
Meta-Migration: Reducing Switch Migration Tail
Latency Through Competition

Sepehr Abbasi Zadeh, Farid Zandi, Matthew Buckley, Yashar Ganjali
Department of Computer Science, University of Toronto

{sepehr,faridzandi,mbuckley,yganjali}@cs.toronto.edu

Abstract—Resource management in distributed network con-
trol planes plays a vital role in the performance of the data
plane and therefore the performance of network applications.
Overwhelmed controller instances or underutilized instances
could reshape their workloads by exchanging their load, i.e.,
switches that they control. To safely implement this exchange
procedure, switch migration protocols are being used. As the
migration procedure pauses processing new flows for a few
milliseconds, these protocols are designed to be as fast as possible.
Faster protocols add to the agility of the network to rapidly cope
with the changing demand.

In this paper, we introduce a general framework, called Meta-
Migration, which focuses on expediting the existing time-sensitive
controller load migration protocols. Based on the observation that
these protocols impose low overheads on the involved parties, we
modify them in a way that they can run in parallel toward
multiple candidate destinations. Unlike the usual Fixed protocols
that have to decide their destinations before running the protocol,
here we rely on the real-time probes that we obtain from multiple
systems and commit to only one of them in the middle of the
procedure. Typically, migrations can complete on sub-second
timescales, but sudden traffic bursts or system-level glitches can
significantly slow down these protocols. We observe that by using
Meta-Migration, we can dramatically diminish these negative
effects. We show theoretical justifications for why this approach
improves the overall performance of the migration, namely, its
mean finishing time, and the tail latency of the migration. In
addition, by developing a distributed controller simulator over
real physical devices, we thoroughly measure the effectiveness
of this approach as well as its incurred overheads. Our testbed
results show up to a 53% tail reduction in the migration time.

I. INTRODUCTION

The traffic in cloud environments is controlled via a set
of distributed controllers collectively known as the network
control plane. Each of these controllers is responsible for
managing the incoming requests from a number of (possibly
software) switches. Under the OpenFlow protocol [15], this
management provides access to the data plane. As the traffic
patterns in the network change, the load on the controllers also
becomes volatile. The load imbalance on the controllers results
in a sequence of undesirable consequences. An overwhelmed
controller instance inevitably experiences higher buffer thresh-
olds which increase the response time. As a result, the traffic
burstiness increases which degrades the performance of the
data plane as well. Thus, the load on the controllers is a crucial
performance factor that needs to be governed.

Fig. 1. Changing the corresponding controller of a switch can improve the
performance of the control plane by reducing the response time of queries.

Switch migration protocols serve as a reliable solution to
adjust the load distribution on controller instances [10], [6].
Using load migration, the total load on a controller instance
could be changed at the granularity of the imposed load by
each switch. More specifically, a switch migration protocol
changes the corresponding controller of a given switch to
another controller instance. This effectively reduces the load
on the initial controller of the switch under the migration.
Fig. 1 depicts the benefits of the migration procedure from the
switch’s point of view. In this example, a switch is migrated
from a high-load controller instance to another with a lower
load. We can see that after the migration and buffer draining,
the response time to the switch’s queries decreases eventually
(from 6 ms to 3 ms) as the new controller has a higher capacity.
However, this procedure comes at the cost of a short period
of service blackout for the migrating switch.

During the blackout phase, all the incoming requests from
the switch will be buffered to be responded to as soon as
the migration ends. To minimize the mentioned buffering
consequences and have a more agile network, the migration
blackout period should be as short as possible. In response to
that, traditional migration protocols (coined Fixed protocols in
this paper) are optimized to accelerate the migration procedure.

A. Fixed Migration Protocols

Traditional migration methods rely on running protocols
between a known source and a chosen destination. This means
that as soon as the control plane decides on migrating the load
of a switch from its current controller instance, it should also
announce the destination controller of the migration to start
the procedure [10]. This is illustrated in Fig. 2(a).

To optimize the performance of the control plane, this
decision usually takes into account the recent statistics of all
the possible candidates for the destination controller [14], [9].
While these optimizations can lead us to an eventually goodISBN 978-3-903176-57-7 c©2023 IFIP

(a) Fixed Protocols (b) Meta-Migration

Fig. 2. Comparison of the two methods.

candidate, they fail to anticipate unforeseen network/system
conditions. A sudden random drop of key migration protocol
message, a surge in traffic, micro-bursts, or even micro-second
level failures might cause unexpectedly long migration times.
This can have a damaging effect on the blackout time of the
migrating switch. Similar conditions could occur due to the
softwarized nature of the controller instances. For example, the
hosting system of the destination controller instance might be
experiencing some system glitches or short service disruptions
due to a garbage collection task. These unpredictable problems
happen infrequently, but can significantly impact the migration
time, leading to long tail latencies.

