexity.

An example is given in Fig. 1 where five boards A,B,C,D,
and E are connected by corresponding fiber pairs. As shown
in Fig. 1(a), let the fiber cut event on the link from D to
B be denoted as f1, which is firstly detected by B, noted
as an event f2, and triggering an alarm a2 reported to the
NMS. Upon f2, B notifies its neighbouring boards D and E
as events f3 and f4, respectively, where the incurred alarms a3
and a4 are reported to the NMS accordingly. The entire alarm
propagation process is represented as an instance correlation
tree (ICT) shown in Fig. 1(b). Note that although f1 does not
correspond to any alarm reported to the NMS, it is the root
cause taken a further inference to localize. Another example
is given in Fig. 1(c) where failure on board D, noted as f5,
has even disabled its sensor and thus reported no alarm to
the NMS. The failure event f5 propagated to boards A, B,
and C due to the commonly traversing traffic (i.e., an OTS,
OMS, or OCH connection) that caused events f6, f7, and f8,
which further triggered alarms a6, a7, and a8 reported to theISBN 978-3-903176-57-7 ©2023 IFIP
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Fig. 1. (a), (c) Examples of different failure events hitting the same
network, where the red cross indicates the faulty fiber segment/board. (b),
(d) Corresponding ICTs.

NMS, respectively. At the same time, board E had event f9
to occur due to the notification by B and reported an alarm
a9. The expected result of failure localization is by correlating
the alarms a6, a7, a8, and a9, by which the NMS has to come
up with the ICT as shown in Fig. 1(d) in spite of the fact that
the root cause f5 is completely “silent” throughout the whole
alarm propagation and reporting process.

In addition to precision, the desired features of failure
localization design include sufficient generality to various net-
work environments and adaptability to the changing network
status, including any possible variation in network topology
and traffic distribution. Further, scalability and computational
efficiency should be pursued such that the NMS can swiftly
identify the observed irregularity and launch the required
reaction/restoration to the incurred damages.

Motivated by its importance and stringent requirements,
this paper introduces a novel failure localization algorithm in
the optical layer of OTN, called Instance Correlation based
Fault Diagnosis (IC-FD), aiming to explore various design
dimensions for achieving all the desired features. We firstly
define board instances and alarm instances, which represents
the status of each board and the collected alarms at the NMS
during an observation window, respectively. By assuming a
functioning board can become faulty at most once at the
beginning of an observation window, a board instance can be
at most directly correlated with a set of alarm instances in
time vicinity; while an alarm instance contains a number of
features related to the reported alarm.

By taking each instance as a vertex, the correlation of an
instance pair is nothing but the likelihood of the existence of
an arc interconnecting the two vertices. As such we investigate
the instance similarity measurement using a machine learning

approach by jointly considering the network topology and dy-
namic traffic distribution, where the trained binary classifier is
migratable to any possible network environment with the same
alarm generation/propagation rules. With all the labeled arcs,
ICT formation can be exclusively completed by heuristically
solving an integer linear programming (ILP) problem, where
each ICT has a board instance as the tree root connecting
to one or multiple alarm instances. The goal of the ICT
formation is to cover all the alarms by the ICTs where each
ICT demonstrates a complete alarm propagation process due
to the faulty board.

The contributions of this paper are summarized as follows.

• Investigate a novel failure localization approach, namely
IC-FD, which relies on a machine learning-based binary
classifier and ICT formation modeling approach.

• Propose a novel binary classifier model aiming to achieve
the best generality and adaptation to the versatile network
environment by taking both board instances and alarm
instances as the input of the model.

• Introduce a novel ICT formation process for obtaining the
best possible ICTs according to the given set of alarms.

• Conduct extensive case studies to verify the proposed IC-
FD approach and show that it can achieve real-time and
precise failure localization in the optical layer of OTN.

The rest of this paper is organized as follows. Section II
is on the literature review. Section III presents the system
model, followed by the proposed IC-FD approach in Section
IV. Section V presents the case study setup and the results.
Section VI concludes the paper.

