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Abstract—When a sensor network becomes disconnected, there
are still many nodes that function correctly. To reconnect these
lost nodes with the sink, we can deploy UAVs in-between to relay
data. In contrast to previous works treating disconnected nodes
as independent data sources, we consider a cooperative approach
where sensors form subnets to facilitate data transmission. We
formulate the problem to maximize the number of nodes that
can find a route to the sink, given a limited number of relay
UAVs. We prove that the problem is NP-hard. We then propose
a two-step heuristic algorithm for the relay placement problem,
show that the algorithm runs in polynomial time and analyze its
approximation ratio. Simulations verify the effectiveness of the
proposed approach.

I. INTRODUCTION

The network lifetime can be formulated as the total amount

of time that the network can maintain its full functionality [1].

The lifetime of a wireless sensor network is limited because

it consists of low-cost and low-power sensor nodes. When a

certain percentage of nodes die, the lifetime of this network is

considered to be at the end [2]. But in fact, bottleneck nodes

that cause the network to disconnect are only a minority, most

nodes still can work normally but cannot forward data to the

sink; thus, they are considered lost nodes. In this case, we

can restore routing for disconnected regions to prolong the

network lifetime by deploying a number of relay nodes, e.g.

UAVs, thus the lost nodes can re-find a path to forward data.

Due to their high maneuverability, flexible deployment, and

low cost, UAVs have recently attracted great interest in aiding

wireless communication [3–10]. Compared with traditional

ground communication, the ground-to-air channel between the

UAV flying at high altitude and the ground node is mainly a

line-of-sight channel, so the data transmission rate is more

stable and more suitable for data forwarding. Compared to

static nodes as relays, UAV relays have the advantage of

flexible deployment. When the network is not connected again,

the UAV is able to fly to the nearest node that is connected

to the sink, be dispatched again by the sink and return before

the power runs out.

However, in most theoretical studies on the deployment of

relay UAVs, the communication distance and the communi-

cation radius are used as the basis for whether the UAV can

communicate with the ground nodes [11–13]. In practice, the

quality of communication between the UAV and the ground
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Fig. 1. A UAV follows a predetermined trajectory to survey the connection
status of the sensor network. According to survey result, we can form subnets
and get the connectivity between subnets and UAVs at each candidate hovering
location.

node can be affected by other factors (e.g., buildings), resulting

in poor signal reception at some hovering locations. This

model is therefore too ideal. In addition, most of the current

research focuses on the full connectivity of the network and

does not take into account the limited number of UAVs.

In this paper, we consider how to maximize the recovery

of network connectivity by deploying multi-UAV relays when

the number of UAVs is limited, and for a better practical

application, we deploy relays based on the topology maps

actually detected by the UAV. We first let the lost nodes

that can communicate with each other spontaneously form a

subnet, then dispatch one or more UAVs to the lost area to

collect information on subnets. As shown in Fig. 1, the UAV

follows a predetermined trajectory and hovers over different

nodes to obtain the affiliation of the nodes and subnets

and record the connectivity to the subnets when hovering at

different locations. We use the locations where the UAV hovers

while collecting information as candidate hovering locations

where the UAV is deployed as a relay. With the information

UAV get, we select the deployment locations for a limited

number of UAV relays from candidate hovering locations.

As the UAV may connect to the same subnet when hovering

at different locations, the selection of one hovering location

will affect other locations. Additionally, when designing the

deployment scheme, we need to ensure that the subnets even-
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tually communicate with the sink. To tackle these problems,

we propose a heuristic approach to select deployment locations

for multi-UAV relays to enable as many lost nodes as possible

to be reconnected with a limited number of UAVs.

Our contributions can be enumerated as follows.

1) We formulate a cooperative data forwarding scheme

for UAV-based network restoration, where sensor nodes

form subnets to forward data in cooperation with the

UAV. We prove that the problem is NP-hard.

2) We propose a heuristic approach to select deployment

locations for UAV relays which enable as many lost

nodes as possible to be reconnected with the limited

number of UAVs, and analyze the algorithm complexity.

