
Filling the Gap: Fault-Tolerant Updates of
On-Satellite Neural Networks Using Vector

Quantization
Olga Kondrateva∗, Stefan Dietzel†, Maximilian Schambach†, Johannes Otterbach† and Björn Scheuermann‡

∗Humboldt-Universität zu Berlin, Berlin, Germany, kondrate@informatik.hu-berlin.de
†Merantix Momentum GmbH, Berlin, Germany, {stefan.dietzel, maximilian.schambach, johannes.otterbach}@merantix.com

‡Technical University of Darmstadt, Darmstadt, Germany, scheuermann@kom.tu-darmstadt.de

Abstract—The use of small, low-Earth-orbit satellites enables
many novel Earth observation use cases due to their cost efficiency.
To cope with the challenging communication environment, ma-
chine learning algorithms, such as artificial neural networks, can
be applied onboard the satellites. They help to prioritize or pre-
process sensor measurements and to reduce the amount of data
transmitted to Earth. However, transferring and updating machine
learning models to suit changing prioritization requirements poses
a number of challenges in itself due to short contact times of
satellites with ground stations and lossy communication links. We
propose a new transmission mechanism for model updates that
retains high performance even when these updates have been only
partially transmitted. We achieve this by approximating missing
model weights using a vector quantization approach. Using a
support structure of quantized vector indices, we can approximate
the model with a small amount of data, which is transmitted first,
while retaining a high performance. The model performance can
then be incrementally improved, as more exact model weights
are transmitted to the satellites. Our evaluation shows that this
approach significantly outperforms existing baselines.

I. INTRODUCTION

Small satellites are widely used for communication [1] and
Earth observation purposes in fields as diverse as disaster
management [2], science [3], [4], and economics [5]. Their
small size as well as low manufacturing and launch costs
allow for rapid development with a short time to market [6].
In addition, they bring flexibility not offered by large and
expensive geostationary (GEO) satellites. Different small
satellite classes exist [1], the most popular being nanosatellites
following the CubeSat standard. A CubeSat is composed
of one or several 1U (corresponding to 10×10×10 cm3)
units with a mass of at most 2 kg each [7]. The CubeSat
standard’s main advantage is the availability of commercial
off-the-shelf (COTS) components, which allow to considerably
simplify the development. Moreover, COTS components are
often several generations ahead of their radiation-tolerant
counterparts [8], [9] that are traditionally used for larger and
more expensive satellites. Thus, CubeSats can leverage more
advanced technologies at the cost of reduced reliability.

Communication issues: Large constellations of CubeSats
are required to compensate for the limitations and reliability

issues resulting from their small mass and the use of COTS
components [10], [11]. Such constellations can generate ter-
abytes of data per day, which cannot all be transmitted to Earth
due to the limited communication capabilities of CubeSats,
which usually operate in low Earth orbit (LEO). Whereas GEO
satellites appear static over a fixed position on Earth, LEO
satellites are typically only visible four to five times per day
for periods about ten minutes [12]. Thus, the collected data
needs to be buffered until the next orbital pass. Also, the
availability of ground stations is limited. Costs for deployment
of a mission-dedicated ground station segment or using a
commercial ground segment operator are often not affordable
for common small satellite missions [13], [12]. In addition,
licensing procedures can cause considerable delays due to the
lack of uniform standards, as evidenced by Amazon Ground
Stations not being able to operate for almost a year due to
licensing issues [14]. Finally, according to the simulation results
reported by Denby et al. [15], downloading raw data does
not scale as the constellation population grows. Thus, simply
increasing the number of ground stations does not solve the
problem in the case of large constellations.

Another important problem is that the low mass of CubeSats
limits their power budget and antenna size [1]. CubeSats usually
use the X band for downlink communication, achieving data
rates from hundreds of Mbps up to several Gbps [16], [17].
For the uplink, however, lower S band frequencies are used,
resulting in data rates of only around a few hundred kbps [12].
Finally, the rapid development of new sensor technologies
should be taken into account. The current growth of sensor
data generation rates is not compensated for by a corresponding
growth of download speed [18]. In practice, this gap becomes
even larger due to high packet loss, which is reported by some
satellite missions to be up to 88% [19].

Therefore, increasing the autonomy level on the satellite
side and reducing the dependency of small satellite systems on
communication with Earth are crucial for future development
of small satellite systems.

Onboard processing using neural networks: In the last
years, we have seen a growing interest in using neural networks
for various onboard processing tasks [18], [20]. For example,
neural networks can be used for onboard classification of
payload data ensuring that only important data is transmittedISBN 978-3-903176-57-7 ©2023 IFIP



to Earth [8], [18]. Moreover, they can be used for satellite
operation systems [18], [20]. Examples include collision
avoidance [21], automatic pose estimation [22], and commu-
nication [23]. Substantial laboratory tests [8], [22], as well
as in-orbit demonstration missions [24], have been performed
showing that currently available solutions for running neural
network models on embedded devices meet the mass and power
restrictions of CubeSat missions.

Neural networks are achieving excellent performance in a
wide range of fields, e. g., computer vision, medical science,
and many others. However, their application onboard satellites
with limited resources poses new challenges. To achieve state-
of-the-art performance, neural networks require millions of
parameters and extensive training that cannot be performed on
CubeSats. Thus, neural network models need to be trained on
Earth before they are transmitted [9].