II. LITERATURE REVIEW

Failure localization based on root-cause alarm analysis can
be generally achieved via alarm correlation. An expert system
called IMPACT was firstly raised in [2] [3] for a number of
functions supporting real-time network management, namely
intelligent alarm filtering, alarm generalization, and fault di-
agnosis. The expert system approach nonetheless relies on
a knowledge base created by domain experts and could be
subject to intolerably high complexity and maintenance costs.
A dependency graph approach was considered in the studies
[4] [5], where a dependency graph of various types of events,
mostly Bayesian networks, was constructed according to the
log files without considering network topological or traffic
information. Thus, the obtained result according to a specific
network at a given moment may not be migratable to another.
Extensive research efforts have taken data-driven approaches.
Some of them employed pattern mining techniques, mostly
inspired by the pioneering research work called TASA [6]
[7], including the association rule mining [8] [9], frequent
episode mining [10] [11], and sequential patterning mining
[12] [13]. Some others such as [14] [15] have employed K-
means and artificial neural network (ANN) to quantify the
alarm importance, where a rule mining algorithm weighted by
the alarm importance was applied to discover alarm correlation
rules. Note that all the above mentioned methods have focused



on temporal relation and type information of the collected
alarms while completely ignoring their spatial relations.

Some techniques based on artificial intelligence (AI) have
been leveraged for alarm root cause analysis [18]. In [19], the
long-short term memory network (LSTM) was used to locate
the fault, whose output adopted fuzzy theory to represent
the possible fault location with the probability from 0 to 1.
But this model can only be applied to a small-scale static
network with a very limited number of lightpaths, and it
needs to be retrained in response to the changes in network
topology and/or traffic distribution with the new fault alarm
dataset. In [20] [21], a deep neural evolution network (DNEN)
was introduced to handle large-scale alarm sets by creating
a mapping to a fault set via global search. The obtained
model is specific to the given network topology and does not
consider traffic distribution. In [22]–[24], an alarm knowledge
graph (KG) was built for alarm relation reasoning. Then a
graph neural network (GNN) was trained with this KG for
inferring alarm relations and root cause alarm(s). Here, the
KG only incorporates static knowledge regarding correlations
among faults and alarms without accommodating any dynamic
scenario of alarm correlation, where alarms are propagated
along certain static connections. In [25], the alarm context
was vectorized with the pre-trained bidirectional encoder rep-
resentations from transformers (BERT), and the Transformer
Encoder was used to identify root cause alarm(s). It could turn
out to be a challenge for BERT in distinguishing various alarm
types whose semantics are very similar. Authors in [22]–[25]
assumed that the fault locations were deduced according to the
location of root alarm(s), which isn’t necessarily true based on
the aforementioned examples in Fig. 1.

In [16], the occurrence of a type A alarm is likely to trigger a
type B alarm with the confidence evaluated by an asymmetric
measure in a dynamic attributed graph that incorporates the
network topology and collected alarms. In [17], the authors
consider the fact that the alarm sequences generated by nodes
that are topological neighbours are no longer independent.
Although effective in perspective scenarios, both [16] and
[17] are subject to a number of issues. Firstly, their models
don’t consider the facts that alarm propagation mostly occurs
along certain connections (e.g., OCH in OTN), and that the
information of instantaneous network traffic distribution may
solidly facilitate the desired alarm correlation process. Sec-
ondly, to improve the computational efficiency, [16] assumes
that alarms are only correlated within a fixed-size time window
whereas [17] prefers a smaller value for the farthest topological
distance between a pair of correlated alarms. However, it lacks
a general rule to define the parameters for scaling the window
size and the maximum hops. Lastly, both schemes need a
significant amount of data to obtain sufficient statistics for
alarm correlation, and may not be applicable to the network
environment such as OTN optical layer.

III. FAILURE/ALARM PROPAGATION MODEL

In this study, two types of instances are defined. An alarm
instance is denoted by a 5-tuple ai = {ti, hi, bi,mi, ri}, ∀i ∈

{1, · · · , N}, where ti is the occurrence time, hi and bi are the
ID and type of the board that issues this instance, respectively.
mi is the alarm type and ri is the layer information that can
be either OTS, OMS, or OCH. A board instance is denoted
by a 2-tuple fj = {hj , bj}, ∀j ∈ {1, · · · ,M}, where hj is the
board ID and bj is the board type.

The correlation of two instances is evaluated between every
pair of instances. An instance correlation between fj and ai
could be due to the fact that the failure on board instance fj
triggers an alarm instance ai, which is denoted as fj → ai.
Another possible scenario of instance correlation is between ai
and ai′ , where the alarm instance corresponding to ai triggers
another alarm instance ai′ , which is denoted as ai → ai′ .

