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Abstract—Domain science applications in fields such as Ge-
nomics and High-Energy Particle Physics use geographically
distributed data federations for publishing and accessing datasets.
Data is typically replicated among data federation nodes to
improve efficiency and fault tolerance. While replication strate-
gies are well documented in distributed database instances (e.g.,
Apache Cassandra), replication among distributed data storage
nodes can be ad-hoc. Replication over wide area networks can
also require global coordination (or global shared state) which
is not ideal when multiple organizations are involved.

In this paper, we introduce GNSGA, which stands for Greedy
Non-dominated Sorting Genetic Algorithm II. It is an opti-
mization algorithm that combines greedy and non-dominated
sorting genetic algorithms to solve multi-objective optimization
problems. The ”greedy” aspect of the algorithm refers to the
use of a greedy strategy in the selection of nodes, while the
”Non-dominated Sorting Genetic Algorithm II (NSGA-II)” is a
fast non-dominated multi-objective optimization algorithm with
an elite retention strategy. Replication decisions in GNSGA are
based on the local properties and resource availability of the data
storage nodes. By incorporating Greedy and NSGA-II algorithms,
GNSGA optimizes multiple conflicting objectives to satisfy replica
placement constraints such as cost, time, and storage capacity.

We compared GNSGA with popular replica placement strate-
gies, such as closest node replication, shortest transfer time, and a
Particle Swarm Optimization (PSO)-based replication algorithm.
We performed simulations and an actual deployment on the
NSF’s FABRIC testbed for evaluation. The results demonstrate
that GNSGA consistently selects nodes to reduce replication time
by 5.8%-15.4% while satisfying replication constraints (i.e., cost,
time, and storage). We also show that GNSGA is beneficial for
replicating large files over wide area networks.

Index Terms—replication, multi-objective optimization, dis-
tributed federation

I. INTRODUCTION

Data-intensive science communities such as genomics and

high-energy particle physics generate and utilize content from

geographically distributed facilities. To facilitate availability

and performance, these datasets are often replicated [7] [4].

Such replication decisions can be based on various param-

eters such as the distance between nodes, storage capacity,

and/or operational knowledge, and often require coordination

between nodes. While a replication approach based on central-

ized decision works well in data centers or environments with

a single administrative domain, scientific data federations can

have nodes under different administrative domains. Further,

nodes may have different storage capacities and bandwidths

which makes replication decisions difficult.

We are currently developing a distributed and federated

data repository (Hydra) for large scientific datasets [16] based

on Named Data Networking (NDN) [24]. It is built as a

federation of geographically distributed heterogeneous storage

nodes in which researchers can publish scientific datasets from

anywhere. The system automatically replicates these datasets

to other nodes to maintain the desired degree of replication.

The nodes in the federation can be very diverse in terms

of resource availability - they may have different hardware,

security policies, and available storage and bandwidth, and

the conditions are constantly changing. Efficient replication of

content in such a dynamic system requires satisfying several

conflicting constraints (e.g., storage availability, bandwidth,

cost) while identifying the ideal replication candidates. More-

over, a node in the data federation needs to have the option to

specify its own preferences (policy based), making it difficult

to apply contemporary replication mechanisms.

In this work, we propose a novel algorithm, GNSGA, which

takes into account the local conditions and preferences of

the nodes, such as storage capacity, bandwidth, and cost of

replicating files. The replication decision is completely local

and does not require coordination with other nodes. While we

present GNSGA in the context of the storage federation we

mention above, the algorithm is generic and can be applied to

most distributed systems.

In this work, we also introduce a novel parameter - Favor.

Favor is a numerical value that summarizes a node’s local

conditions and replication preference. In a federated system

with multiple nodes, the nodes with the highest Favor values

replicate the files that are below the desired degree of replica-

tion. If the desired degree of replication of a file X is 3 and its

current replication degree is 2, the node in the federation with

the highest Favor value replicates this file. Once the replication

is complete, the node may change its Favor to reflect new

conditions, such as reduced storage capacity.

In our work, we show that instead of replicating content to

the closest node or the node with the lowest round trip time

(RTT), Favor-based replication can improve the performance

of the entire system by taking into account resource variations

in federated nodes.