Once the model is operational, periodic retraining on Earth
and subsequent updates of the model parameters on the satellite
will be required. One reason is the lack of training data on
Earth, which poses a real concern for projects leveraging novel,
mission-dedicated sensors [9], [24]. In this case, a model has
to be initially trained with synthetic data and subsequently
updated as more real-world sensor data becomes available. A
similar problem arises when using neural networks for satellite
operation systems that rely on measurements or environment
monitoring results. In addition, model updates are required
when adapting to new classification requirements (e. g., change
of target classes), which can be expected to happen quite often
if a satellite is carrying multiple sensors or in the case of
commercial constellations providing Earth monitoring as a
service. Depending on a particular use case, the model already
in use may be retrained to improve its performance, or it may
be replaced by a completely new model.

Model update challenges: Given the communication
limitations – namely, short contact times, low bandwidth, and
high packet loss rates – model changes become a non-trivial
task. In many cases, multiple orbital passes are required to
transmit a new model. Moreover, the passes will have different
quality, since the maximum data rate can only be achieved
when the satellite is at the shortest path [12]. According to our
simulation results, which are presented in section Section IV,
51 hours are required to transmit a common neural network
model (VGG16) containing around 15 million parameters given
a typical uplink data rate. Even in the case of smaller model
sizes of around 1 million parameters, more than 3 hours
are required, even when assuming that data is transmitted
continuously. According to our simulation results, however, the
period between two passes can last up to 12.5 hours, which
contributes significantly to the effective transmission time.

This leaves us with two naı̈ve baseline options: 1) We could
delay deployment of the new model until it is fully transmitted.
This, however, may be prohibitive in the case of time-critical
applications (e. g., wildfire monitoring or disaster management),
a considerable change in classification task, or if the update
concerns satellite operation systems. 2) The new model could
already be deployed using a subset of the transmitted model

parameters, resulting in a severely degraded performance, even
if only a small subset of parameters is missing.

Model compression techniques, such as those proposed
in [25], [26], [27] and many others, may seem to be an obvious
solution. But they do not address the fundamental problem,
namely, how to cope with model updates that have only been
partially transmitted. In addition, the majority of the proposed
compression approaches are based on repeated re-training of a
neural network and therefore require extensive computations to
maintain state-of-the-art performance. This is especially critical
in cases of time-sensitive applications or where the training
data is not available in a single centralized location (e. g., in
federated learning).

Our approach: To address these problems, we propose a
novel transmission mechanism that updates the new model
parameters incrementally in a way that allows to achieve
reasonable classification results even with a partially transmitted
new model. To this end, we use a model-independent codebook
that we generate using a vector quantization approach and
assume to be preloaded on the satellite. Each time the model is
updated, we first transmit an index structure that references the
codebook’s entries to approximate the new model’s parameters.
Afterwards, we incrementally transmit the exact updated model
parameters. Since the index structure already encodes the
new network’s main characteristics, sufficient classification
performance is achieved much earlier when compared to
transmitting batches of exact model weights without using
the index structure.

Our contributions can be summarized as follows:
• We propose a novel transmission approach that allows to

update a neural network incrementally.
• We demonstrate that a vector-quantization-based codebook

can be used across models to achieve efficient, incremental
updates.

• We evaluate our approach for a variety of classification
datasets and model architectures, as well as in a realistic
communication scenario using the ESTNeT [28] simulator.

The remainder of this paper is organized as follows. In Sec-
tion II, we summarize existing work with different optimization
goals. We provide a detailed explanation of our approach in
Section III. In Section IV, we evaluate our approach using a
range of common neural network models, and we summarize
our conclusions in Section V.

II. RELATED WORK

Efficient over-the-air transfer of neural networks has not
been extensively investigated in the literature. As a seemingly
straight-forward solution, compression of neural networks
by model pruning, quantization, low-rank factorization, and
knowledge distillation has been studied in the past using a
variety of approaches. However, these mainly focus on memory
and computational efficiency.

Low-rank decomposition techniques achieve model compres-
sion by factorizing the weight matrices of neural networks into
products of lower-dimensional ones, drastically reducing their
memory footprint [29], [30]. Similar techniques also exist in



the case of CNNs used for image data, where convolution filters
are decomposed into tensor products of lower-rank filters [31].

In model pruning, the number of parameters of a large
neural network is reduced, e. g. by cutting connections be-
tween neurons [25], resulting in a sparse architecture, or by
eliminating full sets of weights corresponding to a specific
feature map [32], [33]. Furthermore, pruning can be combined
with existing compression techniques such as arithmetic coding,
Huffman coding, or by using hash tables [34], [35], [36]. These
pruning techniques are able to achieve similar performance
as compared to their dense counterparts, yet at a much lower
memory and computational footprint. However, they usually
come with a severely increased training complexity – often
due to an iterative training-pruning procedure – limiting their
application in time-critical scenarios (e. g., wildfire monitoring
or disaster management).

Similarly, large neural networks can be used as teachers for a
smaller student network, known as knowledge distillation [37].
Here, the prediction results of a (trained) large neural network
with very good performance is used to guide the training
of a much smaller model, the so-called student. Knowledge
distillation has achieved impressive results [38], [39], in
particular in recent advances in self-supervised training in
computer vision [40], [41]. Nevertheless, distillation again
requires complex and time-consuming training strategies in
order to compress the large network into a smaller one.