In the setting of OTN, a board that has been hit by a
failure/received a notification signal would change the status
of board instance fj /initiate alarm instance ai, and this board
could notify a remote board of reporting another alarm in-
stance ai′ to the NMS. The direction of failure/alarm propaga-
tion can be divided into forward propagation (FP), backward
propagation (BP), and local notification (LN). With FP (or
BP), the source board initiates an instance fj/ai and sends a
notification signal to the destination board that in turn emits
another ai′ . Specifically, the FP follows the same direction
of the corresponding optical flow, while the BP occurs in
the reverse direction. The LN, on the other hand, must be
a single alarm instance reported by a board without any alarm
propagation process.

Accordingly, the failure/alarm propagation behaviour is
modeled in the following three generic types:

• One2One-FP/BP: one instance triggers another at two
different boards, resulting in one instance pair in the way
of FP or BP, respectively.

• One2Many-FP/BP-Static: one instance triggers other
n instances at n + 1 different boards, resulting in n
instance correlations in the way of FP or BP, respectively.
The value of n is constant regardless of dynamic traffic
distribution.

• One2Many-FP/BP-Dynamic: one instance triggers other
n instances taking place at n+1 different boards, resulting
in n instance correlations in the way of FP or BP, respec-
tively. The value of n depends on the traffic distribution.

IV. PROPOSED IC-FD APPROACH

Fig. 2 shows the flowchart of the proposed IC-FD approach
that aims to construct the ICT(s) according to a set of alarms
during an observation window in real time. Given the raw
dataset collected from the historical operations, our first step is
to obtain attractive features from each instance pair as shown
in (i) of Fig. 2. The details of feature extraction are given
in IV.A. Then the obtained training dataset is used to train
a binary classifier that learns the similarity measure of an
instance pair, as shown in (ii) of the flowchart whose details
will be given in IV.B.

With the learned similarity measure, given a testing dataset
collected by observing a network within an observation win-
dow P , all correlations among the instances can be explored
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Fig. 2. Flowchart of the proposed IC-FD approach.

through the ICT formation process as illustrated in (iii) of
Fig. 2 that will be detailed in IV.C. Eventually, one or a set of
ICTs corresponding to the given alarm set shall be obtained
as the output of the proposed approach.

A. Feature Extraction

The raw dataset is provided according to historical data
from the carrier operators, which is collected within a set of
observation windows denoted as T = {T1, · · · , Tk, · · · , TK},
∀k ∈ {1, · · · ,K}. During Tk we observed the network
topology GTk

, a set of lightpaths denoted as LTk
. Here,

GTk
represents the interconnection of the boards and each

board could be a fiber segment or device whose failure would
interrupt the traversing optical traffic flows. A number of NTk

alarm instances that have been sorted in ascending order of
their occurrence time, are denoted by ATk

= {a1, · · · , aNTk
}.

A number of MTk
board instances, denoted as FTk

=
{f1, · · · , fMTk

}, are obtained by considering all boards in
GTk

. Based on ATk
and FTk

, a set denoted as DTk
with a size

far smaller than 1
2 [(NTk

+MTk
)2−(NTk

+MTk
)], contains all

possible instance pairs. A set of ground-truth instance corre-
lations denoted as UTk

= {fj → ai|i ∈ {1, · · · , NTk
}, j ∈

{1, · · · ,MTk
}}

⋃
{ai → ai′ |i, i′ ∈ {1, · · · , NTk

}}, is pre-
pared. It is required in the training process by generating the
binary label of each instance pair corresponding to DTk

.
To characterize each instance pair (vi, vj) ∈ DTk

, we create
a feature space H in dimensions of time, board/alarm attribute,
network topology, and traffic distribution. The feature vector
of (vi, vj), denoted as H(vi, vj), is defined in (1):

H(vi, vj) = [∆ti,j , |li,j |,M(li,j), bi,mi, ri, bj ,mj , rj , C(li,j)],
(1)

where ∆ti,j denotes the time gap of two instances, |li,j |
denotes the length of the shortest path from hi to hj in GTk

,
and M(li,j) counts the number of OMS connections traversed
by boards on the shortest path. bi,mi, ri and bj ,mj , rj are
the board type, instance type, and layer type of instance vi
and vj , respectively. Finally, C(li,j) is a binary value that
indicates whether hi and hj are traversed by a common
OCH and can be obtained by checking LTk

. Note that for
the instance pair that contains a board instance, the missing
features are complemented, where the occurrence time is set
as the beginning moment of the observation window and an
additional layer type is introduced.

By mapping each instance pair from DTk
to H, the trans-

formed dataset H(DTk
) can be obtained. ∀k ∈ {1, · · · ,K},

the training dataset derived from all historical data, which
is denoted as D =

⋃K
k=1 H(DTk

), can be obtained for the
subsequent binary classifier training.

