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Abstract—Wrapping DNS into HTTP(S) is a promising way
to mitigate the privacy and security issues of the traditional
DNS. It has been standardized by IETF, i.e., DNS-over-HTTPS
(DoH). This approach allows the application to choose open
resolvers that it trusts, protecting its activities from potential
snooping. Moreover, an application can establish a connection
with its resolvers, incorporating specific handles and identifiers
for customized use. How is the name resolution process performed
on the client side? What are the criteria for an application to
choose a resolver? These questions are still unclear.

In this paper, we examine the application-level name resolution
practices of 25 popular apps on Android and iOS platforms,
revealing their adoption and usage patterns. We present the
following findings: (i) non-standard, self-defined HTTP(S)DNS
is more prevalent than DoH in practice, (ii) popular apps tend
to use dispersed resolvers, some of which are self-owned, (iii)
HTTP(S)DNS usage patterns differ across apps. These findings
raise new issues related to the transparency and security of DNS
configuration inside apps. We also explore the implications of
these changes on the DNS ecosystem and analyze the potential
security risks.

Index Terms—Name Resolution, Encrypted DNS, Client-Side,
Network Measurement

I. INTRODUCTION

The Domain Name System (DNS) is a vital component of
the Internet infrastructure that maps user-friendly names to
Internet resources. Most Internet activities begin with a DNS
query. However, DNS was designed to operate in plaintext,
exposing it to various security and privacy threats.

To address this issue, several solutions have been proposed
and implemented. One of them is to encapsulate DNS queries
and responses in HTTP(S) messages. This approach was ini-
tially experimented and named HTTP(S)DNS by developers.
In 2018, it was standardized by IETF as a protocol, namely
DNS-over-HTTPS (DoH). DoH can be deployed on both
systems and applications, and it has shown a tendency to
replace the traditional DNS protocol on the client-side.

Prior research on the adoption of DNS has primarily concen-
trated on DNS servers, with little examination of the client-
side. A significant yet neglected aspect is the application’s
ability to select a preferred resolver that differs from the
system default [1]. Indeed, each application has the capability
to establish its own specific resolvers and tailor a unique
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namespace to fulfill its requirements. However, the status of
application-level name resolution remains unclear as it has not
been examined.

The goal of our study is to examine name resolution patterns
on the client-side, which we believe will offer a valuable
perspective on DNS utilization. Our research seeks to address
the following questions: (i) How do widely-used mobile apps
resolve domain names? (ii) Are there any mobile apps that
employ self-configuring resolvers? (iii) What are the actual
DNS resolution patterns of these apps?

To answer these questions, we conducted an comprehensive
analysis of 25 prominent applications and scrutinized their
usage patterns in detail. In summary, the contributions of this
paper are concluded as follows:

• We provide a summary of the alterations in the conven-
tional name resolution. From the perspective of traffic
analysis, we propose a testing methodology to ascertain
the DNS resolution methods employed by applications.

• A comprehensive analysis of 25 popular apps was con-
ducted, including both Android and iOS versions. The
results indicate that the resolvers configured within the
apps tend to be dispersed and that self-use HTTP(S)DNS
resolvers are prevalent among these apps.

• We examine the usage patterns of non-standard
HTTP(S)DNS adopted by apps and discover that
HTTP(S)DNS takes on various forms without a uniform
implementation across different apps.

• We contemplate the new issues that these changes will
introduce for users, applications, ISPs, and the DNS
ecosystem. Potential security implications are discussed
and feasible recommendations are provided.

Definitions. HTTP(S)DNS: In this study, we differentiate
HTTP(S)DNS from DoH based on the RFC criterion. Accord-
ing to RFC 8484 [2], we define the use of HTTP(S) in name
resolution without DNS wire format as HTTP(S)DNS. By this
criterion, we classify the JSON API provided by Google and
Cloudflare’s DoH [3], [4] as HTTPSDNS.
Self-use resolvers: In contrast to public DNS resolvers, self-
use resolvers refer to private servers specific to an application
with their own domain name or IP address. We will focus
our attention on self-use resolvers that employ non-standard
HTTP(S)DNS.



Organization. The remainder of this paper is organized as
follows. Section II reviews the alterations in the conventional
name resolution. Section III and Section IV examine the
adoption of HTTP(S)DNS in mobile apps. Section V analyzes
usage patterns of apps in practice. Section VI discusses the
potential impacts. Section VII summarizes related work, and
Section VIII concludes our work.