Jankowski et al. [42] combine several of the previously
discussed approaches – namely pruning and distillation – into
a deep training and transmission scheme, dubbed AirNet,
adapted to small bandwidth and power consumption constraints.
However, they focus on noisy channel transmission which they
counter by using noise injection during the network’s training
in order to make the models more robust, while our work’s
focus lies on limited availability of transmission windows and
time-critical applications. In a similar line of work, Fujihashi et
al. [43] extend the AirNet scheme to the federated setup which
is, however, not applicable to the considered case due to the
lack of on-satellite training data availability.

Quantization techniques for neural networks have also been
investigated. Usually, the weights of neural networks are repre-
sented using 32 bit precision floating point. To this end, various
scalar quantization methods have been proposed to compress
and accelerate neural networks [26]. For example, deterministic
rounding and binarization techniques have been explored [44],
[45], [46], [47], [48], [49]. Furthermore, stochastic quantization
methods, such as random rounding [44], [48], and probabilistic
quantization methods [50], [51] have been proposed.

Assuming 32 bit values, the maximum compression rate
achievable by scalar quantization is 32. Higher compression
rates are achievable by vector quantization. Gong et al. [27]
achieve 16–24 × compression rate with only 1% loss of accuracy
by applying product quantization to fully connected layers. Wu
et al. extend their approach to convolution layers [52].

Finally, in order to make use of more efficient hardware,
such as field-programmable gate arrays (FPGAs) or application-
specific integrated circuits (ASICs), neural network architec-

tures have to be translated to a reduced precision, often using
8 bit or fewer. While a wide variety of works exist, these
face their own unique challenges, such as using fixed-point
arithmetic or weight scaling, making specific hardware-adapted
architectures necessary [53], [54], [55], [56].

III. FAULT-TOLERANT UPDATES OF NEURAL NETWORKS

We propose an efficient incremental model update mecha-
nism for use in Earth observation (EO) settings using LEO
satellites. Specifically, we take into account communication
challenges of neural network updates or even full model
replacements on the satellite. Our approach ensures reasonable
behavior even in the case of a partially updated state.

We consider two phases of satellite operation shown in
Figure 1: the initialization phase and the operational phase,
which we explain in the following.

The initialization phase is shown on the left in Figure 1.
It will typically happen before launch. a) The original neural
network model NN1 is trained on Earth and stored on the
satellite. b) We calculate a separate data structure and store it
on the satellite to enable efficient incremental updates during the
operational phase. More specifically, we compute a codebook
CBNN1

consisting of entries in the form of weight vectors that
approximate commonly occurring groups of the neural network
model’s weights.

The codebook entries are calculated using a vector quantiza-
tion approach that clusters model weights, represented as flat
vectors, and stores the cluster centroids in the codebook with
a corresponding integer index. Our mechanism’s performance
improvements are based on the codebook allowing for a well-
performing compression and reconstruction of different neural
networks NNi despite the codebook being derived from NN1.
Note that the codebook structure only serves to improve later
model updates – it is not used to compress the initial model
as it is stored on the satellite.

Our main contribution is to leverage the codebook for
efficient incremental updates during the operational phase, as
shown on the right in Figure 1. As classification requirements
change, the new model NN2 is first trained on Earth. Then,
we compute the approximation of the NN2’s weights using the
codebook CBNN1 . As we will show, CBNN1 allows a suitable
approximation of NN2’s model weights, which eliminates the
need to transmit a new codebook to the satellite.

1) We approximate NN2 as NN◦
2 using codebook CBNN1

by mapping NN2’s weights to their closest representation in
the codebook. 2) This results in an index structure INN2

, where
the index entries are pointers to the codebook entries. 3) We
finally transmit this index structure to the satellite. Since the
codebook CBNN1

is already available on the satellite, the index
structure is sufficient to reconstruct NN◦

2. The index structure’s
compact size allows for efficient transmission, resulting in
a fast but approximate reconstruction of the new model via
NN◦

2. After the index structure is transmitted, the exact weights
of NN2 follow. 4) We first transmit the weights of the first
convolution and the last fully connected layers, as well as
the batch normalization layers. Generally, these layers contain



a b 1

2

3

4 5

Fig. 1: Overview of the initialization phase and updates during the operational phase.

a comparatively small number of parameters, e. g., 0.17%
of the total number of parameters in case of the VGG-16
model trained on CIFAR-10, which we use in our evaluation.
However, they have a considerable impact on a neural network’s
performance. 5) All other weights are transmitted in random
order to avoid large gaps. The order of the weights as well
as the architecture of the neural network being transmitted
are assumed to be system parameters that are stored on the
satellite during the initialization phase. Whenever a new batch
of exact network weights arrives at the receiver, the values of
the codebook approximations in NN◦

2 are replaced by these
weights.

At each point during the incremental update process, the
neural network at the satellite consists of a mixture of exact
and approximate weights, the latter given by the values of
the centroids. The performance of the network gradually
improves as more and more exact weights arrive at the
satellite. Because the approximation NN◦

2 already encodes the
new network’s main characteristics, sufficient classification
performance is achieved much earlier when compared to
transmitting batches of exact model weights without using the
index structure. Steps 1–5 can be repeated to transmit further
model updates NN3, NN4, and so forth. Next, we describe the
major components of our approach – vector quantization and
codebook computation – in more detail.