B. DNN Architecture

The proposed binary classifier is used to evaluate the
correlation of an instance pair in terms of the similarity
measure. For this, a deep neural network (DNN) is em-
ployed whose architecture is illustrated in Fig. 3, where the
dimension of each layer is given in parentheses. According
to (1), H(vi, vj) consists of the numerical features including
∆ti,j , |li,j |,M(li,j) as well as the categorical features contain-
ing bi,mi, ri, bj ,mj , rj , C(li,j). To combine these two types
of input features, we map the categorical features of H(vi, vj)
in continuous space by an embedding layer. Its output is
concatenated with the numerical features of H(vi, vj) and
fed into the subsequent fully-connected layers. Eventually,
the model outputs the probability of instance correlation
vi → vj , denoted as Pr{vi → vj}. In addition, since most

Embedding Layer, ReLU

Concatenate

Fully-connected (32), ReLU

Dropout

Fully-connected (32), ReLU

Dropout

Fully-connected (64), ReLU

Dropout

Fully-connected (1), Sigmoid

𝑃𝑟{𝑣! → 𝑣"}

Categorical Features of ℋ(𝑣! , 𝑣") Numerical Features of ℋ(𝑣! , 𝑣")

Fig. 3. Architecture of DNN.

instance pairs are non-correlated, D is imbalanced. We adopt
the resampling approach to build a balanced dataset through
oversampling the minority class by random duplication [26]
[27].

C. ICT Formation

During an observation window P , the testing dataset of
an arbitrary network state is provided, which incorporates
the network topology GP , a set of lightpaths LP , and an
alarm instance set AP . The set of board instances is denoted
as FP = {f1, · · · , fMP

}. As shown in Fig. 4, the goal of
the proposed ICT formation is to construct one or multiple
ICTs, each with a board instance as the root and some alarm
instances as the leaf nodes, such that the alarm instances can
be covered by the ICT(s) to the maximum extent. With the



ICT(s), the required failure localization and alarm correlation
can be achieved.
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Fig. 4. Illustration of the input and output of ICT formation.

The following assumptions are held in the proposed ICT
formation process. Firstly, the state of any board in FP can
only change at most once at the beginning of each observation
window, i.e., either staying normal or switching from normal
to failed. Once a board is failed, it stays in the failed state
until the end of the observation window. This implies that a
board instance may not correlate to any alarm instance and
will not be taken into the ICT formation process. Secondly,
all alarm instances in AP are caused by one or multiple boards
being failed at the starting moment of P . If there exists any
alarm instance associated with a board that wasn’t faulty at
the beginning of P , it could be removed by examining the
historical ICTs. Thirdly, due to the characters of failure/alarm
propagation behaviour in OTN, One2One and One2Many
could happen whereas Many2One isn’t allowed.

Based on the above assumptions, one or multiple ICTs
constitute a directed forest denoted as GI

P = (V I
P , E

I
P ), where

V I
P is the vertex set of instances containing the faulty board

instances and all alarm instances, and EI
P is the arc set

covering all identified instance correlations.
To provision the search space for discovering GI

P , a
weighted directed acyclic graph GP is defined to incorpo-
rate all possible instance correlations, denoted as GP =
(VP , EP ,W (EP )). VP = FP

⋃
AP is the vertex set of all

board instances and alarm instances. EP = E1
P

⋃
E2

P is
the set of arcs, where E1

P = FP × AP , E2
P ⊆ AP × AP

are the sets of all possible instance correlations. The alarm
instances in AP have been sorted in ascending order of their
occurrence time. E2

P can be obtained by considering all alarm
instance pairs whose time gap is greater than 0. Whereas
W (EP ) is the set of non-negative weights for arcs in EP .
∀vi, vj ∈ VP , (vi, vj) ∈ EP , wij ∈ W (EP ) represents the

cost of instance correlation vi → vj and it’s denoted in (2):

wij =


1− Pr{vi is failed}

· Pr{vi → vj}, if (vi, vj) ∈ E1
P ,

1− Pr{vi → vj}, if (vi, vj) ∈ E2
P ,

(2)

where Pr{vi is failed} is the probability that the board
instance vi becomes faulty. It can be determined by the
probability density function of time-to-failure (TTF) of the
corresponding board, which is estimated according to the
historical failure events hitting this board. Pr{vi → vj} is the
probability of instance correlation vi → vj , which is calculated
by the trained binary classifier.