GNSGA is a new replication strategy that can be applied to

any distributed system that requires replication. Contrary to theISBN 978-3-903176-57-7©2023 IFIP



classical choices in data replication, GNSGA demonstrates that

instead of replicating content to the closest node or the node

with the lowest RTT, Favor-based replication can improve the

overall system performance by considering resource variations

in federated nodes. We also find that when replication involves

datasets with multiple files, such as those found in big science

applications, the order in which individual files are replicated

is important to overall system performance. In our experiment,

we find that the optimal replication order involves replicating

files in non-decreasing sizes. Specifically, when multiple files

exist, the algorithm first confirms that the sum of the replicated

file sizes is less than the capacity of the nodes and replicates

the smaller files first to achieve the optimal order. However, in

the event that all available nodes do not have enough storage

to replicate all files, we consider sorting the multiple files

from smallest to largest (non-decreasing) and replicating as

many files as possible until the node capacity is reached, then

replicating the overflow files to the node with the second

highest favor value, rather than selecting multiple nodes at

the same time. This is because replicating as many files as

possible to one node is a simpler process to implement and

manage than replicating to multiple nodes at the same time.

This reduces the complexity of the system and reduces the

risk of errors and failures.

Once replication to a certain node is completed, GNSGA

dynamically tunes the replica placement strategy to adapt to

changed conditions. Our experimental results show that the

GNSGA selected nodes can reduce replication time by 5.8%-

15.4% compared to traditional replication mechanisms. We

also show that the speed of replicating large files is more

significantly improved while meeting storage constraints.

II. BACKGROUND AND RELATED WORK

A. Data Replication in Federated Systems

There is a large body of previous work on data replication.

In the context of federated systems where nodes are connected

over wide area networks, the most common data replication

strategies focus on shortest distance [17], lowest cost [12], or

random selection [18].

In addition to replication based on one objective such as

distance, previous works have also investigated replication

aimed at satisfying multiple objectives. For example, Hassan

et al. [2] proposed a Multi-Objective Evolutionary (MOE)

algorithm with latency, system reliability, and storage as the

three objectives to be optimized, and used NSGA-II [5] to find

a set of compromise solutions to conflicting goals. However,

the algorithm does not consider two key metrics: cost and

replication order.

Long et al. [13] proposed a Multi-objective Optimized

Replication Management (MORM) algorithm based on an

artificial immune algorithm to optimize five objectives: mean

file unavailability, mean service time, load variance, energy

consumption, and mean access latency. However, MORM

simply linearly weighted the five objective functions and

transformed the multi-objective into a single objective, making

it difficult to evaluate the actual effectiveness of the solution

in reality.

In the paper describing the SPLAD approach [19], three

node selection policies are mentioned, namely the random

selection of nodes, the selection of less charged nodes, and the

policy of selecting the less loaded node from two randomly

selected nodes. The paper mainly evaluates the impact of

global storage load and data copy placement on data loss ratio

and storage load distribution.

Guerrero et al. [9] used NSGA-II to optimize the total file

failure rate, mean latency time, and migration cost. How-

ever, most of the experiments were conducted under node

homogeneity, an idealized environment that is not suitable for

operation in the real scenario.

Replication strategies based on the Particle Swarm Opti-

mization (PSO) algorithm are widely used because of their

simplicity, computational convenience, and fast solution speed

[8] [14] [15]. However, the disadvantage of PSO is that it is

unfavorable for discrete optimization problems and easily falls

into a local optimum, so it often needs to be mixed with other

algorithms to obtain better results for federated systems.

B. A distributed storage framework

As mentioned earlier, we are building “Hydra” [16] - a

secure, distributed, and decentralized federation of storage

servers (nodes) provided by scientific communities. Upon

publication of a file/dataset into this federation, the system

automatically replicates data to ensure availability in the face

of node or network failure. The system runs over NDN and

utilizes the State Vector Sync (SVS) [?] protocol that lets

individual nodes maintain a “global view” of the system. In

the replication process, SVS is used to maintain a specific

degree of replication to ensure that datasets are available even

if individual servers fail. Specifically, files are replicated to

nodes based on their available resources and preferences, and

the replication algorithm takes into account the constraints of

each node. While it is possible to replicate files randomly in

the federation, a more optimal replication approach is used

to ensure that nodes with different resource capacities and

preferences are properly utilized. Our study on decentralized

replication in the context of this federation. However, all

algorithms we propose here are generic.

