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Abstract—SD-WAN promises distributed enterprises to satisfy
their dynamic communication requirements over the public
Internet with a substantial cost reduction and enhanced per-
formance compared to dedicated lines. It builds interconnections
between users or applications in remote sites by exploiting all
available transport connections (e.g. Internet, MPLS, ...), but
how to combine them to enhance communication performance
is still an open challenge. Previous work investigated the use
of Reinforcement Learning in the SD-WAN control logic to solve
this problem, but they only considered simple scenarios consisting
of two sites connected by two paths. In this paper we move a
step forward and pose the question of whether such a promising
approach can scale to WANs spanning multiple distributed sites
connected through several paths. We first conduct an analytical
study of the complexity of Reinforcement Learning that considers
the increase of action and state spaces when the number of sites
and paths grows. We then propose a solution based on Multi-
Agent Reinforcement Learning (MARL) that helps reducing the
overall complexity by leveraging an agent for each site. Finally,
we show the effectiveness of our solution with real experiments in
an emulated environment, showing that not only it is viable, but
it also achieves a reduction in network policy violations, latency,
and transit costs in a multi-site scenario.

Index Terms—SDN, SD-WAN, Traffic Engineering, Reinforce-
ment Learning, Scalability

I. INTRODUCTION

Traditional networks are inherently static and lack fast
adaptation mechanisms. Although change can be eventually
achieved, current Traffic Engineering (TE) solutions take time
to be implemented and are unsuitable to be deployed over
wide geographic regions [1]. Software Defined Wide Area
Network (SD-WAN) is a new emerging technology that can
be leveraged to enable the adaptation of networks on both
temporal and geographic scales. SD-WAN is in fact designed
to guarantee secure and reliable communications between
different sites distributed on a large geographical region and
connected through multiple up-links [2]. SD-WAN guaran-
tees fast network reconfiguration to meet application QoS
requirements, taking advantage of real-time monitoring and
centralized control.

Despite the unquestionable benefits of Software Defined
Networking (SDN) in solving classical TE problems [3], many
challenges have to be tackled when it comes to WANs. One
is for example guaranteeing scalability and robustness. Tradi-
tional, fully centralized controller with global knowledge and
managing the entire network is complex and also represents a
single point of failure. For this reason, distributed controller
architectures have been proposed, where each controller has

only a local view and manages a subset of the overall architec-
ture, improving scalability and reducing the impact of failures
[4]. The challenges also extend to the data plane. Traditional
enterprise networks use a hub-and-spoke topology. In this
architecture, remote sites are not directly interconnected, but
rely instead on the central site as a conduit for all traffic,
leading to bottlenecks and single point of failure problems [5].
This issue is further exacerbated by the increasing adoption of
cloud-based services, as traffic from remote sites must traverse
the central site before being directed to the cloud, resulting in
a significantly increased latency.

Another important challenge is how to realize network
automation in practice: in the management plane, network
administrators exert general high-level network intents (also
referred to as network policies) that specify the desired be-
havior for a set of traffic categories or applications, taking
into account factors such as performance, Quality of Service
(QoS) or transit costs. The problem of inferring the appropriate
network configuration to effectively meet these intents remains
an open area of research. For instance, if a policy stipulating
that latency-sensitive traffic must not experience delays ex-
ceeding 300 milliseconds is established, any deviation from
this threshold should trigger immediate steering of the traffic
to an alternate WAN transport that is able to guarantee optimal
network performance.

In other words, an SD-WAN should be self-adaptive, mod-
ifying its behavior in near real-time and in a dynamic fashion.
This adaptation is in response to feedback, such as poor
performance, and to the desired optimization goal, such as
minimizing policy violations. The application of Reinforce-
ment Learning (RL) techniques to address this requirement
has been straightforward and proved to be very promising in
this scenario. RL is in fact a field of machine learning for
training agents to make decisions by maximizing a reward
signal. The agent interacts with the environment, taking ac-
tions and receiving rewards or penalties, and learns to adjust
its behavior accordingly. In dynamic environments such as
networks, where the conditions or rules may change over
time, RL allows the agent to respond quickly, by continu-
ously learning from new interactions and experiences. One of
the fundamental limitations of RL that hinders its practical
application is scalability. This arises when the state and action
spaces become very large or when the environment is highly
complex. As the number of states and actions increases, the
amount of data and computation required to learn an optimal
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policy becomes infeasible [6]. Although there are cases where
SD-WAN has been used to interconnect more than 1000 sites
spread around the world [7], current solutions based on RL
have only been tested in simple network environments.