3) We evaluated our algorithm exploring the impact of

network size, UAV limitation number, and candidate

hovering location distribution on the number of lost

nodes reconnected. Simulations show the effectiveness

of the proposed approach.

The rest of this paper is organized as follows. Section II

reviews related works. Section III gives the system model,

formulates the problem and proves it is NP-hard. Section

IV analyzes the problem, proposes a heuristic algorithm and

analyzes the complexity and approximate ratio. Section V con-

ducts simulations to verify the effectiveness of the proposed

solution, and Section VI concludes the paper.

II. RELATED WORK

UAVs can reconnect the network by acting as base stations

or relay nodes. In [14], UAVs act as aerial flying base stations

to serve ground users during temporary events. To achieve

cost-effective UAV deployment in an autonomous and dynamic

manner, reference [15] proposed a machine learning-based

intelligent deployment scheme for UAV base station, and a

novel framework is proposed to allow predictive deployment

of UAVs as temporary base stations in [16].To achieve fair

performance among users, reference [17] maximizes minimum

throughput for all ground users in downlink communication by

optimizing multiuser communication scheduling and associa-

tion jointly with UAV trajectory and power control.

When UAVs act as relay nodes, optimizing the deployment

of relays for different objectives is an important issue. In [18],

multiple UAVs are used as UAV relays between IoT devices

and BS to enhance the strength of the signal received in BS.

Reference [19] studied the use of multiple UAVs in relaying,

they first optimize the placement of the UAVs by maximizing

the end-to-end signal-to-noise ratio, then compared the relay

setups of multi-hop single link and multiple dual-hop links in

terms of outage and bit error rate. To jointly optimize relay

deployment, channel allocation, and relay assignment in a self-

organized network, reference [12] divided the original problem

into two sub-problems, by solving the two sub-problems al-

ternately and iteratively, the original problem is finally solved.

In order to tackle the coupled relationship among UAV relays,

reference [13] modeled the problem of multi-relay deployment

as a local interaction game. Reference [20] uses the moth flame

optimizer (MFO) algorithm, interior search algorithm (ISA),

and bat algorithm (BA) to identify the optimal positions for

the placement of RNs to achieve full network connectivity.

Unfortunately, these references do not take into account the

number of UAVs when reconnecting the network.

To minimize the number of deployed relay nodes, the

traditional approach is to use a minimum Steiner tree to find

deployment locations [21–23]. However, since in our model,

candidate hovering locations for UAV relay are predetermined,

and there are no weights on the edges between subnets and

candidate hovering locations, the Steiner tree approach cannot

be used directly to solve our problem.

Similarly to our scenario, reference [24] obtains the network

topology by first sending UAVs to probe the status of the

network, and then uses the collected topology information to

select the location of the deployment that can improve data de-

livery across the network. Reference [25] improves [24], which

proposes a route reconstruction algorithm based on distributed

network diagnosis and progressive relay node placement using

UAVs. In this work, there is no sink in the network; thus, the

objective is different from ours, which makes their solutions

not applicable to our situation.

III. PROBLEM FORMULATION

A UAV is dispatched to the disconnected area to check

the status of the sensor network connection. It follows a

predetermined trajectory, hovers at regular intervals, and col-

lects network information at each hovering location. From

the UAV we can get the information needed by our problem.

Specifically, there are m subnets S = {s1, s2, . . . , sm}, where

s1 represents the subnet containing the sink node, and the

rest subnets are composed of lost but live nodes. The number

of nodes contained in each subnet si is ni. There are also t
candidate hovering locations P = {p1, p2, . . . , pt}, in which

the UAV hovers while detecting connectivity to the subnets.

The disconnected network can be represented by a bipartite

graph G = (S ∪ P,E), as shown in Fig. 2, where (i, j) ∈ E
if and only if si can communicate with the UAV hovering at

pj . Also, at most C UAVs can serve as relays, i.e., we can

only select C locations from the t (t ≥ C) candidate hovering

locations to deploy the UAV relays. Table I summarizes the

notations.