1) Integer Linear Programming (ILP): The problem of
abstracting the best possible GI

P from GP can be formulated
as an ILP given as follows:

minimize
∑
e∈EP

wexe +
∑
u∈FP

yu (3a)

subject to
∑

e∈δ−(u)

xe = 1, ∀u ∈ AP , (3b)

xe ≤ yu, ∀u ∈ FP ,∀e ∈ δ+(u), (3c)
xe ∈ {0, 1}, ∀e ∈ EP , (3d)
yu ∈ {0, 1}, ∀u ∈ FP , (3e)

where ∀e ∈ EP , we ∈ W (EP ),∀u ∈ VP , δ
−(u), δ+(u) are

the sets of all incoming arcs and outgoing arcs of vertex u,
respectively. Two binary variables xe, yu are defined, where
xe takes 1 if the instance correlation arc e is chosen by
GI
P and 0 otherwise; while yu takes 1 if the board instance

vertex u is selected as a tree root in GI
P and 0 otherwise. The

objective function (3a) aims to find the GI
P that minimizes the

total cost of selected instance correlations and board instances.
Constraint (3b) indicates that for each alarm instance vertex,
only one incoming arc is selected by GI

P . This guarantees that
all alarm instances are traversed by GI

P and the in-degree of
each alarm instance vertex must be one, which satisfies GI

P ’s
property of being a directed forest. Constraint (3c) implies
that for each board instance, if any one of its outgoing arcs is
selected then this board instance vertex must be chosen as a
tree root.

By solving the above ILP, the anticipated ICT(s) GI
P can

be obtained. The root nodes in GI
P are faulty boards in

the observed network state, where the failure localization is
accomplished by checking their location information. Also,
GI
P elaborates all correlations among the faulty boards and

alarms.
Obviously, solving the above ILP model could be subject to

intolerably long computation time. Thus, a heuristic scheme
is developed to come up with feasible solutions.

2) Heuristic Algorithm: Fig. 5 demonstrates the flowchart
of the proposed heuristic algorithm that aims to construct the
feasible ICT(s) GI

P . Given the set of instances VP and its
corresponding instance pair set EP , we can obtain the set
of arc weights W (EP ) by passing through each instance pair
from EP into the pre-trained binary classifier. For simplicity,
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Fig. 5. Flowchart of the proposed heuristic algorithm for ICT formation.

we assume that each board instance vi is equally likely to be
faulty, which implies that Pr{vi is failed} can be ignored.
To remove unreliable instance correlations in GP , the arcs
whose weight in W (EP ) is greater than 0.5 are discarded.
Also, due to the characters of alarm propagation behaviour,
for each alarm instance there is at most one incoming arc
whose tail vertex belongs to the alarm instance, where we
only reserve one arc with the minimum weight if there are
multiple qualified incoming arcs. Hence, GP is reduced to be
G1
P = (VP , E

3
P ). Meanwhile, the subgraph of G1

P induced by
AP has become a directed forest, which represents all instance
correlations formed by alarm instances and it’s denoted as
G1
P [AP ].
Furthermore, the set of root alarm instances, denoted as

RP ⊆ AP , can be identified as the alarm instance whose
in-degree in G1

P is non-zero and its all incoming arcs are
initiated by board instances. For each root alarm instance
ri ∈ RP , the corresponding set of board instances Fi and
the set of associated alarm instances Ai can be determined by
G1
P , where Fi contains all board instances that connect to ri

and Ai aggregates all alarm instances that are reachable from
ri. Based on the attributes of ri and all alarm instances in
Ai, the board instance whose confidence not only surpasses
0.5 but also is the highest one could be chosen according to
the mined association rules between the faulty board and its
corresponding alarm types in the raw dataset and all other
board instances are eliminated from Fi. In addition, the set of
board instances F is acquired by taking the union of all Fi’s.

To reflect the relationship between the set of board instances
and root alarm instances, we define a directed bipartite graph
G2
P = (F,RP , E

4
P ), where E4

P ⊆ E3
P is the arc set that

represents all instance correlations between the board instances
in F and root alarm instances in RP . We will post-process
it and denote the output as G3

P , which aims to cover the
root alarm instances to the maximum extent by choosing the
least number of board instances as the faulty boards. For each
component in G2

P , we iteratively select one board instance with
the maximum out-degree and all of its outgoing arcs until all
root alarm instances have been explained by the corresponding
board instances.

Eventually, the feasible ICT(s) GI
P shall be obtained by

taking the union of G3
P and G1

P [AP ]. Note that there could
exist more than one G3

P for the same G2
P , leading to multiple

GI
P ’s, where we will take the union of all those solutions in

case missing any possible faulty board.