II. BACKGROUND

As the demands for performance, security, and privacy con-
tinue growing, application-oriented DNS resolution is rising.
As shown in Figure 1, DNS resolution is transitioning from
local ISP to public DNS and further to application-specific
services [5]. In this section, we briefly analyze how changes
in protocol affect the name resolution process on the client-
side and introduce development trends in name resolution.

A. Conventional Name Resolution

In the conventional name resolution, DNS packets are
designed to be transmitted over UDP using port 53 (Do53).
Applications are not necessarily cognizant the detail of name
resolution. Typically, the application calls the hosting system
through the network library API like gethostbyname. The
hosting system then processes the name resolution task and
returns responses to the application [5].

Initially, The name resolution service is typically provided
by local ISP resolvers. With the emergence of public DNS
resolvers, some users switch their DNS query to public DNS
services. At this stage, the application has no decision-making
power in the name resolution process other than triggering the
initial query [5]. Figure 1(a) illustrates the conventional name
resolution scenario in which each app uses the same resolver
and will not receive ambiguous answers when sending a query.

B. New Resolution Approaches

Do53 has faced criticism for its security and privacy de-
ficiencies. Its vulnerability to manipulation can lead to false
results. To mitigate these risks, several new extensions have
been specified and implemented for improvement. One po-
tential approach is to circumvent the local DNS and prevent
DNS injection/hijacking by the resolver. HTTP(S)DNS is a
representative solution for countering Do53 hijacking and
enabling precise scheduling by replacing the traditional Do53
with the HTTP protocol. To date, HTTP(S)DNS has been
promoted and developed by several large Internet companies
in China, including Baidu [6], Alibaba [7], and Tencent [8].

As the demand for DNS privacy rises, encrypted DNS has
garnered significant attention. Two new protocols, DNS-over-
TLS (DoT) and DNS-over-HTTPS (DoH), have been proposed
and standardized by IETF. Of the two protocols, DoH is more
appealing to web applications due to its compatibility with
the existing network stack. Compared to HTTP(S)DNS, DoH
provides a tunnel over HTTPS while preserving the DNS wire-
format. Most public DNS resolution providers (e.g., Google,
Cloudflare, and Quad9 [9]–[11]) have already established
public DoH resolvers.
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Fig. 1. The development tendency in name resolution on the client-side.

Wrapping DNS into HTTP(S) brings changes to name
resolution. As shown in Figure 1(b), the application can
conduct DNS transactions in its own manner, which can not
necessarily adhere to the system-level DNS configuration.
Both public DNS providers and network libraries offer new
APIs for developers. Name resolution at the application-level
is not always consistent with the system default [1].

C. Application-Specific Name Resolution

If an application is permitted to resolver other than the
system default, it is likely to construct its own specific
DNS resolvers. In this manner, the application can manage
name resolution in an ad hoc fashion, incorporating unique
identifiers into DNS messages. It is capable of customizing



a DNS server for self-use to fulfill special requirements [5].
Figure 1(c) presents a scenario in which name resolution is
specific to the application. The app initiates a DNS query
directly with its self-use resolvers. However, the manner in
which these resolvers handle DNS queries remains unknown.
They can maintain an exclusive set of DNS resource records
that are customized by their respective applications.

III. METHODOLOGY

This work aims to reveal application-level name resolution
strategies used by mobile apps at the application layer. To this
end, we conduct traffic analysis on each app to identify its
DNS resolution mechanisms. In this section, we describe on
our methodology in detail. Figure 2 illustrates the overview of
our methodology, which comprises three steps: data collection,
correlation, and detection.

A. Data Collection

Since many apps require user authentication to operate
correctly, we need to manually input some information to test
their functionality. To emulate the behavior of real users, we
interact with the UI of the app to generate DNS requests as
much as possible, aiming to cover at least the main features
offered by each app. We record the traffic data of each app
using the ISP’s local resolver as the default Do53 resolver in
the experiment.

During the data collection process, we encounter noise
interference that affects our analysis. To obtain a clean dataset,
we adopt the following countermeasures. On one hand, we
collect the background traffic produced by the system first.
On the other hand, we only allow one app to access WLAN
at a time, to minimize the interference of unrelated processes
during testing. After filtering out the system noise, we finally
get a relatively clean dataset, which is the basis for our
subsequent analysis.