In this paper, we study the feasibility of RL for control-
ling an SD-WAN in more complex scenarios with multiple
sites connected through multiple overlays. We show that the
number of states and actions explodes as soon as the network
architecture becomes more complex if using a single agent
for the entire network. To solve this problem we propose
Multi Agent Reinforcement Learning (MARL), which has
been recently used to solve various issues in new emerging
network scenarios [8]. We show that MARL helps reduce
complexity through decentralized control: the state and action
spaces can be reduced distributing the decision-making process
among multiple agents, making it easier for the individual
agents to learn the correct behavior. We also show how it
can be used in a fully distributed architecture of controllers,
with a controller for each site deciding the overlay to use
to reach any other site of the enterprise WAN. We also test
our solution in an emulated scenario with two sites and three
overlay connections (or simply paths) among them. A RL
agent connected to the first site is responsible for deciding
the overlay to use to route traffic to the second site. Results
show that the RL agent helps reduce network policy violations,
guaranteeing low end-to-end latency, and reducing monetary
costs.

The paper is organized as follows. Sec. II describes the state
of the art about TE in SD-WAN with particular attention to
solutions applying RL. In Sec. III we explain in detail the
SD-WAN scenario under consideration, while in Sec. IV we
describe the proposed solution based on RL. Sec. V addresses
the feasibility of the proposed solution when the number of
overlays and edges grows. Sec. VI presents experiments and
results while Sec. VII draws conclusions and discusses future
works.

II. RELATED WORK

In this section, we discuss work related to TE in SD-WAN,
with particular attention to RL-based solutions.

A TE SD-WAN application has been proposed, consisting of
a monitoring system that raises an alert anytime performance
degradation is detected on the current overlay, and another
module responsible for switching overlay anytime the alert is
received [9]. The application is evaluated in two testbeds -
one with two sites in a metropolitan city and one with four
sites in an emulated environment - showing an improvement in
service availability and delay for time-sensitive traffic. A semi-
distributed, intent-based system for optimizing routing policy
in an SD-WAN scenario comprising a central headquarters
site and three branch sites interconnected in a hub-and-spoke
topology has also been presented [10]. The proposed model
selects the appropriate overlays for applications based on their
specific requirements or network intents, such as minimizing
latency, congestion, or costs. The model utilizes a local mini-
mum search algorithm in conjunction with a traffic prediction

module to determine the optimal set of overlays for routing
traffic.

A novel implementation of Multi-Path Transmission Control
Protocol (MPTCP) specifically tailored for SD-WAN envi-
ronments, referred to as WAN-aware MPTCP, has recently
been presented [11]. This implementation aims to optimize
the utilization of multiple, heterogeneous WAN transports
through aggregation, while also providing fast failure recovery
for applications. The authors show the effectiveness of their
approach in an emulated testbed comprising 2 branch sites and
5 tunnels, as well as a real-world testbed consisting of 3 branch
sites and 2 tunnels. Authors of [12] propose the utilization of
RL techniques in SD-WAN for the efficient implementation of
network policies. They conduct experiments utilizing various
Deep Reinforcement Learning (DRL) algorithms on a dataset
of end-to-end delay time series, collected from an SD-WAN
scenario comprising two interconnected sites with multiple
overlays. Results show that the Deep Q-Learning algorithm
exhibits the fastest convergence time and provides evidence
for the effectiveness of RL in achieving policy constraints.