TABLE I
EXPLANATION OF NOTATIONS

Notation Explanation

S Collection of subnets

m Total number of subnets

s1 Subnet containing sink node

P Collection of candidate hovering locations

t Total number of candidate hovering locations

C Limited number of UAVs
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Fig. 2. A bipartite graph G = (S ∪ P,E), where S is the set of subnets,
and P is the set of candidate hovering locations.

Since our objective is to maximize the number of nodes

that can find a routing path to forward data to the sink, our

optimization problem can be expressed as follows:

max
x

M∑
i=0

nifi

subject to,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j

xj ≤ C

fi ≤ min

⎧⎪⎪⎨
⎪⎪⎩
1,

∑
path q

from si to s1

∏
pj∈q

xj

⎫⎪⎪⎬
⎪⎪⎭

(1)

where x = {x1, x2, . . . , xt} with xj indicating whether pj is

selected and fi indicates whether si can be connected to s1.

Our model makes practical sense, as our selection of de-

ployment locations is based on the network topology, which

is obtained after sending a UAV to the candidate hovering

locations to survey the connection status of the network.

Before dispatching the UAV to the lost area, we set the flight

trajectory and hovering locations of the UAV (e.g., fly in a

zigzag trajectory, hovering every 10 meters), and use these

hovering locations as follow-up candidate hovering locations

in the algorithm. During the flight, the UAV receives the

number of nodes from the subnet, and records the connectivity

to the subnets when hovering at each location. In addition,

since our main research goal is how to choose the deployment

locations so that as many nodes as possible can restore the

connection, the performance/resource consumption of UAVs

and nodes is not considered in the model.

Problem 1. We are given a disconnected network G =
(S ∪ P,E) and the UAV relays limitation number C, where
S = {s1, s2, . . . , sm} is the set of m maximal subnets with
n1, n2, . . . , nm nodes, P = {p1, p2, . . . , pt} is the set of

t candidate hovering locations, and E is the set of edges
with (i, j) ∈ E when the UAV can communicate with si
while hovering at pj . The problem is to select C deployment
locations from the candidate hovering locations to maximize
the number of nodes that can re-find a routing path to the
sink.

To the best of our knowledge, there is currently no readily

available way to solve our problem. In our problem, there are

two main difficulties: one is that the local optimum cannot

guarantee the global optimum, i.e., when there exists a subnet

that is far from the sink but contains a large number of lost

nodes, how can we centrally deploy UAV relays on the path

from this subnet to the sink; another is how to ensure that

subnets can find a path to the sink, that is, to avoid the

situation where subnets interconnect but are never able to

forward information to the sink. Since the problem is more

complicated if the data can be forwarded through multiple

relays between the two subnets, in this paper, we only consider

the case of single-hop, i.e., data is not forwarded between

relays.

We will prove that Problem 1 is NP-hard by reducing from

the classic NP-hard problem, set cover.

Problem 2. (Set Cover Problem, SCP). Given a universe U , a
family S of subsets of U , and an integer k, is there a subfamily
C ⊆ S of sets whose union is U and |C| ≤ k?

It has been proved that SCP is NP-hard [26].

Theorem 1. There is no polynomial time algorithm for Prob-
lem 1 unless P = NP.

Proof. We prove by contradiction. Suppose otherwise, i.e.,

there exists a polynomial time algorithm A for Problem 1.

We will show that this algorithm can be used to solve SCP.

Given an instance of SCP with parameters U , S and k,

construct an instance of Problem 1 as Fig. 3. There are |U|+
1 subnets and |S| candidate hovering locations. Each subnet

contains one sensor node, where s1 is the subnet containing the

sink and the remaining |U| subnets correspond to the elements

in U in SCP. The candidate hovering location corresponds to

the subset of U in S , pj is concatenated with si (i ≥ 2) if the

subset corresponding to pj contains the element corresponding

to si. We let the sink be connected to all candidate hovering

locations and limit the number of UAVs to k. The construction

can clearly be done in polynomial time.