B. Meta-Migration Protocols

Fixed migration protocols involve exactly 3 parties in their
procedure: 1) the switch to be migrated, 2) the source (i.e.,
current) controller instance, and 3) the destination controller
instance. The idea behind the framework we propose is to
involve multiple instances in parallel as the third party of the
Fixed protocols, called candidates. Fig. 2(b) shows this setting.

We aim to run the load migration procedure for all these
possible candidates in parallel without any race conditions and
commit only to the one that finishes faster.

Having the ability to run multiple instances of a migration
protocol for multiple candidates can reduce the chances of
hitting the mentioned corner cases in the traditional Fixed
protocols. This is mainly because those mentioned cases usu-
ally impact the environment locally (temporally and spatially).
As an example, in an operational network, software glitches
don’t happen to all the controller instances simultaneously.
Similarly, intermittent micro-bursts usually happen in certain
traffic paths that employ incast or outcast patterns[5] which
again only influences the bottlenecks that the casting endpoint
shares with other candidates.

Therefore, involving more systems in the protocol means
smaller chances of simultaneous unwanted events and it be-
comes less probable that multiple candidates are affected. It
also eliminates the effect of stale information that negatively

Fig. 3. Concurrent Controller Migrations: Meta-Migration execution stages
for migrating a switch from co-1 to any of the three migration candidates.
co-2 finishes first and becomes the new controller for the switch.

influences the choice of Fixed migration protocols [19]. 1

These benefits over Fixed protocols do not come for free and
it should be noted that we are temporarily sacrificing more sys-
tem/network resources to obtain the final controller among a
pool of candidates. However, note that this temporary sacrifice
incurs negligible overhead on the involved parties as we will
show in Section IV. In the realm of time-sensitive applications
such as AR/VR, self-driving cars, or tactile internet with their
stringent latency requirements, this cost can be justified with
the saved time from the tail of the migration time (e.g., as
much as 53% in our experiments).

Fig. 3 shows an example of how such a protocol works.
The migration is initiated from co-1 toward three candidates,
co-2, co-3, and co-4. While co-2 and co-4 can finish
the initialization phase faster, co-3 is slowed down because of
an internal or network-related issue. All candidates then enter
the state transfer phase, in which co-2 happens to finish first.
This controller finalizes the migration and becomes the new
controller instance for the switch, processes the buffer, and the
switch operation goes back to normal again. If a fixed choice
had to be made for the destination, the slower controllers could
have been chosen, leading to a longer service blackout for the
switch. On a similar note, if the choice had to be made between
co-3 and co-4 after the initialization phase, the suboptimal
co-4 would have been chosen.

In order to safely run this new family of protocols, which
we call Meta-Migration, the mechanism should assure us that:

1) Eventually, exactly one controller instance obtains the
control for the migrating switch, or otherwise, the mi-
gration is aborted.

2) The final chosen destination controller has completely
received its required state to continue its operation.

3) The protocol can terminate the migration for the other
candidates that are not involved in the migration any-
more so that they can also release the reserved resources
and roll back any undesired state changes.

1From a different perspective, this framework could be viewed as yet
another application of the “power of k choices”[16] but in an online fashion.
Within that context, it becomes more intuitive to realize the effectiveness of
the approach. However, the math used there for load balancing notions is not
directly applicable to the statistics of interest in our framework, specifically,
the tail latency. Thus our analysis is problem-specific and different from the
original proofs.

Having such a mechanism, the control plane can benefit
from the fact that, unlike the Fixed protocols, we are less
likely to hit one of the mentioned corner cases.

In this work, we make the following main contributions:
• We propose a general framework for converting existing

switch migration protocols to a Meta-Migration one with
the objective of reducing worst-case migration latency.

• We develop theoretical justifications for this framework.
• Through extensive testbed experiments, we show that

with minimal network/CPU overheads, the framework
significantly reduces migration time in the worst case.

We define the necessary conditions under which such a
framework can be applied and focus our evaluations on the
switch migration setting. In support of the justification that
our theoretical model provides, the evaluations demonstrate
that Meta-Migration protocols can be effective in real settings.
The reduction in 99th percentile latency ranges from 15% to
53% in our experiments. This demonstrates the robustness of
the method which is due to the fact that it is able to pick
a different candidate controller when unexpected delays are
introduced. Moreover, even in some cases where there are no
unexpected delays, a Meta-Migration protocol is able to reduce
the tail latency. Even though the additional overhead is small,
we envision this framework being used for particularly time-
sensitive migrations, in order to guarantee a better worst-case
latency.

II. BACKGROUND AND RELATED WORK

For the purpose of protocol transformation, we have chosen
the ERC family of migration protocols that support the roll-
back mechanism by design [6], [1]. This mechanism would
allow us to easily ignore the unsuccessful candidates by
issuing a rollback command for them. We would like to
emphasize that any protocol with rollback support can be used
as the basis for our solution. This is a reasonable requirement
as any load migration protocol that is able to deal with failures
needs to have the ability to roll back the controller state.