A. Vector quantization

In order to calculate the codebook CB’s entries, we use
a vector quantization technique. Quantization [57] is a lossy
compression method used to reduce an input space’s cardinality
by partitioning it into a number of non-overlapping subspaces.
To achieve compression, all values of a given subspace are
represented by a single value: its centroid index. The set of all
centroids defines the codebook CB. We first explain the concept
of vector quantization in general before providing details on
how we apply it to neural networks.

In vector quantization, a vector v ∈ RD is mapped to a
centroid ci ∈ RD from the codebook CB = {c1, . . . , cK}
of size K using a standard clustering algorithm. Compres-
sion is accomplished by replacing the input vector with a

single value representing the nearest centroid’s index. We
achieve a higher compression rate by increasing the vectors’
dimensionality. However, additional complexity required for
computing the codebook limits this approach’s applicability to
high-dimensional data.

Applying product quantization [58] can cope with scalability
issues introduced by high dimensionality. The idea is to
decompose the input vector space into a Cartesian product of
subspaces and to quantize each subspace separately. The input
vector v is split into m disjoint subvectors {x1, . . . , xm} of
dimension Dsplit = D/m, where D is assumed to be divisible
by m. Each subvector xi is quantized separately using the
codebook CBi associated with the corresponding subspace.
The concatenated subcodewords represent the input vector.

While using vector quantization codebooks to reduce the
memory footprint [27] and computational requirements [52] of
models has been discussed in literature, we apply the concepts
in a novel way to design an efficient transmission mechanism.

B. Codebook computation

We now describe how to use product quantization to compute
the codebook CB for a neural network. Recall that the goal is
to derive a list of centroids that are then used to approximate
sets of similar vectors. We first derive vectors by flattening and
grouping the neural network’s weights. Second, we apply a
clustering approach to calculate the centroids, which compose
the codebook. Starting with the first step, we explain the simpler
case, a fully connected layer, before extending the concept
to convolution layers, which are commonly used for Earth
observation (EO) tasks.

Consider a fully connected layer l of size Din ×Dout, where
Din and Dout denote the number of input and output feature
maps, respectively. Let Wl ∈ RDin×Dout denote the weight
matrix of the corresponding layer. First, we partition Wl into
M sub-matrices of size Dsplit×Dout, assuming Din/Dsplit = M :

Wl =

W 1
l

...
WM

l

 (1)



...

Fig. 2: Example cut of a convolution kernel for M = 4.

Normally, when product quantization is applied [58], a
separate codebook CBm ∈ RK×Dsplit is computed for each
sub-matrix Wm

l , m = 1, . . . ,M to minimize the quantization
error. However, we assume that the codebook is computed
based on the initial neural network NN1 rather than the new
neural network NN2 that is being quantized for transmission.
Therefore, no obvious mapping between codebooks and sub-
spaces necessarily exists, so we combine the subspaces into a
single space W ∗

l of layer l,

W ∗
l =

[
W 1

l ∪ . . . ∪WM
]
. (2)

Convolution layers, core building blocks of convolutional
neural networks (CNNs), can be used to compute a codebook
in a similar way, as shown in Figure 2. Consider a convolution
layer of size Dh ×Dw ×Din ×Dout, where Dh and Dw denote
the spatial dimensions of the convolution kernel and Din and
Dout the number of input and output features, respectively. As
with the fully connected layer, we first split each convolution
kernel Wl ∈ RDh×Dw×Din along its channel dimension into
several sub-matrices of size Dh×Dh×Dsplit. Then, we combine
the vectors extracted from the kernel for a fixed spatial position
(i, j) ∈ {1, . . . , Dh} × {1, . . . , Dw} into a single matrix W ∗

l

in the same way as described for the fully connected layers.
Note that each kernel dimension can potentially be chosen

for this splitting procedure. Following related work [27], [52],
we restrict our consideration to splitting along the input channel
dimension, as detailed above.

The matrices W ∗
1 , . . . ,W

∗
L of a neural network consisting

of L layers are concatenated into a single matrix W ∗
all:

W ∗
all = [W ∗

1 ∪ . . . ∪W ∗
L] (3)

We compute a single codebook CB ∈ RK×Dsplit using K-means
clustering. That is, we find a partition of W ∗

all into clusters,

W ∗
all = S1 ⊔ . . . ⊔ SK , (4)

where ⊔ denotes the disjoint union, with centroids c1, . . . , cK ,
by minimizing distance d of all vectors v ∈ W ∗

all to their
respective centroids,

min

K∑
k=1

∑
v∈Sk

∥∥v − ck
∥∥2
2
. (5)

The final codebook CB comprises the set {c1, . . . , cK}.

C. Index structure computation

We next compute an index structure for a neural network
based on the codebook CB, which consists of K vectors of
length Dsplit each. We assume the codebook CB to be available
both at the satellite and the ground station.