V. CASE STUDY

Extensive case studies are conducted to verify the proposed
IC-FD method in OTN and compare it with a number of
counterparts. An OTN simulator [29] is firstly developed
to generate ground-truth alarms and the resultant ICTs GT

P

according to the given failure event, failure/alarm propagation
rule database, as well as GP and LP during the observa-
tion window P . The ICTs produced by the proposed IC-FD
approach are denoted as GE

P . Currently, the relational rule
database contains 39 rules, which incorporates 65 instance
correlation types formed by 20 failure types, 26 alarm types,
and 16 board types. Without loss of generality, each failure
event will independently hit a board and thus affecting the
traversing optical flows.

The goal of this case study includes the following two
aspects:

1) evaluate the performance of the trained binary classifier
on the training/validation set.

2) verify the generality and migratability of the proposed
IC-FD by comparing its performance with that of the
counterparts on the testing datasets of single board
failure in the following network environments:

• use the same network topology and lightpath setting
as the raw dataset;

• change the number of lightpaths for the given net-
work topology;

• change the size of network topology for the given
number of lightpaths;

• change the ratio of the number of noise alarms to
that of true alarms.

The state-of-the-art counterparts considered in this case
study include BP [19], LSTM [19], GNN [22]–[24], Trans-
former [25], and CNN [30].

A. Setup

1) Raw Dataset: We generate the raw dataset by initiating
a set of independent single board failure events, where each of
them in turn hits one board in the given network topology. The
length of each observation window Ti is 1 min. The network
topology GTi

is characterized by Si, |FTi
|, degi, which are

the number of nodes, the number of board instances, and the
board-level average degree, respectively. Whereas the set of
lightpaths LTi

is described by |LTi
| and |li| that indicate

the number of lightpaths and the average number of boards
traversed by each lightpath. The setting of network topology
and lightpath are consistent in all observation windows, where
∀i ∈ [1, 561], Si = 15, |FTi

| = 561, degi = 2.48, |LTi
| = 40,

and |li| = 14.



2) Training Dataset: The raw dataset contains 7365 alarms,
leading to a training dataset of size 2726247, where the ratio
of positive samples to negative samples is 4970:2721277. We
set a 64%, 16%, and 20% split for training, validation and test
sets. For the numerical features, min-max scaling is applied
for normalization. We adopt the binary cross-entropy loss
function, which is optimized with Adam at a learning rate
of 0.001. The batch size and the number of epochs are set
to 450 and 100. Also, the technique of early stopping [28]
is applied to reduce overfitting, which monitors the value of
the area under the curve (AUC) on the validation set in each
epoch.

3) AI Architectures of the Counterparts: The network ar-
chitectures of the counterparts are briefly described as follows.
For BP and LSTM, two networks of 233× 64× 32× 561 and
233 × 64 × 561 are constructed. For training the GNN, an
alarm knowledge graph with 43 entity nodes is built based on
the failure/alarm propagation rule database. The CNN model
consists of 24 input layer units as well as 3 hidden layers
whose number of neurons are 256, 128, and 32, where the
kernel size in each hidden layer is 2×2. While the Transformer
encodes the alarm context with a 768-dimension vector and
sets the length of each alarm transaction to 5.

B. Performance Metrics

The comparison between GE
P and GT

P is accomplished via
three parts.

1) Metrics for Root Alarm Identification: Firstly, we eval-
uate the results of identified root alarms in terms of pre-
cision(R), recall(R), and accuracy(R), which are defined as
follows:

precision(R) = NCra,E

NTra,E
, recall(R)= NCra,E

NTra,T
, accuracy(R) = NCa,E

|AP | ,
(4)

where NCa,E is the number of correctly inferred root and
non-root alarm instances according to GE

P ; |AP | is the size
of alarm instance set AP ; NCra,E is the number of correctly
inferred root alarm instances in GE

P ; NTra,E , NTra,T are the
number of root alarm instances in GE

P and GT
P , respectively.

2) Metrics for Failed Board Identification: Secondly, the
performance of failure localization in terms of how pre-
cisely/accurately the failed boards can be identified is assessed
by comparing the faulty boards in GE

P with that in GT
P , which

is evaluated via precision(F), recall(F), accuracy(F), as given
by:

precision(F ) = NCroot,E

NTroot,E
, recall(F ) = NCroot,E

NTroot,T
, accuracy(F ) = NCF

|FP | ,
(5)

where NCF is the number of correctly inferred functioning
and faulty boards according to GE

P ; |FP | is the total number of
boards in GP ; NCroot,E is the number of correctly inferred
faulty boards in GE

P ; NTroot,E , NTroot,T are the number of
faulty boards in GE

P and GT
P , respectively.