A. ERC Fixed Protocols

The ERC family of protocols is designed for switch mi-
gration tasks with the additional property that they maintain
the consistency of the locally stored states between the source
and the destination of the migration. The state consistency
maintenance property provides transparency for the control
applications operating in the controller at the cost of a short
blackout period in which the controller is not responding to
the switch queries.

Based on the OpenFlow specifications, each controller of
a switch can be either in master, slave, or equal role. The
master controller instance is the only controller that can
modify the switch’s state and the equal controllers maintain
a synchronized view of the switch with the master controller.
Meanwhile, slave controllers only receive a portion of control
messages and they only have read access to the switch.

The protocol, as shown in Fig. 4, is designed to exchange the
roles between a master (i.e., initial master) and a slave instance

Fig. 4. ERC Fixed Protocol

(i.e., final master). Towards that end, it starts the procedure
from the source controller. At the end of the first phase
of the protocol, both controllers have reached an agreement
that they are in the middle of a migration procedure. Once
the destination controller accepts its new equal role at this
phase, a copy of all the switch requests is guaranteed to be
received at the destination (this is enforced by the OpenFlow
specifications for any equal instance). In order to maintain state
consistency, both controllers start buffering newly incoming
requests so that whoever obtains the master role at the end
of the migration can respond to them. Upon reaching the
end of the second phase, the controllers have ensured that
their required local states are synchronized, allowing them
to proceed to the next phase. Finally, the third phase is
transferring the master role responsibilities associated with the
migrated switch to the destination of the migration.

Through the final two phases, the switch is experiencing its
blackout time while all of its requests are being buffered at
the controllers. If any undesired event (other than losing the
initial master) stops the migration from proceeding. In this
case, the initial controller issues a rollback command; starts
to process its buffered requests; and eventually continues its
normal operation.

B. Related Work

Switch migration is an important tool for managing the dis-
tribution of the control traffic in distributed Software-Defined
Networks (SDNs). As this procedure effectively moves the
control of a switch from one controller instance to another
one, it has been used as a building block in various control-
plane load-balancing methods [14], [18], [26]. These meth-
ods consider a migration protocol as given, and their main
objective is on optimizing either the controller assignment
or placement[17], [23], migration scheduling [8], or migra-
tion/resource cost[22], [12].

As for the employed migration techniques, these works
usually consider a 4-phase protocol, based on OpenFlow 1.3,
proposed by Dixit et al. [10]. Even though this protocol
provides the required migration functionality, it lacks a number
of important features such as failure resiliency and state
synchronization in a distributed manner. To fill these gaps, [6]
introduces a new 3-phase protocol called ERC that leverages
OpenFlow 1.5 and outperforms the older protocol in terms
of its migration time. While both of these protocols migrate
a switch via a role exchange between a master and a slave
controller instance, [1] extends the ERC family by identifying
other migration use cases that allow faster and more efficient
role exchange protocols involving the equal controllers as well.

To the best of our knowledge, there are currently no works
on the use of a cooperative and competition-based framework
like Meta-Migration in migration schemes. However, there
have been prior studies with similar ideas in adaptable network
algorithms. Remy [24] is a framework in which a computer
generates congestion control algorithms based on users’ as-
sumptions about the network and high-level objectives. It is
based on a game-theoretic paradigm in which all network
elements converge to a common algorithm based on the
network state. CCmatic [4] is a framework that uses formal
logic to synthesize congestion control algorithms. It compares
different congestion control heuristics and is able to select
and combine algorithms to work under specified network
conditions. It also identifies underlying assumptions in the
algorithms that must hold in the network to ensure the desired
performance criteria are met. DCM [21] allows clients to
declare cluster management policies using SQL queries over
cluster state stored in a relational database. The framework
combines cluster state and user-specified policies to derive
an optimization model for cluster management decisions. For
the load-balancing problem in the data plane, Malcolm [3]
proposes a decentralized design for distributed servers and
micro-second scale workloads. The problem is modeled as
a cooperative stochastic game. The scheduling decisions are
made by distributed Malcolm nodes that maximize their own
utility by migrating workloads to other nodes when experienc-
ing overutilization and stealing workloads from other nodes
when they are underutilized. In the context of blockchains,
DispersedLedger [25] tries to address the issue of broadcasting
a block of data to multiple destinations. By dividing the
block into smaller chunks and using erasure coding, the block
proposer ensures one straggler destination cannot slow down
the entire system which effectively cuts the tail latency. As
long as a majority of the destinations continue their normal
operation, every destination can eventually build the data block
from the available chunks.

III. DESIGN RATIONALE

In this section, we first argue why the proposed technique
results in better migration performance, and then we identify
the changes necessary to convert a Fixed protocol to a Meta-
Migration protocol.