We first split the weight matrices into vectors of length Dsplit

as described in Section III-B. Each vector v is quantized using
its nearest centroid ci in the codebook CB,

v̂ = ci , i = argmin
c∈CB

∥v − c∥22 . (6)

To compress the neural network, all centroids are replaced by
their codebook indices. The index structure’s size for a fully
connected layer is

log2(K)Dout
Din

Dsplit
, (7)

where log2(K) is the number of bits needed to encode
the indices (i. e., the size of the codebook) and Dout

Din
Dsplit

corresponds to the number of vectors, assuming that the layer
is split along the input dimension. Similarly, a convolution
layer’s index structure size is

log2(K)DoutDhDw
Din

Dsplit
. (8)

Thus, the index structure size depends on the choice of the
size of the codebook K and vector length Dsplit.

IV. EVALUATION

Our main evaluation metric is the classification accuracy
achieved when parts of a changed model are available at
the satellite. Therefore, we implement our algorithms using
a realistic simulation and machine learning environment. We
report Top-1 accuracy, that is, the percentage of all classification
tasks for which the neural network selected the correct class as
most likely classification. All experiments are conducted ten
times with different random seeds; the error bars show 95%
confidence intervals.

First, we evaluate the selected models independent of
communication effects to isolate our mechanism’s influence
on accuracy. We evaluate the accuracy achieved for different
percentages of the original weights that we assume to be
received by the satellite. For our approach, missing weights are
replaced by the quantized values as described in Section III, and
for the baseline, missing weights are replaced by zeros. Second,
we evaluate how different parameter choices, namely the vector
length Dsplit and the number of the codebook centroids K
affect the performance of our approach and the size of the
index structure. For the vector length, we consider values of
4, 8, and 16, and for the codebook size, we consider 64, 128,
256, and 256. Third, we use the ESTNeT simulator [28] to
assess the benefits of the proposed transmission mechanism in
a realistic communication scenario by comparing the required
transmission times of our approach versus the baseline.



10 20 30 40 50 60 70 80 90 100
0
10
20
30
40
50
60
70
80
90

100

Weights available [%]

A
cc

ur
ac

y
[%

]

4/64 8/64 16/64 4/128 8/128 16/128 4/256
8/256 16/256 4/512 8/512 16/512 Baseline

Fig. 3: Results for the VGG-16 model trained on CIFAR-10 for different vector length/codebook size combinations.

A. Comparison of different models

We use a wide set of network architectures pre-trained on
different datasets; all models are implemented using Keras
with TensorFlow as backend. To demonstrate our approach’s
ability to reuse codebooks from different neural networks,
the codebook for all experiments is computed from VGG-16
trained on the Imagenet dataset [60].

In Figure 3, we present the results for the VGG-16
model [61] trained on the CIFAR-10 dataset [62] for different
values of vector lengths and number of centroids. The x-axis
shows the percentage of weights available at the satellite and
the y-axis shows the Top-1 accuracy. We denote parameter
combinations as: 〈vector length〉/〈codebook size〉. The accuracy
of the baseline starts improving only after 60% of the weights
become available and reaches values within 10% of the model’s
maximum possible accuracy of 93.66% after 90% of the
weights are available. The performance of our approach consid-
erably outperforms the baseline for all parameter combinations.
The results can be grouped according to the vector length.
As expected, the performance improves considerably when
choosing smaller vector lengths. The reason being that we
use the Euclidean distance to compute the index structure,
which is known to be problematic when the dimensionality
increases. Nevertheless, even the largest vector length of 16
significantly outperforms the baseline. A notable improvement
in accuracy is already seen when 60% of the original weights
become available. Depending on the number of centroids, the
performance of our approach for a vector length of 16 lies
between 34.04% and 62.21%, whereas the baseline reaches
only 11.85%. We can achieve a further noticeable improvement
when setting the vector length to 8. Then, it is possible to
achieve accuracies within 10% of the model’s highest possible
accuracy with only 70% for the original weights. As expected,
the best performance is reached when the vector length is set
to 4. The best overall result is achieved for a codebook size of
512 centroids. In this case, the accuracy of 87.78% is reached
with only 10% of the original weights available. Furthermore,

it can be seen that, compared to the vector lengths of 8 and 16,
a higher improvement can be achieved, when the number of
centroids increases. Also, the confidence intervals are smaller
for a vector length of 4, which means that our approach gets
more stable for smaller vector lengths.

Next, we present results for the RESNET-50 model [63] in
Figure 4a. Compared to VGG-16, this model is larger and
has a more complicated structure. The difference is easily seen
when looking at the two models’ baselines. Whereas, in the
case of VGG-16, it is possible to reach 82.05% accuracy with
80% of the original model weights, RESNET-50 achieves only
17.71%. Although the results of our approach are influenced in
a similar way, it still significantly outperforms the baseline. In
contrast to the VGG-16 model, the results cannot be clearly
separated according to the vector length, and therefore, the
number of centroids becomes more important. For example,
the parameter combination 16/128 shows a better result than
4/64 for 60% of the original weights available.

To evaluate the performance of our approach for smaller
models, we consider LeNet5 [64] trained on MNIST [65]
(Figure 4b). Again, we compare the baselines of LeNet5 and
VGG-16 to estimate the complexity of the model and the
dataset. Evidently, we are dealing with a much simpler model,
since 60% of the weights are sufficient to achieve the accuracy
of 88.41%. Although the baseline performs much better, our
approach considerably improves the accuracy. For example,
the accuracy of 92.26% can be achieved with only 20% of the
original model weights using the parameter combination 4/512.
Similar to RESNET-50, the results for the vector lengths 8 and
16 cannot be clearly separated into groups. We hypothesize
that this behavior is due to the model’s small size making it
more susceptible to quantization effects. The larger size of the
confidence intervals compared to both VGG-16 and RESNET-
50 confirms this assumption. The results for a codebook size
of 512 centroids, however, still show reliable performance,
significantly outperforming the baseline.