We will prove that, SCP has a positive answer if and

only if the optimal solution to the constructed Problem 1

instance has an optimal solution with objective value |U|. To

see this, observe that if with algorithm A it is possible to

find k hovering locations such that all subnets are connected

to the sink in polynomial time, then there must also exist k
corresponding subsets of S in SCP that can cover all elements

in U . Conversely, if SCP has a desired set cover, we could

select the hovering locations and get a solution to Problem 1

connecting all subsets.

Thus, if there is a polynomial time algorithm for Problem
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Fig. 3. An instance of Problem 1 constructed for a set covering problem
instance

1, we can solve SCP in polynomial time, which is impossible

unless P=NP.

This theorem shows that Problem 1 cannot be solved exactly

efficiently. We thus consider heuristic algorithms.

IV. PROPOSED LOCATION SELECTION ALGORITHM

We propose a deployment location selection algorithm.

The algorithm has two steps. In the first step, we greedily

select relay locations, ignoring the number limitation, until

all subnets are connected to the sink. In the second step,

we respect the number limitation by removing excess relays.

We find that this two-step method works much better than

a single run of greedy selection, which will be compared in

the evaluation. Meanwhile, we also record the best feasible

solution during the first step, in case it is better than the two-

step method.

A. Step A: Reconnect All Subnets by Ignoring Number Limi-
tation

In this step, from the candidate hovering locations that

can find a path to the sink (that is, s1), we always select

the one that allows more lost nodes to be reconnected. With

the selection of candidate locations, some subnets will restore

connectivity; we denote the subnets that have been reconnected

as CS, and those that remain disconnected as DS. Further-

more, to measure how many lost nodes can be reconnected

by selecting a candidate hovering location pj , we use the total

number of nodes contained in the subnets that the UAV is

able to communicate with while hovering at pj and has not

regained connectivity, as the weight of that location wj :

wj =
∑

si∈DS∧(i,j)∈E

ni (2)

Initially, only the nodes contained in s1 can communicate

with the sink, i.e., CS = {s1}, DS = {s2, s3, . . . , sm}.

In the first iteration, we calculate the weight of candidate

hovering locations connected to s1, then select the one with

the maximal weight. After selection, we move the subnets in

DS that are connected to the selected location to CS. In the

second iteration, we recalculate the weights of all unselected

hovering locations that are connected to the subnets in CS,

and select the one with the maximal weight, then update CS
and DS. Repeat the above steps, record the selected locations

and the number of reconnected nodes in the Cth iteration, and

then continue until no more subnets can be reconnected.

Fig. 4 gives an example with five disconnected subnets

and four candidate hovering locations in the area. The UAV

limitation number C is 2, and use D to record the hovering

locations selected during the process. As shown in Fig. 4(a),

initially, CS = {s1}, so p1, p2 and p3 are candidates in

this iteration. Calculate the weight of these three locations

w1 = n1 = 1, w2 = n2 + n3 = 3, w3 = n4 = 2, so p2 is

selected, that is, D = {p2}. In Fig. 4(b), with selection of p2,

CS = {s1, s2, s3}, the candidates become p1 and p3. Recal-

culate the weight of p1 and p3, then select p3 with w3 = 2.

Similarly to previous iterations, in Fig. 4(c) s4 is added to

CS, and the candidates in this iteration are p1 and p4. So far,

we have selected two deployment locations, which is equal to

C. Record the result at this time, including the total number

of reconnected nodes 5 and the selected hovering locations p2
and p3. Continue to calculate and compare the weights of p1
and p4, finally selecting p4 as the last deployment location, as

shown in Fig. 4(d), so that all subnets have been reconnected.

B. Step B: Remove Excess Relays to Satisfy Number Limita-
tion

Step A follows the idea of local optimality; therefore, it

cannot take a global view to deploy UAVs if there exists a large

subnet that needs to be forwarded through multiple smaller

subnets to communicate with the sink. Therefore, according

to the result of the first step, if the number of UAVs required

to connect all subnets is greater than C, we remove excess

hovering locations.