A. Justification

The primary motivation for Meta-Migration is to reduce
the time required to complete a migration. Numerous studies
have shown that the distribution of datacenter traffic is heavy-
tailed [11], [5], [7]. Such a heavy tail can contribute to events
such as buffer-buildup, congestion, or system errors. Thus,
although the network typically performs very well on average,
it can experience much longer delays in rare cases.

In the context of switch migration, events caused by heavy-
tailed traffic and longer delays can lead to transient degraded
performance from the switch and/or controllers involved in
the migration. In addition, events such as micro-bursts, which
occur frequently in datacenters [7], can lead to increased
response time. These factors are expected to contribute to
a heavy-tailed distribution for the migration time. This is
confirmed by results of previous experiments on switch mi-
grations [10] as well as our own results. These distributional
properties imply that many migrations can be finished quickly,
but a small proportion requires a much longer time. Using
Meta-Migration, multiple migration protocols to different des-
tination controllers can be initiated in parallel. The migration
that finishes first is taken and the others are rolled back.
This has the effect of shrinking the heavy-tail of the time to
complete a migration.

More formally, suppose switch s can be migrated to any
of n controllers c0, c1, ..., cn−1. As a candidate heavy-tailed
distribution, we suppose that the migration time of switch
s to controller ci follows a Pareto distribution2 with scale
parameter ki and shape parameter αi. Let Xi be a random
variable denoting this migration time. Then the probability
density function of Xi is given by

fXi
(x) =

{
0 if x < ki,

αik
αi
i x

−(αi+1) otherwise.

And the cumulative distribution function is given by

FXi(x) = Pr(Xi ≤ x) = 1−
(ki
x

)αi

. (1)

Thus, under the assumption of a Fixed migration protocol,
some controller ci, 0 ≤ i < n, is chosen and the probability
that the migration takes no longer than x is given by FXi

(x).
In contrast, for a Meta-Migration protocol, we choose the des-
tination controller that can complete the migration the fastest.
This corresponds to the minimum of the random variables and
assuming independence gives the following result.

Lemma 1. Consider n independent random variables Xi,
0 ≤ i < n, such that Xi follows a Pareto distribu-
tion with scale parameter ki and shape parameter αi. Let
X = min{X0, X1, ..., Xn−1}. Then the cumulative distribu-

2Although the specifics of this distribution may not apply in practice,
this is merely used to illustrate the effect of Meta-Migration protocols.
Pareto distributions have previously been used in the context of data center
workloads [2], but a similar analysis applies to other heavy-tailed distributions.

tion function of X is given by

FX(x) = Pr(X ≤ x) = 1−
n−1∏
i=0

(ki
x

)αi

.

This result follows from standard probability arguments, but
the proof is provided in the appendix for completeness.

Notice that for Xi, the cumulative distribution function is
non-zero only when x ≥ ki and in particular at the tail
x >> ki. Thus, comparing the result of the lemma with (1)
shows that a Meta-Migration protocol has the effect of shrink-
ing the tail of the migration time distribution. Put another way,
for a given large threshold x, the probability that a Meta-
Migration protocol completes within time x is higher than the
probability that any Fixed migration protocol finishes within
time x for the same set of controllers. This effect is shown in a
sampling process from different Pareto distributions in Fig. 5.

Fig. 5. CDFs of samples from Pareto distributions with scales k = 400
and different shape parameters α. From (2), the Pareto distribution with
α = 18 results from taking the minimum of the α = 10 and α = 8
Pareto distributions, and results in a significantly reduced tail compared to
the individual distributions.

This becomes even more clear if we assume that
k = k0 = ... = kn−1 in which case, the cumulative distribu-
tion function given in the lemma simplifies to

FX(x) = Pr(X ≤ x) = 1−
(k
x

)∑n−1
i=0 αi

. (2)

For the remainder of the derivations, we make this simplify-
ing assumption on the scale parameters ki. We now proceed to
examine the effect of a Meta-Migration protocol on the mean.
Note that using the definition of fXi(x) we have that

E[Xi] = k
(αi
αi − 1

)
∀0 ≤ i < n, αi > 1; (3)

Next, define α =
∑n−1
i=0 αi. Substituting this into (2) gives

FX(x) = 1 −
(
k
x

)α
and differentiating gives that fX(x) =

αkαx−(α+1) if x ≥ k and 0 otherwise. We then see that

E[X] = k
(α

α− 1

)
= k

(∑n−1
i=0 αi∑n−1

i=0 αi − 1

)
. (4)

Comparing (3) and (4) we see that there is also a small
decrease in the mean completion time under a Meta-Migration
protocol as compared to a Fixed migration protocol.

This model provides the basis for the Meta-Migration

framework under the simplifying assumption of independence3

As shown in Section IV, the protocol adds additional overhead
to the switch and the controllers during the migration process.
However, the large reduction in tail latency more than offsets
this overhead, especially in the context of delay-sensitive
network applications.