B. Correlation

The challenge in identifying the DNS resolution mecha-
nisms of an app stems from the non-standard implementations
of self-use modes. Such a customized mode, developed by app
developers, is difficult to identify. To uncover the details, we
separate the traffic data of each app into Do53 and the others.
Intuitively, if an app only uses Do53 for name resolution,
it begins with a Do53 query, receives a response, and then
communicates with the target server. We call this case as
Do53-Only, which can be formalized as follows:

Given a set of IPs in Do53 RRs Resolved IP =
{rip1, rip2, ..., ripm} and a set of server IPs Server IP =
{sip1, sip2, ..., sipn} extracted from traffic traces of an app.
Let Trip stands for the time when the app receives the answer
sip from the Do53 response, and Tsip represents the time when
the app sends the first packet to the target server sip. The traffic
traces of the app satisfy the following condition if only Do53
is configured as the protocol:

1) Each server IP should be included in the Do53 RR set,
i.e., Server IP ⊆ Resolved IP .

2) The Do53 response should be received before communi-
cation with the server. For each server IP sipa and its
related resolved IP ripb in the RR set (sipa = ripb),
Tripb

< Tsipa
.

All tested apps are reinstalled in the measurement to prevent
DNS caching from affecting results. If traces of an app do not
follow Do53-only, protocols other than Do53 can be involved
in the name resolution process. But this is not the only case
of deviation. The peer IP addresses can be obtained in another
way besides DNS. Possible situations that we consider against
Do53-only can be summarized as follows:

• Not using Domain Names. The app establishes server
connection via IP directly without using domain names.
It can contain several seed IP addresses for a start. For
instance, service with statistic IP addresses, or acquire IP
addresses by other services, like P2P.

• New Resolution Methods. The app still uses domain
names and requires the name resolution process. It con-
figures other protocols to replace Do53. This case is what
we focus on in this paper.

As the above scenarios are common in applications, the
results from correlation turn out to be inadequate. Additional
detection is needed to specify further.

C. Detection

The correlation procedure classified apps into two groups,
Do53-only or not. The detection procedure aims to further
validate the rest of the apps in the not Do53-only group and
find potential servers used for name resolution. In general,
three steps are involved:

1) Open Resolvers Filtering: We use a resolver list as
a filter to discover potential resolvers in an app’s traffic.
Therefore, an Internet-wide scanning is needed to locate open
resolvers. We utilize the probing results of port 443 across
all IPv4 addresses provided by Rapid7 Labs [12], scanning
for servers with TCP/443 open. Common DoH path templates
(/dns-query, /resolve, and /doh, etc) are considered.

Unlike DoH, active scanning is limited in detecting
HTTP(S)DNS resolvers due to the lack of a unified standard.
HTTP(S)DNS is more like a web service than DNS, which
significantly increases the difficulty of detection. We search
and register several public HTTP(S)DNS services and then
collect IP addresses of resolvers. Finally, we established a
set of IPs containing open DoH and HTTP(S)DNS to find
resolvers in traffic traces.

2) String Matching: We use the string matching method
to find unknown resolvers served for an app. Keywords to be
matched consist of two parts:

• IP addresses do not belong to the Do53 RR set, i.e., sip /∈
Resolved IP.

• Common words that appear in URI templates (e.g., doh,
dns, httpdns, dn, domain and resolve, etc.).

In order to decrypt the contents of encrypted traffic, we
deployed a HTTPSProxy and relaunched the rest apps to
inspect the contents of the packets and check if they match.
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Fig. 2. Methodological overview.

Common transformations are considered during matching,
e.g., upper/lower case, Base64 encoding. This step detects
private DNS resolvers and reveals the detail of the protocol
format.

3) Multiple Validations: Apps can configure SSL pinning
to prevent HTTPSProxy from decrypting the traffic. Moreover,
Android Nougat has changed the way of handling trusted
certificate authorities (CAs). By default, any user-add CAs are
no longer trusted by the app [13]. We take some measures to
further verify our inference in this step:

• We recheck domain names that match the keywords in the
previous step if decryption fails. We send DoH queries to
servers with these domains. If a DoH response is received,
we consider the server as a resolver.

• The encryption policies of some apps are inconsistent
across platforms. By comparing app traffic data collected
on different platforms (mainly Android and iOS), we try
to infer uncertain versions from the confirmed ones.

• Some apps disclose technical details in their blog post.
By searching this extra information, we can determine
the result with the help of developers.

To sum up, our method to identify DNS resolvers used by
an app consists of four steps. Figure 3 depicts a flow chart
of the test for each app. In the correlation step (S1), apps
that do not follow Do53-Only will be selected. The open
resolver filtering step (S2) and the string matching step (S3)
finds public and self-use resolvers. Note that S2 and S3 are
in parallel since public and self-use resolvers can be both
configured in some apps. The final step, Multiple validations
(S4), complements the previous steps. After the four steps, the
remaining applications that could not be accurately identified
will be categorized as Others.