For each selected location dj , we try to remove it and

calculate the total number of nodes that can be reconnected

through the remaining selected locations, denoted by rj . We

remove the one with maximal rj . Repeat this step until the

number of remaining selected locations equal to C. Compare

the number of nodes connected when the hovering locations

selected in the first step reaches C with the number of

nodes connected after the deletion of the hovering locations

exceeding the upper limit in the second step, then take the

solution that has the better result.

Fig. 5(a) shows the final result of the example in Step

A. Since the number of locations in D is greater than C,

we need to remove excess locations. When p4 is removed

from D, the number of nodes remaining that can reconnect

is 5 (Fig. 5(b)). Similarly, when p3 and p2 are removed, the

number of remaining nodes that can be reconnected is 3 and

7 (Fig. 5(c) and Fig. 5(d)), so we remove p2 from D. At this

time, the number of remaining deployment locations reaches

C, therefore, the final number of nodes that can reconnect

in step B is 7. Since the solution of step B is better than the
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Fig. 4. Illustration of step A: reconnect all subnets.
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solution of step A, p3 and p4 are finally selected as deployment

locations. The result is shown in Fig. 5(d).

C. Putting It Altogether

Algorithm 1 shows the pseudocode of the deployment

location selection algorithm. Step A is from line 1 to line 16.

In lines 4 to 11, we traverse CS to find the candidate locations

in this iteration, then use Eq. 2 to calculate their weights

and select the location with the maximal weight. We iterate

until no subnets can be connected and record the number

of reconnected sensor nodes when the number of selected

locations is equal to C. If the number of locations selected

in step A is greater than C, we continue with step B in lines

17 to 22, that is, we remove the locations that have the least

impact on reconnecting maximal nodes until the number of

remaining locations is C. In line 23, we compare the result in

step A and B, taking the better solution as the output.

Theorem 2. Algorithm 1 runs in O(|E|m2) where m is the
number of subnets and |E| is the number of edges.

Proof. In the worst case, selecting one location only can

reconnect one subnet, i.e., the while loop in line 2 has at most

m − 1 iterations. In each iteration, the sizes of CS are 1, 2,

. . ., m − 1. Therefore, the times lines 4 to 6 are executed is

less than

|E|(1 + 2 + . . .+ (m− 1)) =
m(m− 1)|E|

2
.

In each iteration, the times line 7 is executed is less than tm,

where t is the number of candidate hovering locations, thus

the total execution times of line 7 is less than tm(m − 1).
Therefore, the running time of step A RA(m) from line 2 to

line 16 is

RA(m) ≤ m(m− 1)|E|
2

+ tm(m− 1) = O((|E|+ t)m2).

When the number of UAV relays required to reconnect all

subnets is more than C, we also need to execute step B. Since

m− 1 deployment locations were finally selected in step A in

the worst case, the while loop in line 18 has at most m − c
iterations. As C ≥ 1, m − C ≤ m − 1. According to Eq. 1,

calculating restReconNodes runs in O(m2), thus the running

time of step B RB(m) is

RB(m) ≤ (m− 1)m2 = O(m3).

Therefore the running time of Algorithm 1 R(m) is

R(m) = RA(m) +RB(m)

≤ O((|E|+ t)m2) +O(m3)

= O((|E|+ t)m2 +m3).

Because both m and t are in O(|E|), the theorem is proved.

Theorem 3. The approximation ratio of Algorithm 1 is∑
i∈Q ni

∑m
i=1 ni

, where Q is the set of the first C subnets containing



Algorithm 1: A location selection algorithm

Input: Graph G = (S ∪ P,E), UAV number limitation

C
Output: a set of deployment locations D ⊆ P with

|D| ≤ C
1 CS ← {s1}, DS ← S \ CS;

2 while DS �= ∅ do
3 candidates ← ∅;

4 for each si ∈ CS do
5 if (i, j) ∈ E ∧ pj /∈ D then
6 Add pj to the set candidates;

7 Use Eq. 2 to calculate the weights of all locations

in candidates;