To show that our approach is applicable to satellite imagery,
we use the model proposed by Makantasis et al. [59] trained on



20 40 60 80 100
0
10
20
30
40
50
60
70
80
90
100

Weights available [%]

A
cc

ur
ac

y
[%

]

(a) RESNET-50 model trained on CIFAR-10.

20 40 60 80 100
0
10
20
30
40
50
60
70
80
90
100

Weights available [%]

A
cc

ur
ac

y
[%

]

(b) LeNet5 model trained on MNIST.

20 40 60 80 100
0
10
20
30
40
50
60
70
80
90
100

Weights available [%]

A
cc

ur
ac

y
[%

]

(c) Makantasis et al.’s model [59] trained on the Indian Pines dataset.

Fig. 4: Different vector length/codebook size combinations for
additional neural network models. For legend see Figure 3.

the hyper-spectral dataset Indian Pines [66] (Figure 4c). We are
dealing with a rather small model, which can be challenging,
as seen in the LeNet5 results. Again, our approach significantly
outperforms the baseline, and it follows the same trends already
discussed for the previous examples.

B. Influence of parameter choices

Next, we evaluate the influence of the vector length and
number of centroids on the index structure size. Figure 5
shows the results for VGG-16 based on Equations (7) and (8).
For a model size of around 56 MB, the index structure size
varies between 0.69 and 4.14 MB, depending on the parameter
choice. This corresponds to 1.23–7.39% of the total model
size. As the number of clusters determines the number of bits

4/
64

8/
64

16
/6

4

4/
12

8

8/
12

8

16
/1

28

4/
25

6

8/
25

6

16
/2

56

4/
51

2

8/
51

2

16
/5

12

0

2

4
2.76

1.38
0.69

3.22

1.61
0.8

3.68

1.84

0.92

4.14

2.07

1.03

Vector length / Number of clustersIn
de

x
st

ru
ct

ur
e

si
ze

[M
B

]

Fig. 5: Comparison of index structure sizes.

TABLE I: Link Budget Parameters

Orbit height 600 km
Carrier frequency 2150 MHz
Receive channel bandwidth 750 kHz
Transmission bitrate 500 kbit/s
Satellite antenna gain 6 dBi
Ground station antenna gain 18.9 dBi
Ground station transmission RF power 50 W

necessary to encode the indices, the size of the index structure
increases logarithmically with the number of centroids. The
vector length determines the number of indices included into
the index structure. The size of the index structure decreases
linearly with increasing vector lengths.

The trade-off between index structure size and model
performance should be considered for optimal parameter
choices. Intuitively, it could be expected that the performance
improves with increasing numbers of clusters and decreasing
vector length. Our results, however, show that the influence of
the parameters depends on a particular model and dataset.

C. Comparison of transmission time

Finally, we evaluate the VGG-16 model’s performance
using the ESTNeT simulator [28] based on OMNeT++ and
the INET libraries [67]. ESTNeT extends OMNeT++ to model
characteristics unique to space-terrestrial communication and
considers a realistic communication model that takes into
account interference based on a signal-to-interference-and-noise
(SINR) model. The simulation parameters are summarized in
Table I. We consider a single three-unit (3U) CubeSat satellite
and a single ground station located in Würzburg, Germany. For
transmissions, we use the S-band, which is commonly used
for satellite uplink communication [12].

For the underlying communication protocol, we use a
lightweight acknowledgment mechanism. The ground station
sends updates in packets of 200 bytes each and waits for an
acknowledgement from the satellite before sending the next
packet. If no acknowledgment is received before the timeout,
the last packet is resent to the satellite.

Figure 6 shows the simulation results. The x-axis shows the
elapsed transmission time, whereas the y-axis again shows the
corresponding Top-1 accuracy. During two periods of more
than 10 hours, no communication has been possible. This



0 5 10 15 20 25 30 35 40 45 50 55
0
10
20
30
40
50
60
70
80
90
100

Time [h]

A
cc

ur
ac

y
[%

]

4/64 8/64
16/64 4/128
8/128 16/128
4/256 8/256

16/256 4/512
8/512 16/512

Baseline

Fig. 6: Transmission times for VGG-16 trained on CIFAR-10 using a simulated satellite-terrestrial communication link.

underlines the importance of incrementally updating the model
to achieve a reasonable performance. For the baseline case,
more than 45 hours are needed to reach an accuracy within
10% of the full model accuracy. Our approach achieves its best
performance for parameter combinations with a vector length
of 4. Notably, it is possible to reach accuracies between 58.98%
and 91.04% before the first long communication break. At the
beginning of the second period without communication, an
accuracy within 10% of the full model accuracy can be reached
using all parameter combinations. Our results suggest that, for
the evaluated scenario, the impact of the index structure size
can be neglected.