In [13], the authors employ DRL to determine the flow-
splitting ratios for balancing traffic over multiple paths with
the aim of minimizing the latency of tunnels while satisfying
capacity constraints. This approach is evaluated in an SD-
WAN scenario consisting of a central headquarters site and
three branch sites that are interconnected through both Multi-
Protocol Label Switching (MPLS) and the Internet. The pro-
posed approach successfully achieves low end-to-end delay
and reduces link capacity violations. The authors evaluate the
model by emulating the environment using queuing theory,
specifically by estimating the delay based on link capacities
and allocated bandwidth. In [14], the authors present a Multi-
Agent Reinforcement Learning (MARL) based approach for
scheduling flows in an SD-WAN scenario based on their
traffic category. The objective is to meet the demands in
terms of throughput or delay for each flow. The evaluation
of the proposed approach is conducted within a hub-and-
spoke topology, comprising a central headquarters site and five
branch sites interconnected. The results demonstrate that by
using a hybrid approach, the cooperating agents are capable of
effectively accommodating traffic demands and perform better
with respect to the fully distributed approach.

In [15] we proposed a dynamic routing framework for SD-
WAN based on RL with the ability to steer traffic on one of
the two alternative overlays connecting two branch sites of
a company based on network measurements. The objective
of this framework is to meet performance and transit cost
goals, by adapting to highly variable network conditions. We
conducted experiments in an emulated environment, observing
a reduction in the number of policy violations compared to a
benchmark approach. In this paper, we extend our previous
work considering a more complex scenario with multiple sites
and overlays.

Previous studies have demonstrated that RL is a highly
promising technique for improving the behavior of SD-WAN
as a means of realizing network policies, balancing traffic
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Fig. 1: A typical WAN: m sites connected through n overlays.

flows, reducing service delays, and so on. However, limited
works have investigated the scalability of such approach,
evaluating it only in simplistic scenarios such as networks
with a small number of sites, hub-and-spoke topologies, and
theoretical models. In this study, we argue that scalability is a
critical issue that must be addressed to enable the application
of RL in real-world scenarios. We consider a full mesh
topology and we propose MARL as a potential solution. To
the best of our knowledge, there is a single work that has
introduced MARL in an SD-WAN scenario [14], but it only
uses it for traffic flow scheduling. In contrast, we propose to
use it to solve the dynamic overlay selection problem.

III. PROBLEM STATEMENT

Fig.1 shows a typical WAN: m branch sites (e.g. enterprise
sites) are connected through n possible up-links (also called
overlays) by means of Edge Routers (ERs). ERs collect traffic
flows from branch sites and route them to the destination
through the available overlays. Overlays can be of different
types (e.g. MPLS, Internet, ...) and can also be under the
administration of different Internet Service Providers (ISPs).
For this reason, in most SD-WAN use cases, enterprises are not
able to control the overlays and their intra-domain routing. The
only possible control action is executed on ERs [16] [17]. ERs
are in fact part of the enterprise network and can be directly
instructed by a controller to perform some actions. Examples
of such actions include the utilization of per-flow or per-packet
load balancing techniques through the combination of multiple
overlay networks in order to aggregate bandwidth, duplication
of packets for the purpose of ensuring their successful delivery
or for error correction, and dynamic switching of paths for
flows that are experiencing a sub-optimal performance [18].

In this paper, we address the challenge of dynamically re-
sponding to performance degradation in overlays by switching
the one used for routing traffic when the current performance
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Fig. 2: SD-WAN reference architecture: each network agent
configures one or more ERs to reach the asserted network
policy.

obtained is inadequate. To implement this near real-time
control, we require feedback from the network to determine
its current conditions. ISPs typically do not disclose informa-
tion about their internal topology and the state of the links.
Therefore, we employ a monitoring module that continuously
assesses network conditions on the available overlays through
a probing mechanism [19]. Other approaches have been pre-
sented in literature for this aim [20] which will be considered
in future work. We also leverage a configuration module that
translates a routing decision into its effective realization by
instructing ERs to forward the selected flow through a specific
overlay. This work will not address the monitoring module and
its performance, as well as the configuration modules, since
we covered it in detail in [15]. From now on, we assume
that near real-time one-way delay for each overlay is known
and that the routing decisions are directly translated into the
appropriate network configuration.