IV. RESULTS

In this section, we first provide an overview of the apps
that we measured in our study. Next, we present our findings
on the adoption of HTTP(S)DNS by mobile apps from the
client-side perspective.

A. Test Apps

To analyze the current state of mobile applications, we
selected 25 representative ones from various usage categories,
based on their high installs and wide user coverage. We believe
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Fig. 3. A Flow Chart of the Test for Each App.

that the top-ranked apps are more likely to adopt new protocols
and influence other apps in their category. The features of these
25 apps are shown in Table I, along with their ranking in the
Apple App Store.

We conducted the measurement in an IPv4 network en-
vironment and used the latest versions of Android and iOS
applications, covering the listed features. Each measurement
were repeated several times to ensure the validity of the results.

B. Prevalence of Adoption

1) Apps Using HTTP(S)DNS: Table I shows an overview
of our measurement for 25 apps. We find that HTTP(S)DNS
is widely used in practice. Only seven apps follow the Do53-
only pattern. About 14 apps, or roughly 60% of our test set,
use HTTP(S)DNS in the name resolution process. We also
observe regional differences in HTTP(S)DNS usage. Almost
all the apps we tested in China ranking use it. This can be due
to the early support for HTTP(S)DNS by some public DNS



TABLE I
TEST APPS AND OVERALL ANALYSIS RESULTS.

category App Name Features # of Ranks Result of Each Step1 Overall
Results2S1 S2 S3 S4

Chat

Messenger send message,
make audio
video calls

and view websites

US (6) 7|7 7|7 7|7 7|7 ¯|¯
Telegram US (41) 7|7 3|3 7|7 -|- |
WeChat CN (3) 7|7 7|7 7|7 3|3 ®|®
QQ CN (8) 7|7 7|7 7|7 7|7 ¯|¯

Social

Instagram get updates,
send posts

and view websites

US (3) 7|7 7|7 7|7 7|7 ¯|¯
Facebook US (5) 7|7 7|7 7|7 7|7 ¯|¯
Twitter US (20) 3|3 -|- -|- -|- ¬|¬
weibo CN (37) 7|7 7|7 7|7 3|3 ®|®

Shopping

Amazon Browse products
comments,

add goods to chart
and submit orders

US (7) 3|3 -|- -|- -|- ¬|¬
Taobao CN (5) 7|7 7|7 3|3 -|- ®|®
Meituan CN (14) 7|7 7|7 3|3 -|- ®|®
JD CN (15) 7|7 7|7 3|3 -|- ®|®

Video

YouTube

search watch videos,
view comments

US (2) 3|3 -|- -|- -|- ¬|¬
Douyin3 CN (6) 7|7 3|7 7|7 3|3 ®|®
Tencent Video CN (20) 7|7 7|7 3|3 -|- ®|®
iQiyi CN (28) 7|7 7|7 3|3 -|- ®|®
BiliBili CN (29) 7|7 3|3 3|3 -|- |

Payment PayPal Add cards,
transfer and payment

US (32) 3|3 -|- -|- -|- ¬|¬
AliPay CN (4) 7|7 7|7 3|3 -|- ®|®

Map Google Map Navigate places US (9) 3|3 7|7 -|- -|- ¬|¬
AMap CN (10) 7|7 7|7 3|3 -|- ®|®

Email GMail send receive mails,
view websites

US (11) 3|3 7|7 -|- -|- ¬|¬
QQ Mail CN (42) 7|7 7|7 3|7 -|7 ®|¯

News Reddit Search for hot posts,
leave comments

US (43) 3|3 -|- -|- -|- ¬|¬
Zhihu CN (44) 7|7 3|7 3|3 -|- ®|®

1 Symbols: 3 means Yes; 7 means No; ’-’ means test has end in previous step.
Cell format: <Android|iOS> means that the left one is the result on Android, and the right one is
the result on iOS.

2 Serial numbers: ¬ stands for Do53-Only;  stands for public HTTP(S)DNS adoption in the app;
® stands for self-use HTTP(S)DNS adoption; ® stands for both public and self-use HTTP(S)DNS
adoption; ¯ stands for others.

3 Also known as Tiktok of China.

providers in China and the availability of SDKs. In contrast,
in the US ranking, only Telegram uses HTTP(S)DNS, while
the other apps do not.

Five apps fall into the Others category. Among them, QQ
and the iOS version of QQ Mail do not pass any of the
four test steps. The other three apps, Facebook, Messenger
and Instagram are difficult to classify due to decryption
failures. Our results represent the lower bound of apps that
use HTTP(S)DNS.