3) Metrics for Alarm Instance Correlation: Thirdly, we
evaluate the quality of alarm instance correlations in ICTs in
terms of recall(A) and accuracy(A), which are defined by:

recall(A) =
NCarc,E

NTarc,T
, accuracy(A) =

NCA

|DA
P |

, (6)

where NCA is the number of correctly labeled alarm instance
pairs according to GE

P ; |DA
P | is the size of alarm instance pair

set DA
P ; NCarc,E is the number of correctly inferred alarm

instance correlations in GE
P and NTarc,T is the number of

alarm instance correlations in GT
P .

C. Results
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Fig. 6. DNN performance on the training and validation set.

1) Binary Classifier: The training procedure of DNN is
demonstrated in Fig. 6. The loss converged to 0.0087/0.014
and accuracy reached 99.85%/99.72% after 15 epochs on the
training/validation set.

TABLE I
PERFORMANCE COMPARISON AMONG DIFFERENT SCHEMES UNDER THE

NETWORK ENVIRONMENT OF THE RAW DATASET

Schemes
Metrics # of Trainable Parameters precision(R) recall(R) accuracy(R)

IC-FD 5585 1 0.9666 0.9975
CNN 150531 0.895 0.9666 0.9627

Transformer 2521716 0.2153 0.2666 0.7156
precision(F ) recall(F ) accuracy(F )

IC-FD 5585 0.95 1 0.9998
BP 35569 0.85 0.9 0.9994

LSTM 112753 0.85 1 0.9994
GNN 51999 0.5833 0.7 0.7

2) ICT Formation: Firstly, we adopted the network setting
of the raw dataset and conducted 10 independent single
board failure experiments. The average performance results
of various schemes are summarized in Table I. Apparently,
the IC-FD achieved a significant advantage in terms of all
metrics regarding root alarm instance/failed board identifica-
tion against the counterparts at the cost of the least number of
parameters.

Furthermore, we verified the migratability of IC-FD where
the model was trained by using raw data from an initial setting
while being applied to some other network scenarios with dif-
ferent topologies and traffic distribution. On one hand, given a
network topology whose Si = 14, |FPi

| = 3470, degi = 2.08,
we varied the number of lightpaths |LPi

| from 50 to 500. On
the other hand, we fixed |LPi | = 200, |li| = 16 and changed
the size of network topology, where Si ∈ [10, 37], |FPi | ∈
[1074, 1839], degi ∈ [2.1, 2.32]. As shown in Fig. 7(a)(b), the
IC-FD performed the best in root alarm identification among
those three methods, where its accuracy(R), recall(R) stabi-
lized above 97%, 90% and its precision(R) remained above
93%. However, the performance by the CNN model was



significantly degraded under certain values of |LPi
|/|FPi

| and
that by Transformer behaved even worse, which shows that
they can’t stably capture root alarms when the spatial relation
and traffic distribution were completely ignored. Further as
depicted in Fig. 7(d)(e), recall(F ) of IC-FD maintains 1
that implies no true faulty boards were missed, which wasn’t
accomplished by LSTM and BP even if their accuracy(F )
and precision(F ) are similar to that of IC-FD. Whereas the
performance of GNN exhibited high fluctuation due to merely
learning the mapping between the failure type and alarm
type. Also, as displayed in Fig. 7(g)(h), most alarm instance
correlations were successfully identified by IC-FD. Note that
since the location information of faulty board/alarm varies
with different network environments, all AI models taken by
the counterparts need to be retrained as long as there is any
change with the network topology/traffic distribution, whereas
the IC-FD only needs to be trained once with the alarm data
collected from any given network state(s) but it showed the
best migratability among all counterparts.

Finally, we tested the anti-noise capability of IC-FD by
introducing some noise alarms on top of the true alarms due
to a single board failure event. As shown in Fig. 7(c), CNN
and Transformer suffered serious performance degradation in
detecting root alarms as the ratio of noise alarms continues
to increase, whereas IC-FD demonstrated a good capability in
overcoming the noises thanks to its additional consideration of
the spatial relations among the received alarms. Similarly as
illustrated in Fig. 7(f), IC-FD can keep steady performance in
faulty board identification when encountering the noises while
all the counterparts are subject to significant degradation.