SD-WAN solutions allow enterprise network administrators
to define policies to meet network or application intents. Real-
time network measurements are compared to the application
or network requirements to select overlays eligible to route
traffic meeting those constraints. In this paper, we consider
two policies: the former - policy A - aims at achieving low
latency while the latter - policy B - also targets commercial
cost minimization (each overlay may have a different cost
per traffic volume [21]). Both policies are threshold-based:
a network administrator can set the threshold value to the
maximum acceptable latency. The objective is to minimize
the number of threshold violations (or alternatively maximize
service uptime). In Fig. 2 we show the reference architecture.
The network administrator interacts with a single management
system to assert the traffic requirements; there may be one or
more network agents that take routing decisions for one or
more ERs based on those requirements.

IV. REINFORCEMENT LEARNING SOLUTION

In this section, we present our solution based on Reinforce-
ment Learning (RL). It relies on two actors: the agent and the



environment. The agent interacts with the environment through
actions and consequently changes its state and gets rewards or
penalties based on the goodness of its behavior [6]. Thanks to
continuous trial and error it learns about the environment and
the best strategy to adopt in order to achieve a set of objectives
without any prior knowledge about the environment.

Environment. The environment is the entire WAN, includ-
ing sites, overlay links among sites, and access routers. In
reality, there is no full visibility on the entire network: in fact,
we consider the typical SD-WAN scenario in which the overlay
networks are not under the control of the enterprise operating
the SD-WAN. Hence, we have no knowledge about what is
inside the “clouds” depicted in Fig. 1 (internal topology, link
capacity, traffic traversing links, etc.). We only assume that we
can monitor some network parameters - in particular, the end-
to-end delay - from the edges of the overlays through probing
mechanisms.

Rewards. While in typical RL contexts of application - such
as gaming - rewards are directly returned by the environment,
proper reward functions have been designed in this scenario.
Basically, the reward is positive when the network policy in
place is respected; instead, the reward is negative when the
policy is violated. More in detail, the reward is a function of
real-time monitored delay on the selected overlay in relation
to the pre-set delay threshold.

Actions. For the same reason as before, TE policies can not
be applied inside the overlay connections (e.g. manipulating
routing decisions by changing link weights). The only control
action can be executed by instructing ERs to select one of the
available overlays to forward traffic for each destination site.

Among the different RL model-free methods, the ones that
have proven to be most effective in WAN path selection are
those based on the state-action-value function, in particular,
the Q-learning [12].

Q(st, at) = Q(st, at)+α(rt + γQ(st+1, a)−Q(st, at)) (1)

As reported in (1), this algorithm is based on updating
the Q-value Q(st, at) - that estimates how good performing
action at in a given state st is - according to the Bellman
equation, where α is the learning rate that weights the current
experiences versus the old ones, γ is the discount factor that
weights the future rewards with respect to the current one,
and rt is the immediate reward received by the environment.
The action with the highest Q-value at state st is chosen with
probability ϵ while a random action is chosen with probability
(1− ϵ). Parameters α and γ are tuned via grid search, while
ϵ is at its maximum at the beginning so that the agent can
learn fast, and then it decays at an exponential rate to a
minimum value. The objective of Q-learning is to maximize
the cumulative reward

∑∞
t=0 γ

trt+1.

V. SCALABILITY EVALUATION

In this section, we model the RL solution firstly solving
the problem of 2 sites and n alternative overlay connections
between them, posing particular attention to the complexity
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Fig. 3: From a single Network Agent configuring all the ERs
to multiple Network Agents that configure a single ER.
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Fig. 4: Reward computation as a function of the experienced
delay and the policy threshold.

of the solution as the number of overlays increases. We then
consider the problem of m branch sites and n overlays. In
this case, there are several possible solutions ranging from
maximum degree of centralization, where a single agent makes
decisions for all edge sites, to complete decentralization where
there is a single agent for each edge site.