2) HTTP(S)DNS Servers: Our findings reveal that some
apps have developed their own servers for name resolution.
As explained in Section III, the resolver filtering step (S2)
identifies open resolvers. The string matching step (S3) and
the multiple validations step (S4) can detect private, self-use
ones. Comparing the results in each step, we notice that S3

finds more apps, which indicates that self-use resolvers are
developed and applied.

As shown in table I, among 14 apps using HTTP(S)DNS,
only BiliBili and Telegram, use public DNS services. BiliBili
adopts AliCloud and Tencent HTTPDNS. Telegram sends
queries via JSON API provided by Google and Cloudflare,

which can be substantiated in its source code.
Twelve apps deploy resolvers for self-use, accounting for a

large proportion (above 85%) of adoption. One possible reason
for using self-use resolvers is that developers can customize
both content and delivery in the name resolution process to
suit their specific needs. The results of measurement indicate
that self-use resolver is a new trend.

3) iOS vs. Android: Most apps have the same behavior
on iOS and Android platforms, except for QQ Mail, which
uses HTTPDNS on Android but not on iOS. We observe
other minor differences between Android and iOS versions in
BiliBili, Douyin, and Zhihu. BiliBili uses AliCloud HTTPDNS,
and also uses Tencent HTTPDNS on its Android version. For
Douyin and Zhihu, AliCloud HTTPSDNS is used on their
Android versions but not detected on iOS. We speculate that
that the relevant service API is available in Android versions
but not in iOS.

V. USAGE PATTERNS ANALYSIS

In this section, we examine the apps that use HTTP(S)DNS,
analyzing their usage patterns from the view of specification
and implementation. Unlike the standardized DoH guidance



proposed by the IETF, various patterns of HTTP(S)DNS exist
in different apps.

A. Bootstrapping

We test how an app initializes an HTTP(S)DNS request. It
depends on the service API provided by the resolver. Gener-
ally, the client is configured with a URI template. As Figure 4
illustrates, an IP-based URI (w.x.y.z/resolve?) is di-
rectly accessed by clients without name resolution, which can
be hard-coded in apps. Otherwise, a URI containing the host-
name (dns.app.com/resolve?) needs to be resolved
first, i.e., in the bootstrapping step. This step is usually done
by the default Do53 resolver of the device, bringing a potential
risk of a downgrade attack [14].

Do53 Resolver HTTP(S)DNS Resolver 
w.x.y.z  

URI Template

Query dns.app.com 

dns.app.com IN A 
w.x.y.z 

GET /resolve?xxx 

Bootstrapping Step

Fig. 4. Bootstrapping step.

TABLE II
URI TEMPLATES OF HTTP(S)DNS

App name URI Template

Telegram https://dns.google.com/resolve
https://mozilla.cloudflare-dns.com/dns-query

WeChat http://dns.weixin.qq.com/mmtls

Weibo http://39.97.130.51/encry params

Taobao http://amdc.m.taobao.com/amdc/mobiledispatch

Meituan http://103.37.142.166/fetch
https://httpdns.meituan.com/fetch

JD https://dns.jd.com/v6/d
https://101.124.19.122/v6/d

Douyin https://dig.bdurl.net

Tencent Video http://182.254.116.116/d

iQiyi http://doh.iqiyi.com/md

BiliBili http://203.197.1.66/resolve
http://119.29.29.29/d

Alipay http://amdc.alipay.com/squery

AMap http://amdc.m.taobao.com/amdc/mobiledispatch

QQ Mail http://182.254.116.117/d

Zhihu https://118.89.204.198/resolve

We examine the apps by combining the results in S1, S2,
and S3 of the test flow. Table II summarizes URI templates
used in apps. Nine out of 14 apps use hostnames, so they
need to send additional Do53 requests before establishing
connections with their resolvers. Seven apps access their

resolver directly without an additional hostname resolution.
Two types of URI are both configured in JD and Meituan.

B. Encryption Preferences

Not all apps that use HTTP(S)DNS implement encryp-
tion. Among the 14 apps, about half of them encrypt DNS
messages. We discover two kinds of encryption schemes of
HTTPDNS in our measurement. One is by implementing TLS
on HTTPDNS, i.e., HTTPSDNS, which secures the entire
HTTP Layer. Douyin, Zhihu, JD, Telegram, and Meituan’s
hostname-URI are in HTTPSDNS mode.