B. Required Protocol Changes

In what follows, we describe the required changes for the
ERC protocol as it has been chosen for our migration baseline.
However, the same changes could be applied to any other
migration protocol.

Due to the nature of the control plane, and the rigidity of
the switches, the migration protocols are always initiated from
the controllers rather than the switches. This gives us leverage
in terms of choosing the synchronization point of the Meta-
Migration protocols. In other words, we can assume that the
controller that initiates the migration has full power to manage
all the candidates. This power allows the initiator to bear the
full responsibility of synchronization and therefore the initiator
can run multiple migrations towards all the candidates in par-
allel. Then, the initiator must decide to commit to only one of
these parallel migrations at some point and generate a rollback
command towards all the other unsuccessful candidates. In this
way, the underlying protocol remains intact with the initiator
maintaining the relative state for each candidate separately to
choose the successful one. This state corresponds to the status
of each migration in terms of the migration phase that the
candidate has achieved so far at any given point in time. We
define the notion of committing point to be the stage in which
the initiator makes a decision about the successful candidate.

The committing point in the ERC protocol could be chosen
to be either at the end of Phase 1, i.e., after receiving the first
Controller_Status from the switch, or before sending
the End_Migration message at the end of Phase 2. As
soon as the first candidate controller reaches its committing
point, the initiator sets the state of that controller to become
a successful controller and continues the migration with that
one. At the same time, it sends a predefined rollback message
to all the other unsuccessful candidates so that they can release
the resources of the ongoing migration.

Note that as soon as the initiator declares a candidate as a
successful one, it can ignore all the migration-related messages
from the unsuccessful candidates and as it is the point of
synchronization of the Meta-Migration protocol, there would
be no race condition between the other controllers to continue
their migrations. In addition, the described transformation
preserves all the design properties of the initial ERC Fixed
protocol such as its state consistency. Also, note that this
design allows us to easily push some functionalities to the
hardware which will be discussed in Section V.

3While true independence is likely not the case in real networks, the issues
we are designing for are mostly local to a given switch; software issues are
specific to a switch and micro-bursts are localized issues. Furthermore, we
can select migration candidates to maximize independence.

IV. EVALUATIONS

A. Methodology and the Testbed Description

We constructed a testbed for emulating the migration of
a switch between controllers, using a cluster of 9 machines
with Intel Xeon E7-4807 processors and Ubuntu 20.04. One
machine served as the experiment coordinator, 4 as Open-
Flow switches, and the remainder as network controllers. The
switches set up message publishers, to which all connected
controllers (in both master and equal modes) subscribe. In
normal operation mode (i.e., no migrations taking place), each
switch connects to a single controller in master mode and
generates Packet_In messages. These queries are sent with
intervals drawn from a Poisson distribution. Note that this is
only a simulation of the traffic between the switch and the
controller, not the data-plane traffic through the switches.

The master controller for each switch responds to the
queries with Packet_Out messages after interacting with
a local key-value store (KVS) to imitate a stateful control-
plane application. The controllers also establish a publisher-
subscriber system of their own, mainly to coordinate the
migration process. We implemented the switch and controller
functionalities using Python3 scripts, utilized ZeroMQ for
inter-device communications and used Redis as the local
KVS. Additionally, to simulate real-world scenarios, we added
extra load on the controllers using the stress-ng module.

In our experiments, we study the migration of a single
switch from its initial master controller to a different instance.
The initial master controller initiates the ERC migration pro-
tocol towards all participating destinations, which compete to
become the new master for the switch. The winning controller
finalizes the migration by promoting itself to the master mode.
The new master initiates its local Redis instance with the
received state and begins processing the switch queries that
were buffered during the migration. The other controllers
pause their migration efforts by unsubscribing from the switch,
discarding their buffered messages, and relinquishing their
equal role for the switch (acquired after Phase 1). Since the
Equal role is used only for high-availability purposes, adding
and removing these equal-mode controllers does not cause any
issues for the switch.

In the following sections, we will study different aspects
of Meta-Migration by changing the number of participating
destinations, the load imposed on the controllers, and the
committing point for the migration. We record the total
migration time, which serves as the main indicator of the
protocol performance, as well as finer-grained measurements
for the different stages of the migration. We also measure
the processing and network overhead caused by the migration
to show the additional cost of adopting Meta-Migration. As
the baseline, we run the Fixed ERC protocol toward lightly-
loaded and heavily-loaded controller instances, as well as a
random choice between the two. For each configuration, we
have repeated our experiments 1000 times, and the cumulative
probability distribution of the desired metrics is reported.

(a) 50% as low load, 75% as high load

(b) 10% as low load, 90% as high load

Fig. 6. Comparison of migration time distribution between Meta-Migration
and Fixed protocol baselines, with various load combinations on the three
Meta-Migration candidates. The markers show every 10th percentile as well
as the 99th.