We study the two limit cases. One in which a single RL
agent has a global view of the environment and configures all
the ERs, i.e. Single Agent Reinforcement Learning (SARL)
(Fig. 3a). The other one is based on MARL: there are
multiple agents and each of them has only a local view
and is responsible for configuring a single ER (Fig. 3b).
We assume that the routing does not impact significantly the
overlay performance, hence the choices made by the agents
can not influence each other. Therefore a fully distributed
MARL approach is proposed, in which the agents are totally
independent and work concurrently. We evaluate the scalability
of both approaches by increasing the number of overlays and
sites.

A. Model for 2 sites and n overlays

The Q-learning scheme is defined by actions, states and
rewards. Given n available overlays among branch sites,
actions are defined as [O(t)], where O(t) = i if overlay i
is chosen at time t and hence can assume n different values.
Given di(t), the delay measured on path i at time t, and T , the
delay threshold set with the network policy, states are defined
by the tuple [O(t− 1), xi(t) ] ∀i ∈ [1, n], where O(t− 1) is



the overlay used to route traffic at time t and hence is equal
to the action at time t− 1 and

xi(t) =

{
0, if di(t) ≤ T

1, otherwise

Dynamic reward functions are designed. The reward r at
time t is calculated as follows:

r(t) = −
∣∣dO(t) − T

∣∣
dMAX(t)

w

· sign(dO(t) − T ) (2)

Where dmax(t) represents the maximum delay experienced
at time t and it is used for normalization, and w is an exponent
with real values in range [0, 1] that controls the sensitivity of
the reward to the deviations from the threshold. A high value
of w will result in a low reward for small deviation from the
threshold. On the contrary, low values of w emphasize small
deviations. The value obtained is multiplied by the opposite
of the sign of (dO(t)− T ), resulting in a positive reward for
delay below the threshold and a negative reward for delay
above the threshold. The final rewards value is in the range
[−1 ,1]. For better understanding, Fig. 4 shows the possible
reward obtained for different delay values fixing the threshold
to 400ms and assuming a maximum experienced delay of 1s.
A delay below the threshold leads to positive rewards while a
delay exceeding the threshold leads to negative rewards. The
computation of the result for policy B is slightly different
because it also considers the transit cost of the overlays.
Hence, while the magnitude is the same as the one for policy
A, the sign changes if multiple overlays are experiencing a
delay under the threshold. In this case, if the overlay with the
higher cost is used, the reward is negative. More formally, if
xo(t) = 0 but also xi(t) = 0 (i ̸= O(t)) and costi < costo(t)
reward is negative.

The reward computation has also to take into account the
cost paid for the reconfiguration. Whenever there is a change
in the overlay used, the service is impacted for a certain time.
To prevent the agent from switching overlay continuously,
a small negative penalty p is added to the reward function
whenever the overlay is switched. The algorithm proceeds at
a certain frequency f : every 1

f s, the agent performs an action
and receives a reward. Notice that the agent receives a reward
even if O(t) = O(t − 1) (it did not switch overlay) to take
into consideration possible changes in the environment state
not dependent on the agent action. The frequency f is an
important parameter that should be as small as possible but is
limited by the time it takes for the system to detect a policy
violation and effectively operate a reconfiguration.

We now evaluate the scalability of the RL solution increas-
ing the number of overlays, taking into account the number of
states, actions, and the consequent Q-table dimension. From
now on, we will omit t in the mathematical notation.

1) 2 overlays: 2 are the possible actions, corresponding to
choosing one of the 2 available overlays. States instead vary
based on O, which represents the overlay currently in use
and hence can have 2 possible values and xi that for each

STATE d1(t) d2(t) O(t)
s1 < T < T 0
s2 < T < T 1
s3 < T > T 0
s4 < T > T 1
s5 > T < T 0
s6 > T < T 1
s7 ≫ T > T 0
s8 ≫ T > T 1
s9 > T ≫ T 0
s10 > T ≫ T 1

TABLE I: States for 2 available overlays and 2 sites.
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Fig. 5: Explosion of state space increasing the number of
overlays.

of the 2 overlays can assume 2 possible values (di ≥ T or
di < T ). Hence, the number of states is 2(22). Since for the
last combination - when both paths exceed the threshold - one
of them may exceed it in a less severe way, there are two
more combinations to be considered and the number of states
becomes 2(22 + 2 − 1) = 10. For easier understanding, we
show the states in Tab. I. The Q-Table is 10 x 2 since there
are 10 states and 2 actions (the Q-value is specified for each
state− action couple).