8 Find the location pr with the maximal weight;

9 if wr = 0 then
10 break;

11 Add pr to D;

12 for si ∈ DS ∧ (i, r) ∈ E do
13 Move si from DS to CS;

14 if |D| = C then
15 Calculate the number of reconnected nodes,

denoted by A;

16 D′ ← D;

17 while |D| > C do
18 for each dj ∈ D do
19 Calculate the number of reconnected sensor

nodes if D \ {dj} is selected, denoted by rj ;

20 Remove dj with the maximal rj from D;

21 Update the graph;

22 Calculate the number of reconnected nodes, denoted

by B;

23 if B < A then
24 D ← D′

the least number of nodes, and C is the number limitation of
relay UAVs.

Proof. The subgraph output in step A is the maximum con-

nected component containing the sink. Denote the subgraph

output in the first step as G1 = (S1 ∪ P1, E1), where

S1 ⊂ S, P1 ⊂ P,E1 ⊂ E. If there exists si /∈ S1 but

it can be connected to a subnet in S1 via pi, then pi must

not belong to P1. According to the selection rule in the first

step, pi can be selected as a hovering location, contradicting

the termination condition of the algorithm. Therefore, si can

always be reconnected after the first step.

The algorithm can finally connect at least C subnets.

According to the deletion rule, each hovering location left

is connected to at least one subnet of degree 1. So in the

worst case, as the limited number of UAVs is C, the algorithm

can connect at least C subnets, and these C subnets can

communicate with the sink.

Let N be the total number of lost nodes connected by

Algorithm 1, then

N ≥
∑
i∈Q

ni,

where Q is the C smallest subsets, and C is the number

of relay UAVs. Let N∗ be the total number of lost nodes

connected by the optimal solution, then

N∗ ≤
m∑
i=1

ni.

Therefore, the approximation ratio of Algorithm 1 is

N

N∗ ≥
∑

i∈Q ni∑m
i=1 ni

.

Theorem 4. When the UAV can communicate with the sink
when hovering at any candidate hovering location, the ap-
proximation ratio of Algorithm 1 is 1− (C−1

C )C , where C is
the number of relay UAVs.

Proof. Since the UAV hovering at any candidate hovering

location can forward the data to the sink, any location can be

selected without depending on the selection of other locations

or not. In step A of the algorithm, assume that the difference

between the total number of currently connected nodes and the

optimal solution at the ith (i ≤ C) iteration is ui, then there

must be at least one hovering position among the C hovering

locations selected by the optimal solution that is connected

to at least ui

C nodes in the current network connectivity state.

Therefore, according to the greedy rule, we have

ui+1 ≤ ui − ui

C
=

C − 1

C
ui.

So, at the Cth iteration, it holds that

uC ≤ C − 1

C
uC−1 ≤ (

C − 1

C
)2uC−2 ≤ . . . ≤ (

C − 1

C
)Cu0.

Let N1 be the record solution in step A, N be the total number

of lost nodes connected by Algorithm 1 and N∗ be the total

number of lost nodes connected by the optimal solution, then

uC = N∗ −N1, u0 = N∗, N ≥ N1.

Therefore,

N∗ −N ≤ (
C − 1

C
)CN∗,

i.e.,

N

N∗ ≥ N1

N∗ ≥ 1− (
C − 1

C
)C .
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Fig. 6. UAV’s surveying trajectory

V. SIMULATIONS

In this section, we evaluate our algorithm by simulations.

We implement the following methods in Python3:

1) LSA, the proposed algorithm in Algorithm 1;

2) Greedy, a greedy algorithm where the weights of all

candidate hovering locations are calculated only once,

then select the one with maximal weight from the

locations connected to the sink in each iteration;

3) RRA, route reconstruction algorithm [25] adapted to our

problem. It preferentially connects the subnet pair that

is capable of being connected by a relay UAV and is

most closely connected with themselves, then from the

candidate locations that can connect the subnet pair, it

first selects the one that can connect more subnets and

then selects the one with the highest closeness centrality.