Note that the total processing time of IC-FD is proportional
to the number of examined instance pairs each taking about 4
ms to handle.

VI. CONCLUSION

This paper introduced a novel failure localization and alarm
analysis scheme in the optical layer of OTN, called Instance
Correlation based Fault Diagnosis (IC-FD), aiming to identify
the affected boards due to a failure event with high precision
in real time. The proposed IC-FD is characterized by a suite of
novel modeling approaches. Firstly, we have included both the
alarm instances and board instances in the correlation model so
as to perform localization of the failed boards directly instead
of merely obtaining the root alarms. Secondly, we developed a
novel DNN-based binary classifier along with various features
that consider all those static and dynamic network parameters,
aiming to achieve sufficient generality and migratability for
various network environments. Thirdly, the ICT can effectively
describe the correlation between the alarms and the faulty
boards, and the ICT formation process serves as a graceful
solution that can swiftly come up with high-quality results.

Extensive case studies were conducted to verify the feasi-
bility and performance of the proposed method and modeling
approaches. Compared with its counterparts, the proposed IC-
FD scheme can adapt to versatile network environments (i.e.,
change of network topology, traffic distribution, or adding

noise alarms) and achieve superb and stable performance in
root alarm and failed board identification in terms of precision,
recall, and accuracy.
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Fig. 7. Performance comparison of IC-FD and counterparts when changing the network traffic distribution/topology/ratio of noise alarms.

[20] X. Zhao, H. Yang, H. Guo, T. Peng, and J. Zhang, “Accurate fault
location based on deep neural evolution network in optical networks for
5G and beyond,” in 2019 Optical Fiber Communications Conference and
Exhibition (OFC), San Diego, CA, USA, 2019, pp. 1–3.

[21] H. Yang, X. Zhao, Q. Yao, A. Yu, J. Zhang, and Y. Ji, “Accurate
fault location using deep neural evolution network in cloud data center
interconnection,” IEEE Transactions on Cloud Computing, vol. 10, no. 2,
pp. 1402–1412, 2022.

[22] Z. Li, Y. Zhao, Y. Li, S. Rahman, X. Yu, and J. Zhang, “Demonstration of
fault localization in optical networks based on knowledge graph and graph
neural network,” in 2020 Optical Fiber Communications Conference and
Exhibition (OFC), San Diego, CA, USA, 2020, pp. 1–3.

[23] Z. Li, Y. Zhao, Y. Li, S. Rahman, Y. Wang, X. Yu, L. Zhang, G. Feng,
and J. Zhang, “Demonstration of alarm knowledge graph construction
for fault localization on ONOS-based SDON platform,” in 2020 Optical
Fiber Communications Conference and Exhibition (OFC), San Diego,
CA, USA, 2020, pp. 1–3.

[24] Z. Li, Y. Zhao, Y. Li, S. Rahman, F. Wang, X. Xin, and J. Zhang,
“Fault localization based on knowledge graph in software-defined optical
networks,” Journal of Lightwave Technology, vol. 39, no. 13, pp. 4236–
4246, 2021.

[25] J. Jia, D. Wang, C. Zhang, H. Yang, L. Guan, X. Chen, and M. Zhang,

“Transformer-based Alarm Context-Vectorization Representation for Re-
liable Alarm Root Cause Identification in Optical Networks,” in 2021
European Conference on Optical Communication (ECOC), Bordeaux,
France, 2021, pp. 1–4.

[26] E. Lin, Q. Chen, and X. Qi, “Deep reinforcement learning for imbal-
anced classification,” Applied Intelligence, vol. 50, no. 8, pp. 2488–2502,
2020.

[27] TensorFlow, Classification on imbalanced
data:Tensorflow Core, [Online]. Available:
https://www.tensorflow.org/tutorials/structured data/imbalanced data.

[28] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures”, Neural Networks: Tricks of the Trade, Berlin, Hei-
delberg: Springer, 2012.

[29] Z. Li, “Design of an OTN-based Failure/Alarm Propagation
Simulator,” M.S. thesis, Electrical and Computer Engineering,
University of Waterloo, Canada, May 2022. [Online]. Available:
http://hdl.handle.net/10012/18304.

[30] A. Yu, H. Yang, Q. Yao, Y. Li, H. Guo, T. Peng, H. Li, and J. Zhang,
“Accurate fault location using deep belief network for optical fronthaul
networks in 5G and beyond”, IEEE Access, vol. 7, pp. 77932–77943,
2019.