2) n overlays: generalizing, if there are n different paths
between two ERs there will be n(2n + n− 1) possible states
and n actions. Hence, Q-table dimension becomes n2(2n +
n − 1) x n. As can be observed in Fig. 5, the number of
states increases exponentially with the number of available
overlay links, but this approach is still feasible considering the
maximum number of possible overlays to be 6 (it is unrealistic
that a company site has more than 3 or 4 up-links).

B. Model for m sites and n overlays

We will now consider a more general scenario with m
branch sites that are connected in a full mesh. Actions are
defined as the tuple [ou,v,c] ∀u, v ∈ M : u ̸= v and c ∈ C
where the general ou,v,c is equal to the overlay chosen to
forward traffic flows of category c from site u to site v
and hence has n possible values. We define di as the delay
experienced on overlay i and Tc the delay threshold for traffic
belonging to category c. Then we define:

xi,c =

{
0, if di ≤ Tc

1, otherwise

Finally, the state is defined as the tuple: [ou,v,c, xi,c] ∀u, v ∈
M : u ̸= v, ∀i ∈ N and ∀c ∈ C, because with a centralized
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Fig. 6: Managing complexity by transitioning from a single-
agent to a multi-agent approach: reduction in the number of
states.
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approach a different overlay can be chosen for traffic between
two sites with a specific traffic category, and also each traffic
category has a different delay requirement.

1) SARL: With SARL, an action specifies an overlay for
each category c of traffic and for each of the m(m−1) couples
of sites. With n possible overlays there are ncm(m−1) possible
actions. States vary depending on the chosen path for each
traffic category between a couple of sites and the delay with
respect to the threshold set for each possible category, hence
there are ncm(m−1) x 2nc possible states.

2) MARL: With MARL, the model is the same as before but
with u fixed, in fact, each agent only decides the overlay used
for routing traffic from the branch it is responsible for towards
each of the destination sites. Hence, each agent only decides
among nc(m−1) actions. There are c possible categories; delay
for each of the n overlays is compared to c thresholds; number
of states is nc(m−1) x 2nc. Fig. 6b shows the cardinality of
the state space increasing the number of branches for different
numbers of overlays, considering c = 1. Complexity soon
becomes too high (Fig. 6a) with SARL, while MARL keeps
complexity manageable, by exploiting multiple agents that
take independent decisions, as shown in Fig. 6b. As the SARL
approach has showcased complexity, moving forward we will
solely focus on MARL in our experiments.

Flow Maximum Load Type On-time Off-time
F1 (UDP/TCP) 0.8 Mbps constant none none
F2 (UDP) 2.6 to 3.7 Mbps bursts 8 s 8 s
F3 (UDP) 2.6 to 3.7 Mbps bursts 8 s 8 s
F4 (UDP) 2.6 to 3.7 Mbps bursts 16 s 16 s

TABLE II: Parameters of traffic generation

Parameter Value
Discount Factor (γ ) 0.2
Exploration Rate (ϵ) min = 0.001

max= 0.8
decay rate = 0.02

Learning Rate (α) 0.3
Weight (w) 0.2

Frequency (f ) 0.5 s
Penalty (p) 0.2

Constant (k) 0.2

TABLE III: Parameters of MARL / Naive Algorithms.

VI. EXPERIMENTAL EVALUATION

MARL has proved to be a suitable approach to keep com-
plexity manageable. In this section, we show its effectiveness
in configuring an ER to meet the policy requirements.