B. Effect of the destination load on tail latency

Fig. 6 compares the CDF of the total migration time
between the Fixed protocol and the Meta-Migration protocol.
In this experiment, Meta-Migration is run with three candi-
date destinations. In each configuration, the candidates are
divided between having low or high loads imposed on them.
Setting 50% and 75% loads as low and high (Fig. 6(a)),
Meta-Migration reduces the 99th percentile of migration time
by 28% compared to the random selection baseline if all
candidates have a high load. If there are low-load destinations
among the candidates, the 99th percentile is reduced by 38% to
49% depending on their count. Meta-Migration can even beat
the Fixed low-load protocol in 40% of instances and reduces
the 99th percentile by 15% to 40%.

Considering the more extreme case of having 10% and
90% as our low and high loads (Fig. 6(b)), the gains in
99th percentile range from 27% to 53% compared to the
random selection baseline depending on the number of low-
load candidates. If there are any low-load destinations among
the candidates, Meta-Migration delivers a shorter tail latency
compared to the Fixed low-load protocol, but consistently
performs slightly worse than the Fixed protocol in the normal
case, due to the overhead of running multiple migrations at
the same time from the source. Surprisingly, however, having
more low-load destinations makes the migration time worse.

The reason for this outcome can be seen in Fig. 7, which
compares the different combinations of low and high load
destinations with more detail. When there is only one low-load
destination among the three candidates, it is more likely that

Fig. 7. Comparing the state transfer time from the initial master toward the
destination candidates with different combinations of loads. High and low
loads are 90% and 10% for this experiment. Having many candidates with
the same load increases resource contention and increases transfer time.

the state transfer to this destination has a head start compared
to the other candidates. As the number of low-load destinations
increases, it will be more likely that multiple transfers take
place at the same time, leading to contention over the available
resources, and finally increasing the transfer time even for low-
load destinations. The red line in Fig. 7 shows the amount of
time that the initial master is transferring the state to all three
destinations at the same time, which consistently increases
as the number of low-load candidates increases from one to
three. Therefore, while having low-load destinations among
the candidates is generally good, some variation among the
loads helps with avoiding resource contention.

C. Number of candidates and resource overhead

Fig. 8 shows the effect of varying numbers of candidates on
the migration time distribution. With a 75% load imposed on
all migration candidates, as in Fig. 8(a), increasing the number
of candidates from one (Fixed ERC) to two, reduces the
median and the 99th percentile by 7% and 18%, respectively.
Increasing the number of candidates to three increases the
gains to 9% and 32%. With lower loads imposed on the
controllers, however, the effect of increasing the number of
candidates is more nuanced. As seen in Fig. 8(b), increasing
the candidates to two reduces the 99th percentile by 38%, but
in 40% of the runs, there is almost no difference between the
two. While increasing the candidates to 3 can reduce the 99th

percentile by 42%, it makes the migration time slightly worse
in 60% of the runs, due to the overhead of Meta-Migration.

The overhead comes in the form of processing and network
load. Fig. 9 compares the distribution of the imposed CPU

(a) 75% load

(b) 50% load

Fig. 8. CDF of the total migration time when changing the number of
migration candidates under different loads. While the heavy tails of the
distribution are decreased by adding more candidates, the normal-case runtime
might suffer due to the added overhead.

Fig. 9. CDF of CPU usage on the controllers during a migration. Adding
more candidates increases the processing overhead on the initial master, who
has to handle multiple concurrent migrations.

load as a result of the migration, as the number of Meta-
Migration candidates increases. For this graph, we turned off
the extra load source (stress-ng) to obtain the net operation
overhead. We probe the CPU usage every 10 ms while the
controllers are active in our experiments and report the average
value over the migration interval. With no migration, the initial
master uses 0.72% of CPU (in median) for responding to
the switch queries. As the number of migration candidates
increases from one to three, CPU overhead on the initial
controller increases to 1.2%, 1.81%, and 2.59%. Furthermore,
in each run, the new master is likely to be the destination can-
didate that has the lowest transient load among the candidates
at the time of migration. This leads to a slight decrease in
the new master’s median load from 2.26% to 2.16% as the
number of candidates increases from 1 to 3.

Table I also shows the network overhead caused by the
migration. In this experiment, only one switch is active and
connected to co-1, and all other switches are deactivated.
The normal operation of the initial master generates 645 KB
of sent and 554 KB of received network traffic when no
migration is taking place. Every added migration candidate
adds around 5MB of sent network traffic due to the state
transfer. The winner of the competition (new master) and the
other migration candidates (non-winner) each receive the state,
which adds roughly 5MB of received data to their network
traffic. The new master receives and processes all the requests
generated throughout and after the migration, which adds a few
hundred KB to its network traffic compared to non-winners.