The other one is by encrypting partial HTTP elements.
These apps encrypt some personal parameters in the HTTP
header and body. For example, the Android version of Bilibili
configures Tencent HTTPDNS, which supports DES or AES
encryption for HTTP query parameters and responses. Weibo’s
HTTPDNS uses this method as well. Telegram re-encrypts
TXT records of its domain. A private protocol, MMTLS [15] is
adopted by WeChat to encrypt the HTTP message body. These
encrypted contents cannot be accessed through HTTPSProxy.

However, the rest of the 14 apps are in plaintext. They
only change Do53 to HTTP. Due to the lack of encryption
mechanisms, security and privacy risks still exist. Moreover,
these default configurations of apps can be conflicted with
the requirements of privacy-sensitive users. We will discuss it
further in Section VI.

C. Protocol Formats

HTTP(S)DNS is quite flexible, and developers can cus-
tomize HTTP(S)DNS to suit special needs. We examine the
protocol formats of implementations.

HTTP(S)DNS Requests. Figure 5(a) shows examples of
batch queries in packets. Both HTTP GET and POST methods
are founded in HTTP(S)DNS requests. Public HTTP(S)DNS
providers like AliCloud, Tencent, and Baidu mainly support
the HTTP GET method, while private HTTPDNS servers
built by apps have no fixed choice. This can be because
the GET method is more cache-friendly for HTTP, while the
POST method can meet the need to pass specific parameters
generated by the app.

In addition, query parameters are different among apps
without a standard format. Developers fully leverage the
feature set of HTTP protocol. Headers of HTTP(S)DNS re-
quests contain a large amount of information, especially self-
use resolvers. The User-Agent, Cookie, and Accept-Language
request header fields convey specific information about the
client version, platform, or network carrier. As we stated in
Section V-B, encryption is inadequate in part HTTP(S)DNS
implementation. Although these resolvers are applied to their
respective apps, the risk of leaking user privacy has increased.

HTTP(S)DNS Responses. Responses from HTTP(S)DNS
vary a lot in apps as well. A common, widely accepted format
is serialized in JSON. However, responses in JSON format
contain different key-value pairs. Figure 5 (b) shows examples.
Google provides a relatively comprehensive DNS response



    GET /ID/d?host=app.com&query=4,6

    GET /d?dn=app.cpm

    GET /fetch?dm=app.com&type=ipv4

    GET /resolve?name=app.com

    POST /md?business=doh_android&s=1

   {"ttl":1,"query":[{"dn":"app.com","qtype":"a"}]}

    GET /ID/resolve?host=app1.com,app2.com

    GET /d?dn=app1.com,app2.com

    POST /amdc/mobiledispatch?{app parameters}

    domain=app1.com app2.com app3.com...

    GET /v6/b?{app parameters}

    POST /squery 

   {app parameters}

a. HTTP(S)DNS Requests

   {
    "Status": 0,

    "TC": false,

    "RD": true,

    "RA": true,

    "AD": false,

    "CD": false,

    "Question": [{

      "name": "app.com.",

      "type": 1

    }],

    "Answer": [{

      "name": "app.com.",

      "type": 1,

      "TTL": 60,

      "data": "w.x.y.z"

    }]

  }

   {

    "dns": {

      "host": "app.com",

      "client_ip":"a.b.c.d",

      "ips": ["w.x.y.z"],

      "type": 1,

      "ttl": 36,

      "origin_ttl": 60

    }

  }  

  w.x.y.z,60

b. HTTP(S)DNS Responses

Fig. 5. Examples of HTTP(S)DNS message.

example in JSON (item ¬). Compared to item ¬, a fair part
of apps receive a partial resource record (RR). For example, a
response only contains IPv4 addresses, missing type and TTL
fields of the RR (item ®). The response is only applicable to
the specific application.

The Number of Queried Domains per Packet. A DNS
request or response packet usually contains one domain name
to be queried in Do53, and this convention also applies to DoH.
But it changes in HTTP(S)DNS. Multiple domain names can
be included in an HTTP(S)DNS request packet, depending on
the implementation of the resolver.

As shown in Figure 5 (a), request items ¬ to ° contain
one query, and items ± to ³ include two or more domain
names. As most HTTP(S)DNS servers keep using HTTP/1.1,
we speculate that service providers improve performance by
involving multiple domains to achieve a reuse effect.

Items ´ and µ represent another pattern in apps in which
domain names are omitted in the request. Based on request
parameters issued by the client, the resolver pre-provisions a
mapping list that contains several DNS RRs. This approach
is similar to the feature of HTTP/2 server push, with the
difference being that the client still needs to initiate the request.
In a way, it reflects a trend of DNS from pull to push.