The default settings are as follows. The flight altitude of

the UAV H is set to 10 m and the communication distance

between the sensor node and the UAV D is set to 30 m.

Therefore, the communication radius between the UAV and

the sensor node R is 28 m. We randomly generate sensor

nodes in a 300m × 300m square and set UAV relay number

C to 10. The default number of nodes generated is 300. For

surveying possible hovering locations, we send a UAV on top

of the sensors traveling along a zigzag pattern in Fig. 6. We set

the step size L at 1 m. We conduct each experiment ten times

and take the average as the final result. Table II summarizes

the settings. The setting is consistent with [27].

A. Impact of network size on the number of reconnected nodes

We study the impact of network size. We vary the number

of nodes to 100, 150, 200, 250, and 300, and set the number

of UAV C to 10.

The results are shown in Fig. 7. As can be seen, LSA gives

better results than the other two in all cases. For the Greedy

algorithm, since it does not update the weights of the candidate

hovering locations before the selection process, it may select

an invalid hovering location, so its results are poor. For the

RRA algorithm, the result is worse than LSA because it gives

priority to connecting the most connected subnet of itself, so it

cannot guarantee that the subnet can eventually communicate

with the sink.

TABLE II
THE DEFAULT SETTINGS OF SIMULATIONS

UAV flight altitude (H) 10 m

Communication distance (D) 30 m

Projected communication radius (R) 28 m

Square size 300m× 300m

Number of lost nodes 300

Number of UAVs (C) 10

Survey step (L) 1 m

B. Impact of UAV limitation on the number of reconnected
nodes

We study the impact of the UAV limitation number C. We

conduct experiments with the number of UAVs at 4, 7, 10, 13,

and 16. The results are shown in Fig. 8.

The results show that the deployment locations selected

by LSA can reconnect more lost nodes, and the larger C
is, the more obvious the difference between the other two

algorithms and LSA. Furthermore, the reason why the number

of reconnected nodes remains unchanged when the number of

UAVs increases from 13 to 16 is that the number of UAVs

reaches saturation and the newly increased number of UAVs

is the number of redundant UAVs.

C. Impact of candidate locations distribution on the number
of reconnected nodes

The surveying step length of the UAV affects the distribution

of candidate hovering locations. In this section, we explore the

impact of the distribution of candidate locations by changing

the survey step length L, and the number of UAVs C is set to

10.

The results are shown in Fig. 9. As the length of the survey

step increases, the number of nodes that can be reconnected

by LSA gradually decreases, while the number of nodes

reconnected by Greedy gradually increases and approaches the

result of LSA due to the decrease in the number of candidate

hovering locations.

D. Running time with different number of nodes

To further explore the complexity of the algorithm, we

conducted experiments on the running time of the program

for different sizes of problems. We set the number of UAVs

C to 10. The results are shown in Fig. 10.

For the LSA algorithm, the running time is faster in practice

because it calculates only the weights of the candidate hov-

ering locations that meet the requirements at each iteration.

For the Greedy algorithm, it needs to calculate the weights of

all candidate hovering locations, so it is less affected by the

number of nodes. For the RRA algorithm, since it needs to

calculate how closely a subnet is connected to itself, which
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Fig. 10. Running time with different number of sensor nodes

has a large computational complexity, it is mainly influenced

by the number of sensor nodes.

VI. CONCLUSION

This paper considers a cooperative approach in which

sensors form subnets to facilitate data transmission using UAV

relays. Under this model, we formulate the problem, prove it

is NP-hard, and propose a heuristic algorithm to maximize

the number of lost nodes that can re-find a routing path to

the sink. For any disconnected area, we first form the nodes

into subnets and then select the deployment locations for UAV

relays based on the connectivity between the subnets and the

UAV hovering at the candidate locations. The algorithm is

proven to run in polynomial time. Its approximation ratio is

analyzed. Simulations show that our algorithm is better at

reconnecting lost nodes in different situations. In the future,

we will further optimize the algorithm and find the optimal

solution based on the branch-and-bound approach.
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