Overall, we conclude that determining the best number of
candidates depends on a multitude of factors, such as resource
availability, the current status of migration candidates, and the
trade-off that the network administrators are willing to make
between the average-case and worst-case outcome.

D. Effect of the committing point

Finally, we study how the choice of the committing point
affects the performance of Meta-Migration. As described in
Section III-B, the end of Phase 1 and Phase 2 in the ERC
protocol can be chosen as committing points. Choosing Phase
1 completion reduces the network and processing overhead
since the state transfer will not happen for all candidates.

TABLE I
THE NETWORK TRAFFIC GENERATED ON DIFFERENT CONTROLLERS

THROUGH THE COURSE OF MIGRATION. IN EACH CELL, THE UPPER AND
LOWER NUMBERS SHOW THE SENT AND RECEIVED TRAFFIC,

RESPECTIVELY. REPORTED NUMBERS ARE MEDIANS ACROSS ALL RUNS.

Destination
Count

Not
Active

Initial
Master

New
Master

Non
Winner

No
Mig.

6 KB
17 KB

645KB
554KB

- -

1
5 KB

16 KB
5.5 MB
260 KB

440 KB
5.6 MB

-

2
5 KB

16 KB
10.8 MB
287 KB

446 KB
5.6 MB

49 KB
5.3 MB

3 -
16.0 MB
314 KB

445 KB
5.6 MB

49 KB
5.3 MB

(a) 75% load

(b) 50% load

Fig. 10. Effect of the committing point on the migration time distribution.
While earlier committing reduces resource overhead, it does a poorer job of
avoiding the heavy tails in the distribution.

However, state transfer is the longest stage in the protocol
and is more prone to transient network problems and system
delays. Fig. 10 shows the effect of the committing point
with three candidates with a similar load. With 75% load
(Figure 10(a)), committing after Phase 1 and 2 reduces the 99th

percentile by 2% and 32%, respectively, while at the median,
the reductions are 4% and 8%. The difference shows the causes
of extreme tail latency usually lie in the state transfer phase
and committing after Phase 1 does not help with that. With
50% load on the controllers, the trade-off between the two
choices is more visible. While a Phase 2 committing can
reduce the 99th percentile more than Phase 1, it leads to longer
execution times in 80% of the runs.

V. DISCUSSION AND CONCLUSION

In what follows we discuss different paths that could be
taken to further improve and expand the Meta-Migration
idea which we leave for future works. We then conclude by
summarizing the main contributions of this work.
Overhead Minimization. Two main overheads that Meta-
Migration protocols are faced with are the network overhead
and the CPU utilization at the source of the migration. To
improve the latter, similar to the ideas mentioned in [13], part
of the synchronization functionalities of the protocol could be
pushed to the switches. For the network side, as we observed
in our experiments, most of the extra traffic due to the addition
of new candidates comes from state synchronization. One
way to move the burden from the source node, which itself
could be an already overwhelmed end-host, is to use unreliable
multicast protocols to send the states toward all the candidates
by using programmable switches [20]. As a result, the source

needs to do less work in terms of the state transfer which in
turn contributes positively to the CPU utilization as well.
Other Use Cases. As shown in our experiments, the commit-
ting point in Meta-Migration protocols has a huge impact on
its performance. Having the commit point later in the protocol
results in a smoother estimation of the best candidate, but this
means that possibly more data needs to be duplicated to run all
the migrations in parallel. In the context of switch migration
in which the transferred state is still relatively small, we can
afford to commit at a later point to save more time in general.
The question to be answered is which other contexts have
similar requirements and limitations as the switch migration
problem. Identifying these use cases can result in effortless
immediate improvements in those areas as well.
Conclusion. In this work, we introduced the notion of Meta-
Migration protocols by which any low-overhead migration
protocol can be transformed to a faster version of itself at the
cost of employing more destinations, and therefore sacrificing
more resources. We examined this idea in the context of
switch migration protocols. Experimental results support our
theoretical analysis regarding cutting the tail latency of the
migration. In this way, we can bypass network or system-
related issues that can slow down the migration process.
Acknowledgements. We would like to thank anonymous re-
viewers for their helpful comments. We are especially grateful
to Soheil Abbasloo, Mahmoud Bahnasy, and Ali Munir for
their insightful comments and feedback on this work.

REFERENCES

[1] S. Abbasi Zadeh, F. Zandi, M. A. Beiruti, and Y. Ganjali, “Load
migration in distributed softwarized network controllers,” International
Journal of Network Management, vol. 32, no. 6, p. e2214, 2022.

[2] S. Abbasloo, Y. Xu, and H. J. Chao, “To schedule or not to schedule:
When no-scheduling can beat the best-known flow scheduling algorithm
in datacenter networks,” Computer Networks, vol. 172, p. 107177, 2020.