D. Resolved Domain Names
1) Proportion: More than half of the apps in our mea-

surement use both Do53 and HTTP(S)DNS. We estimate the
contribution of HTTP(S)DNS to figure out the role it plays in
the name resolution process.

Figure 6 compares the approximate number of domain
names resolved by HTTP(S)DNS with Do53. Our statistics
cover ten apps, of which the details of HTTP(S)DNS are
available in the iOS version (14 apps in total, excluding
Douyin, Weibo, and WeChat undecipherable, QQ Mail not
found in iOS). Since the DNS requests of external domains
are generally sent by Do53, domain names corresponding to
the web pages that we visit in some apps (Chat, Social, and
Email categories) are not considered.

As we can see, HTTP(S)DNS accounts for a relatively small
percentage in overall name resolution, and most of the domain
names are still resolved by Do53. Apps seem to follow the
rules saying that do not put all DNS in one basket. The
proportion of HTTP(S)DNS varies. Telegram is a special one
that rarely sends DNS queries, and most of them are triggered
in bootstrapping step. Except for Alipay, other apps send more
DNS requests through Do53.

Although there are some interference factors: some domains
outside of the listed features will not be triggered, and proxies
may affect the behavior of the application. Our statistics
reveal some trends. Do53 is still the main choice for apps,
and HTTP(S)DNS has played a role in the name resolution
process.
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Fig. 6. Number of domain names resolved by Do53 and HTTPDNS.

2) Consistency Comparison: We compare the responses
of Do53 and HTTP(S)DNS to discover the differences in
the resolution results. For each domain name resolved by
HTTP(S)DNS, the comparison is set up as follows:

1) A Do53 lookup is performed first to check if it is
resolvable.

2) The prefixes of the IP addresses in HTTP(S)DNS re-
sponses are organized by utilizing the RouteViews Prefix
to AS mappings Dataset [16].



3) We compare the Do53 response of the domain name with
the prefixes in step 2) to see if an IPv4 address (A Type)
or an IPv6 address (AAAA Type) is in the subnet set.

Three possible results of the comparison include:
• Totally Consistent (All): All IPs in the Do53 response

are in the subnet set of the HTTP(S)DNS response.
• Partially Consistent (Part): Some IPs in the Do53 re-

sponse are in the subnet set, while the others are not.
• Completely inconsistent (None): None of the Do53 re-

sponse IPs is in the subnet set.

TABLE III
RESULTS OF THE CONSISTENCY COMPARISON

Query Type # Domain Names

Count All Part None Missing

A 185 94 13 76 2

AAAA 7 2 0 1 4

In our measurement, 186 domain names are resolved
by HTTP(S)DNS. HTTP(S)DNS responses contain A type
records of 185 domain names, AAAA type records of seven
domain names, and TXT type records of one domain. The
TXT type requests are sent by Telegram, whose DNS records
are encrypted. We are more concerned with A and AAAA
records.

As shown in Table III, from the perspective of A type
records, about half of domain names’ records resolved by
Do53 and HTTP(S)DNS are totally consistent. Meanwhile,
more than a third of domain names have completely inconsis-
tent records. Since self-use resolvers have direct access to the
client IP, they can return more accurate scheduling results to
improve user performance, making inconsistent results. Seven
domains query AAAA records through HTTP(S)DNS, and the
number is relatively small compared to A records.

We also notice domains missing A or AAAA records in
Do53. We suspect that these domain names are private, or
they miss configurations in DNS RR. We will discuss it in
Section VI.

VI. DISCUSSION

In this section, We discuss the implications of configuring
self-use resolvers in mobile apps. We consider several key
actors involved in the name resolution process.

A. Users

Configurations Conflict between User and Apps. In most
cases, the way one app resolves domain names is non-
transparent to users. Users do not know which resolvers are
configured within the app since it does not offer the option.
This creates conflict. The user wrongly assumes that the
preferred resolvers are in effect, but some apps do not follow
the system configuration. Apps will leak DNS records to
pre-set resolvers. Moreover, if an app deploys HTTP(S)DNS
without encryption, the implementation can not satisfy the
privacy needs.

We configured encrypted DNS at the system level and tested
apps adopting HTTP(S)DNS resolvers. Do53 is successfully
encrypted, but HTTP(S)DNS remains, exposing some sensitive
data. We suggest that apps offer resolver choices similar to
the secure DNS setting of PC browsers and adhere to users’
privacy preferences.

B. Applications

Robustness. A common solution to deal with resolver
failures in the traditional resolution scenario is to switch to
other resolvers by changing the DNS configuration. However,
this option is not available for apps that rely on the internal
HTTP(S)DNS resolver. If the HTTP(S)DNS service fails, the
app will not function properly and there will be no alterna-
tive solutions. Therefore, app developers should implement a
fallback mechanism to handle service failures.