A. Experimental setup

1) Topology: A simplified SD-WAN scenario is imple-
mented using the Mininet emulator, as reported in Fig. 7. Two
remote sites are connected through three different overlays.
The former comprises H1 and ER1, while the latter comprises
H2, H6, and ER2. The three overlays are modeled through
links with specific nominal latency and capacity values and
three switches to emulate propagation and queueing delay
caused by the WAN transports. The capacity of the external
links - i.e. the ones corresponding to the WAN connections
- is set to 6 Mbps to avoid bottlenecks in the edge sites.
Conversely, the capacity of the internal links - i.e. the ones
connected to the end devices - is set to 3 Mbps and their la-
tency is set to 25ms. The ERs are emulated by OpenvSwitches
that are connected to an SDN controller (Ryu controller) that
acts as an intermediary layer between the switch and the agent,
configuring the OpenvSwitch to choose an output interface that
represents the egress for a specific overlay. On the contrary,
it is assumed that the core switches are not controllable and
hence are non Openflow switches.

2) Traffic generation: A traffic flow F1 (user traffic flow) is
generated by H1 and directed to H2, simulating a communica-
tion between the two sites. The objective is to route this flow
through the overlay that guarantees acceptable delay values,
as specified by a pre-determined policy that sets the maximum
acceptable delay. In addition to F1, other background traffic
flows, F2, F3, and F4 are generated by H3, H4, and H5 to
traverse the 3 alternative overlays. The characteristics of the
traffic flows are reported in Tab. II. These flows represent
traffic generated by other sites, or by any other not controllable
source to emulate public WAN links. Background flows cause
significant delay variation on the respective overlays in differ-
ent time intervals. Traffic is in fact generated with bursts of



Link Load Average Link Load Maximum Link Load
Low 0.53 0.98

Medium 0.60 1.12
High 0.67 1.25

Very High 0.70 1.32

TABLE IV: Traffic load classes.

different duration and bitrate. The experiments were repeated
increasing the bitrate of the background traffic bursts, causing
more and more severe congestion during the on-times. The
increasing bitrates caused the increase in the Average Link
Load (AL). Experiments were conducted for AL values in
the range [0, 1]. In the remainder, only AL values within the
range [0.5, 0.7] are reported as they are considered relevant.
Values smaller than 0.5 did not cause significant latency.
On the contrary, values greater than 0.7 resulted in high
levels of packet loss and were no longer relevant in terms of
latency. In fact, these values corresponded to a Maximum Link
Load (ML) greater than 1 during on-times, causing complete
congestion of the bottleneck link. The background flows are
based on UDP. A first round of experiments was conducted
in which the useful traffic (F1) is also based on UDP. A
subsequent series of experiments were also conducted using
Cubic TCP for F1.

3) Evaluation: Results are evaluated by taking into account
the latency experienced by F1, as well as its service uptime,
which is defined as the percentage of time in which F1 is
compliant with the policy (i.e. experiencing a delay below the
set threshold). The results obtained by the RL approach are
evaluated by comparing them to the ones achieved by a Naive
Algorithm (NA) that at each iteration picks the path with the
lowest latency by less than a constant k. This constant is set to
prevent the algorithm from continuously switching overlay to
avoid the “channel flipping problem”. The parameters chosen
for both algorithms are in Tab. III. The results are reported in
terms of Average and Maximum Link Loads, conventionally
referred to as Low, Medium, High, and Very High Link Load,
as indicated in Tab. IV.

B. Policy A results

1) UDP: The latency experienced under various load con-
ditions is presented for both the NA and the MARL approaches
in Fig 8. It can be observed that, as the load increases, the
average latency rises for both algorithms but MARL manages
to keep it at smaller values. The interquartile range for the
MARL approach is very low for light and medium loads,
only increasing for high and very high LU, i.e. in overload
conditions. Fig 9 shows the service uptime percentage. It
can be observed that service uptime decreases as traffic load
increases for both algorithms, but MARL manages to maintain
a higher service uptime, except for very high load, in which
packet loss is also observed.

To explain the behavior of the MARL agent, Fig. 10a
illustrates the instantaneous latency for a short time interval
in a single experiment with a medium load. The marked lines
depict the instant latency experienced by alternative paths and
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Fig. 9: Policy A - Service uptime achieved by MARL for
increasing Link Loads (UDP).

the thicker line represents the actual latency experienced by
the path chosen by the MARL agent, which overlaps with
the line that corresponds to the used path. It can be observed
that as soon as the used path violates the policy, experiencing
a delay above the threshold, the negative reward triggers the
agent to switch path. It can be also seen that the latency of
the used path does not increase significantly after F1 traffic
has been rerouted on it.