[3] A. H. A. Abyaneh, M. Liao, and S. M. Zahedi, “Malcolm: Multi-agent
learning for cooperative load management at rack scale,” Proceedings of
the ACM on Measurement and Analysis of Computing Systems, vol. 6,
no. 3, pp. 1–25, 2022.

[4] A. Agarwal, V. Arun, D. Ray, R. Martins, and S. Seshan, “Automating
network heuristic design and analysis,” in Proceedings of the 21st ACM
Workshop on Hot Topics in Networks, 2022, pp. 8–16.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” ACM
SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, p. 63–74, 2010.

[6] M. A. Beiruti and Y. Ganjali, “Load migration in distributed sdn
controllers,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2020, pp. 1–9.

[7] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 2010, pp. 267–280.

[8] M. Buckley, S. Abbasi-Zadeh, M. A. Beiruti, S. Abbasloo, and Y. Gan-
jali, “Switch migration scheduling in distributed sdn controllers,” in 2022
IEEE 8th International Conference on Network Softwarization (NetSoft).
IEEE, 2022, pp. 348–356.

[9] J. Cui, Q. Lu, H. Zhong, M. Tian, and L. Liu, “A load-balancing
mechanism for distributed sdn control plane using response time,” IEEE
transactions on network and service management, vol. 15, no. 4, 2018.

[10] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella,
“Elasticon; an elastic distributed sdn controller,” in 2014 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). IEEE, 2014, pp. 17–27.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” ACM SIGCOMM, vol. 39, no. 4, p. 51–62, 2009.

[12] T. Hu, J. Lan, J. Zhang, and W. Zhao, “Easm: Efficiency-aware switch
migration for balancing controller loads in software-defined networking,”
Peer-to-Peer networking and applications, vol. 12, no. 2, 2019.

[13] I. Kettaneh, A. Alquraan, H. Takruri, A. J. Mashtizadeh, and S. Al-
Kiswany, “Accelerating reads with in-network consistency-aware load
balancing,” IEEE/ACM Transactions on Networking, 2021.

[14] C. Liang, R. Kawashima, and H. Matsuo, “Scalable and crash-tolerant
load balancing based on switch migration for multiple open flow
controllers,” in 2014 Second International Symposium on Computing
and Networking. IEEE, 2014, pp. 171–177.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[16] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[17] H. K. Rath, V. Revoori, S. M. Nadaf, and A. Simha, “Optimal controller
placement in software defined networks (sdn) using a non-zero-sum
game,” in Proc. IEEE Int. Symp. World Wireless, Mobile Multimedia
Netw., 2014, pp. 1–6.

[18] K. S. Sahoo, D. Puthal, M. Tiwary, M. Usman, B. Sahoo, Z. Wen,
B. P. Sahoo, and R. Ranjan, “Esmlb: Efficient switch migration-based
load balancing for multicontroller sdn in iot,” IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 5852–5860, 2019.

[19] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer, “Towards adaptive state
consistency in distributed sdn control plane,” in 2017 IEEE International
Conference on Communications (ICC). IEEE, 2017, pp. 1–7.

[20] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich,
and M. Hira, “Elmo: Source routed multicast for public clouds,” in
Proceedings of the ACM SIGCOMM, 2019.

[21] L. Suresh, J. Loff, F. Kalim, S. A. Jyothi, N. Narodytska, L. Ryzhyk,
S. Gamage, B. Oki, P. Jain, and M. Gasch, “Building scalable and flex-
ible cluster managers using declarative programming,” in 14th USENIX
Symposium on Operating Systems Design and Implementation, 2020.

[22] C. Wang, B. Hu, S. Chen, D. Li, and B. Liu, “A switch migration-based
decision-making scheme for balancing load in sdn,” IEEE Access, vol. 5,
pp. 4537–4544, 2017.

[23] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assignment
in data center networks: Stable matching with transfers,” in IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[24] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” ACM SIGCOMM Computer Communication Re-
view, vol. 43, no. 4, pp. 123–134, 2013.

[25] L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse, “Dispers-
edledger: High-throughput byzantine consensus on variable bandwidth
networks,” arXiv preprint arXiv:2110.04371, 2021.

[26] H. Zhong, J. Xu, J. Cui, X. Sun, C. Gu, and L. Liu, “Prediction-based
dual-weight switch migration scheme for sdn load balancing,” Computer
Networks, vol. 205, p. 108749, 2022.

APPENDIX

A. Proof of Lemma 1

Observe that from (1) we have

Pr(Xi > x) =
(ki
x

)αi

∀ 0 ≤ i < n.

Then, given that X = minn−1
i=0 {Xi} and the Xis are

independent gives

FX(x) = Pr(X ≤ x) = 1− Pr(X > x)

= 1−
n−1∏
i=0

Pr(Xi > x)

= 1−
n−1∏
i=0

(ki
x

)αi