Fingerprinting Attack. The use of dispersed self-use re-
solvers may increase the vulnerability of apps to fingerprinting
attacks. The HTTP(S)DNS resolvers are unique for each app
and can be used as an identifying feature for classification
purposes. Furthermore, the metadata and the plaintext in
HTTPDNS can enhance the possibility of distinguishing one
app from another.

C. ISPs

Evading Intrusion Detection. In some countries, ISPs
are required by law to monitor and filter DNS queries to
protect users from malicious apps or websites. However,
HTTP(S)DNS resolvers are more difficult to detect in the wild
because they have multiple implementations and are flexible.
Malicious apps can use their own HTTP(S)DNS resolvers to
avoid detection. Even if they are detected, they can quickly
change and adapt.

D. The DNS Ecosystem

Application-level Autonomy. The use of the HTTP(S) proto-
col provides more freedom for applications in DNS resolution.
Developers exploit the features of HTTP to make the protocol
more than an HTTP tunnel. A fair proportion of apps in
our measurement have adopted self-defined HTTP(S)DNS
resolvers. The name resolution methods are no longer uni-
form. This suggests that application-level autonomy from the
existing DNS infrastructure is emerging [17], and will have
more influence on the name resolution.

Fragmentation on the DNS namespace. The non-standard
protocol and self-use resolver put the name resolution pro-
cess under the direct control of the application. We ob-
served that some domain names were successfully resolved
by HTTP(S)DNS but did not have the corresponding records
when resolved by Do53. We suspect that the self-use resolver
maintains a private set of RRs. Applications can now cus-
tomize and augment the namespace, and their implementations
may lead to fragmentation on the DNS namespace [5].



VII. RELATED WORK

Recent studies typically focus on the IETF standard DoH
protocol. We review these works on discovering DoH resolvers
and analyzing DoH security and privacy issues.

Discovering DoH Resolvers. Previous studies have mainly
focused on the server-side, using various methods to detect
the adoption of DoH resolvers. Lu et al. [18] filtered URL
patterns of DoH from a large-scale URL dataset and manually
checked their availability. Böttger et al. [19] assessed the list
of DoH servers maintained by the curl project. They found that
DoH resolvers provided flexible patterns, which could respond
to different URL paths. Deccio et al. [20] conducted a partial
measurement and evaluated DoH adoption in open resolvers by
active scanning, using the standard URI template introduced
by RFC 8484. Garcı́a et al. [21] developed a Nmap Lua script
to find DoH resolvers, They tested for both HTTP/1.1 and
HTTP/2, and three alternative methods based on HTTP GET
and POST requests.

Analyzing DoH Security & Privacy Issues. Although DoH
is encrypted, it still poses some security and privacy issues.
Huang [22] found that DoH could be vulnerable to the
downgrade attack, which exposes DNS contents to attackers.
They examined six browsers with four attack vectors and
found all combinations resulted in successful attacks. Another
potential attack on DoH is fingerprinting attack. Siby et al.
[23] treated encrypted DNS fingerprinting as a supervised
learning problem and extracted features consisting of n-grams
of TLS packet lengths in a trace. Vekshin et al. [24] extracted
statistical and timing features to detect DoH traffic and chose
several ensemble learning algorithms to validate effectiveness.
Bushart et al. [25] analyzed padding strategies in encrypted
DNS. They extracted statistical features of sizes and timing,
used k-Nearest Neighbors as the classifier, and showed that
the involved padding methods were insufficient.

VIII. CONCLUSION

This paper investigates the application-level name resolution
in both Android and iOS apps and conducts an empirical
study on the adoption and usage patterns of HTTP(S)DNS.
By analyzing 25 high-profile apps, we find that non-standard
HTTP(S)DNS is more prevalent and that apps tend to build
their own resolvers. Moreover, we observe HTTP(S)DNS im-
plementations in apps are diverse and scattered. Our findings
complement the existing knowledge of the DNS ecosystem
from the client-side perspective and suggest that the DNS
ecosystem is undergoing changes. We discuss the possible
impacts of these changes and highlight some potential security
implications.
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Measurement on the Adoption of Encrypted DNS,” arXiv:2107.04436
[cs], Jul. 2021.

[22] Q. Huang, D. Chang, and Z. Li, “A Comprehensive Study of DNS-over-
HTTPS Downgrade Attack,” in 10th {USENIX} Workshop on Free and
Open Communications on the Internet ({FOCI} 20), 2020.
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