2) TCP: TCP performance can be severely impacted by
rerouting, causing delay variance, interpreted as losses by
congestion control algorithms. To study this problem we
performed also experimentation with Cubic TCP. Results in
Fig. 11 (middle plot) show that the latency obtained by TCP
is comparable with the one obtained by UDP. However, the
outliers reach higher values for TCP and there is also a higher
jitter (Fig. 11, top plot). This is because TCP retransmits
packets that are not received, increasing their delay. We specif-
ically observe retransmissions as spikes in the instantaneous
throughput right after the path is switched. The corresponding
packets have a higher delay and cause a higher jitter. We
also observe that path switching happens before congestion
becomes severe, thus preventing TCP flows from experienc-
ing degraded conditions. Fig. 12 depicts the service uptime
obtained and the lines on top represent the deviation from a
predefined threshold. Generally, TCP flow demonstrates higher
compliance with the policy, particularly in highly loaded paths,
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Fig. 10: Instantaneous latency experienced on the alternative
paths and on the used path.

as a result of its congestion control mechanism that reduces
the sending rate in response to congestion. However, when the
threshold is violated, TCP shows a more severe deviation from
the threshold owing to the time required for retransmission.
The low service uptime obtained in the first experiment is
likely a result of the higher number of reconfigurations,
which disproportionately impacts the performance of TCP in
comparison to UDP.

C. Policy B results

In order to evaluate policy B, it is assumed that path 3
simulates a Quality of Service (QoS) guaranteed path, such
as MPLS, that imposes a cost per traffic volume that is x
times higher in comparison to the other two paths. Path 1 and
path 2 simulate best-effort paths, where traffic is generated
in a manner such that F2 and F3 overload path 1 and path
2 during the on-times, while F4 never causes congestion on
path 3, resulting in delay experienced on this path being
always below the threshold. When selecting policy A, the
agent would always route F1 to the QoS guaranteed path, as it
only considers latency to compute rewards. In contrast, policy
B penalizes the use of path 3 due to its higher cost, using it
only when the other paths are experiencing poor conditions
(Fig. 10b).

A first experiment is conducted for a medium load. By
selecting policy B, the agent routes F1 to path 1 or path 2
for 70% of the time, while it uses path 3 for only 30% of the
time, despite the fact that path 3 always experiences latency
values below the threshold. Even though the paths without QoS
guarantees are used more frequently, F1 always experiences
low delay by exploiting F2 and F3 off-times (as shown in Fig.
10b). With policy A, instead, path 1 is always used, since its
sole aim is to keep latency under the threshold.

The experiment is repeated for various traffic loads and
costs. Fig. 13 illustrates the monetary gain of using policy
B in comparison to policy A. It can be observed that, as the
cost difference between the two paths increases, the gain of
policy B also increases. Additionally, the gain rises in low load
conditions when the costly path can be used less frequently,
since we hypothesize that cost is a function of traffic transiting
the path.
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VII. CONCLUSION AND FUTURE WORK

SD-WAN is considered a promising solution for commu-
nication needs of several branch sites located in a wide
geographical region connected through different links. In this
paper, we started from the observation that Reinforcement
Learning has the potential to properly use the available links
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respecting application requirements. We firstly examined the
scalability issues of such an approach and proposed MARL as
a solution. We showed that this solution effectively mitigates
complexity by reducing action and state spaces, utilizing
multiple agents that make independent decisions based on
local observations of the environment. We then evaluated the
effectiveness of this approach in an emulated scenario with
multiple sites and overlays. Results show that our approach
manages to meet the requirements imposed through the net-
work policy, reducing latency and transit costs, using only
local information about the environment. We believe that this
paper provides important results that show if and how it is
possible to use RL for SD-WAN. Our future work is concerned
with the optimization of other parameters of interest such as
throughput and available bandwidth.
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