V. CONCLUSION

We presented a new transmission mechanism for efficient
updates of neural network parameters for satellite applications.
Our approach achieves high accuracies even when only a part
of the new model’s exact weights are transmitted. We lever-
age vector quantization to compute a lightweight supporting
structure, which is transmitted first and serves as basis for
incremental transmissions of exact weights. Notably, we can
build a vector-quantization-based codebook using the original
model, store it on the satellite, and re-use it after model updates.

We evaluated our approach using a wide range of neural
network architectures and compared it to a baseline case. The
evaluation results show that our approach allows to improve
performance up to 87% when only 10% of the original
weights are transmitted. In general, increasing the number
of centroids and reducing the vector size leads to a better
performance. Benefits can vary depending on the particular
model architecture. The size of the index structure also depends
on the quantization parameters, varying between 1.23% and
7.39% of the total model size, which can be neglected for our
setup. Finally, results for a realistic scenario using the ESTNeT
simulator show that our mechanism significantly outperforms
the baseline.

The presented scheme is not only applicable to Earth-satellite
communication, but can be generalized to other communication
networks that are characterized by small bandwidth and spotty

connections. Examples of such networks are edge-devices such
as smart robot platforms or drones and more.

ACKNOWLEDGEMENTS

This work has been co-funded by the LOEWE initiative (Hesse,
Germany) within the emergenCITY center.

REFERENCES

[1] N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and
M.-S. Alouini, “CubeSat communications: Recent advances and future
challenges,” arXiv:1908.09501, 2019.

[2] P. Barmpoutis, P. Papaioannou, K. Dimitropoulos, and N. Grammalidis,
“A review on early forest fire detection systems using optical remote
sensing,” Sensors, vol. 20, no. 22, 2020.

[3] A. Budianu, A. Meijerink, and M. Bentum, “Swarm-to-Earth communi-
cation in OLFAR,” Acta Astronautica, vol. 107, 2015.

[4] A. Poghosyan and A. Golkar, “CubeSat evolution: Analyzing CubeSat
capabilities for conducting science missions,” Progress in Aerospace
Sciences, vol. 88, 2017.

[5] P. Singh, P. C. Pandey, G. P. Petropoulos, A. Pavlides, P. K. Srivastava,
N. Koutsias, K. A. K. Deng, and Y. Bao, “Hyperspectral remote sensing
in precision agriculture: Present status, challenges, and future trends,” in
Hyperspectral Remote Sensing, P. C. Pandey, P. K. Srivastava, H. Balzter,
B. Bhattacharya, and G. P. Petropoulos, Eds. Elsevier, 2020.

[6] K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, “CubeSats:
Cost-effective science and technology platforms for emerging and
developing nations,” ASR, vol. 47, no. 4, 2011.

[7] CubeSat design specification, The CubeSat Program, Cal Poly SLO,
2022, rev. 14. [Online]. Available: https://www.cubesat.org/cubesatinfo

[8] A. P. Arechiga, A. J. Michaels, and J. T. Black, “Onboard image
processing for small satellites,” in National Aerospace and Electronics
Conf. (NAECON), 2018.

[9] G. Furano, G. Meoni, A. Dunne, D. Moloney, V. Ferlet-Cavrois,
A. Tavoularis, J. Byrne, L. Buckley, M. Psarakis, K.-O. Voss, and
L. Fanucci, “Towards the use of artificial intelligence on the edge in space
systems: Challenges and opportunities,” IEEE Aerospace and Electronic
Systems Magazine, vol. 35, no. 12, 2020.

[10] D. Walker, L. Leung, V. Beukelaers, S. Chesi, H. Yoon, and J. Egbert,
“ADCS at scale: Calibrating and monitoring the Dove constellation,”
2018.

[11] J. Cappaert, “Building, deploying and operating a CubeSat constellation
– Exploring the less obvious reasons space is hard,” 2018.

[12] D. Vasisht, J. Shenoy, and R. Chandra, “L2D2: Low latency distributed
downlink for LEO satellites,” in ACM SIGCOMM Conf., 2021.

[13] G. Pandolfi, R. Albi, M. Puglia, Q. Berdal, M. Degroote, M. Messina,
M. Ruben, R. Di Battista, M. Emanuelli, M. Daniele, D. Chiuri,
C. Thierry, and M. Scaringello, “Solution for a ground station network
providing a high bandwidth and high accessibility data link for nano and
microsatellites,” 09 2016.

[14] M. Harris, “Is Amazon’s satellite ground station service ready for
primetime?” IEEE Spectrum, June 2019.



[15] B. Denby and B. Lucia, “Orbital ddge computing: Nanosatellite constel-
lations as a new class of computer system,” in Int. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
New York, NY, USA: Association for Computing Machinery, 2020.

[16] K. Devaraj, R. Kingsbury, M. Ligon, J. Breu, V. Vittaldev, B. Klofas,
P. Yeon, and K. Colton, “Dove high speed downlink system,” in Small
Satellite Conf., 2017.

[17] K. Devaraj, M. Ligon, E. Blossom, J. Breu, B. Klofas, K. Colton, and
R. Kingsbury, “Planet high speed radio: Crossing Gbps from a 3U
CubeSat,” in Small Satellite Conf., 2019.

[18] G. Furano, A. Tavoularis, and M. Rovatti, “AI in space: Applications
examples and challenges,” in Int. Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2020.

[19] C. Nogales, B. Grim, M. Kamstra, B. Campbell, A. Ewing, R. Hance,
J. Griffin, and S. Parke, “MakerSat-0: 3D-printed polymer degradation
first data from orbit,” 08 2018.

[20] V. Kothari, E. Liberis, and N. D. Lane, “The final frontier: Deep learning
in space,” arXiv:2001.10362, 2020.

[21] G. J.L. and C. C., “On-board collision avoidance applications based on
machine learning and analytical methods,” in 8th European Conf. on
Space Debris, SA/ESOC, 2021.

[22] V. Leon, G. Lentaris, E. Petrongonas, D. Soudris, G. Furano,
A. Tavoularis, and D. Moloney, “Improving performance-power-
programmability in space avionics with edge devices: VBN on Myriad2
SoC,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 3, mar 2021.

[23] S. K. Johnson, D. Chelmins, D. Mortensen, M. J. Shalkhauser, and
R. Reinhart, Lessons learned in the first year operating software defined
radios in space.

[24] G. Giuffrida, L. Fanucci, G. Meoni, M. Batič, L. Buckley, A. Dunne,
C. van Dijk, M. Esposito, J. Hefele, N. Vercruyssen, G. Furano,
M. Pastena, and J. Aschbacher, “The Φ-sat-1 mission: The first on-
board deep neural network demonstrator for satellite Earth observation,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022.

[25] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” NeurIPS,
1989.

[26] Y. Guo, “A survey on methods and theories of quantized neural networks,”
arXiv:1808.04752, 2018.

[27] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv:1412.6115,
2014.

[28] A. Freimann, M. Dierkes, T. Petermann, C. Liman, F. Kempf, and
K. Schilling, “ESTNeT: A discrete event simulator for space-terrestrial
networks,” CEAS Space Journal, vol. 13, 2021.

[29] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,”
NeurIPS, 2014.

[30] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned CP-
decomposition,” in ICLR, 2015.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” arXiv:1704.04861, 2017.

[32] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” NeurIPS, 2015.

[33] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in ICCV, 2017.

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
arXiv:1510.00149, 2015.

[35] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing
neural networks with the hashing trick,” in ICML, 2015.

[36] S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban,
T. Marinč, D. Neumann, T. Nguyen, H. Schwarz, T. Wiegand et al.,
“DeepCABAC: A universal compression algorithm for deep neural
networks,” IEEE J. Sel. Topics Signal Process., vol. 14, no. 4, 2020.

[37] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NeurIPS Deep Learning and Representation Learning
Workshop, 2015.

[38] T. Chen, I. Goodfellow, and J. Shlens, “Net2net: Accelerating learning
via knowledge transfer,” in ICLR, 2015.

[39] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in CVPR,
2017.

[40] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in ICML, 2021.

[41] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
in CVPR, 2021.

[42] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “AirNet: Neural network
transmission over the air,” in Int. Symposium on Information Theory
(ISIT), 2022.

[43] T. Fujihashi, T. Koike-Akino, and T. Watanabe, “Federated AirNet:
Hybrid digital-analog neural network transmission for federated learning,”
arXiv:2201.04557, 2022.

[44] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” NeurIPS,
2015.

[45] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in ICML, 2015.

[46] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
European Conf. on Computer Vision (ECCV), 2016.

[47] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv:1606.06160, 2016.

[48] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” in ICLR, 2018.

[49] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers
in deep neural networks,” in ICLR, 2018.

[50] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation:
Parameter-free training of multilayer neural networks with continuous or
discrete weights,” NeurIPS, 2014.

[51] J. Achterhold, J. M. Köhler, A. Schmeink, and T. Genewein, “Variational
network quantization,” in ICLR, 2018.

[52] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in CVPR, 2016.

[53] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation
of convolutional neural networks,” in ICLR Workshops, 2016.

[54] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in ICML, 2016.

[55] Q. Chen, C. Xin, C. Zou, X. Wang, and B. Wang, “A low bit-width
parameter representation method for hardware-oriented convolution neural
networks,” in Int. Conf. on ASIC (ASICON), 2017.

[56] N. Mitschke, M. Heizmann, K.-H. Noffz, and R. Wittmann, “A fixed-
point quantization technique for convolutional neural networks based on
weight scaling,” in Int. Conf. on Image Processing (ICIP), 2019.

[57] R. M. Gray and D. L. Neuhoff, “Quantization,” Trans. Inf. Theory, vol. 44,
no. 6, 1998.

[58] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
2010.

[59] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep
supervised learning for hyperspectral data classification through convolu-
tional neural networks,” in IEEE Int. Geoscience and Remote Sensing
Symposium (IGARSS), 2015.

[60] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in CVPR, 2009.

[61] S. Zagoruyko, “92.45% on CIFAR-10 in torch,” http://torch.ch/blog/2015/
07/30/cifar.html, 2015.

[62] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 dataset,” https://www.
cs.toronto.edu/∼kriz/cifar.html, 2009.

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 1512.03385, 2015.

[64] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, 1998.

[65] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
2012.

[66] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, “220 band AVIRIS
hyperspectral image data set: June 12, 1992 Indian Pine test site 3,” Sep
2015. [Online]. Available: https://purr.purdue.edu/publications/1947/1

[67] A. Virdis and M. Kirsche, Recent Advances in Network Simulation.
Springer, 2019.