C. FABRIC

FABRIC is an everywhere-programmable national instru-

ment consisting of scalable network elements equipped with

extensive computation and storage, interconnected by high-

speed dedicated optical links [3].

For this work, we utilized the FABRIC testbed to deploy

and test our algorithm. We completed the deployment of the

federation by configuring nodes on the FABRIC testbed. We

used the FABRIC API [1] to request a slice containing multiple

nodes. The nodes were set up with default components: 4 CPU

cores, 16 GB RAM and 10 GB SSD storage. Layer 2 networks

were created between these nodes. After completing the basic

VM deployment, we installed the necessary packages on each
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Fig. 1. Flow chart of multi-objective optimization algorithm based on greedy
and NSGA-II.

node and used GNSGA to replicate data between these nodes.

Note that this work does not make the replication decision in

real-time. We are currently working on integrating GNSGA

with Hydra.

III. GNSGA

The GNSGA algorithm is dedicated to the study of replica-

tion technology in distributed systems, with the main goal of

enhancing high reliability and availability. The algorithm can

significantly reduce replication time and meet the dynamic

needs of users according to object size, storage, and server

distribution with the advantages of low latency and low

overhead. GNSGA first uses the greedy algorithm to find the

optimal file replication order and then applies NSGA-II to

select nodes at minimal cost, resulting in a fast multi-objective

optimization algorithm. The basic flow of the algorithm is

shown in Figure 1.

A. Finding the optimal replication order

As we mentioned earlier, the main purpose of using the

greedy algorithm in GNSGA is to find the optimal file replica-

tion order and then select the nodes according to the minimum

cost, and also to prepare for multi-objective optimization using

the NSGA-II algorithm later.

In a real distributed storage deployment such as Hydra, there

will be dozens of nodes across various geographical regions.

When a dataset is published into the federation, three nodes

are chosen from the available pool, assuming the nodes have

enough storage to accommodate the data. The time required

to replicate each file is denoted as Ni, and we assume that

objects can be replicated on any node without interruption.

For this work, we assume the degree of replication to be

three. However, it can be more or less as dictated by a specific

deployment.

The greedy strategy we use is to prioritize files with the

shortest replication time. We assign data with the shortest

replication time to the first free node, which ensures that the

file with the shortest replication time is processed first, thus

obtaining the shortest overall replication time.

For example, suppose we have n files to be replicated in

an object, and each file replication time is ti. To minimize the

total replication time of n files, we can use a greedy algorithm

to find the replication order of these n files. Note that the

average replication time, i.e.
t0+t1+...+ti−1

n , is a fixed value,

not necessarily the best measure of performance.

Consider a dataset containing three files, a[i], a[j], and a[k],
with replication times sorted in ascending order, i.e., t[a[i]] <
t[a[j]] < t[a[k]]. Here, [a[i]] in the first order can be replicated

immediately without any wait time because [a[i]] does not need

to wait for others to finish replication. When replicating a[j],
the replication time is simply equal to the replication time of

a[i] since a[j] replicates after a[i]. Similarly, when replicating

a[k], we need to account for the replication times of both a[i]
and a[j] since a[k] depends on both a[i] and a[j]. Therefore,

the replication time of a[k] is the sum of the replication times

of a[i] and a[j].
The total time to replicate all files is 2 ∗ t[a[i]] + t[a[j]] +

t[a[k]]. Now, let’s suppose we swap the order of a[i] and a[j].
Since t[a[i]] < t[a[j]], the total replication time after the swap

becomes 2 ∗ t[a[j]] + t[a[i]] + t[a[k]], which is longer than the

previous time.

This example highlights that the order in which files are

replicated can significantly impact the overall replication time

in real-world systems with multiple storage servers and the

need for file redundancy. This is especially important in fields

like genomics, where replicating large datasets containing

thousands of files across multiple nodes while minimizing the

total replication time.

To address this challenge, a greedy algorithm that assigns

files to nodes based on their replication time can be used.

This algorithm prioritizes files with shorter replication times,

leading to significant reductions in both time and search

space. The goal of this approach is to efficiently find the best

replication order and improve system performance.

In this work, we assume that there is no parallel transfer

of files for replication. In the future, we plan to accommodate

such scenarios in our algorithm.

B. Multi-objective optimization

Typically, the case of a single optimal solution does not

generally arise for multi-objective problems, but rather a set

of solutions available to the decision maker. Therefore, the

use of NSGA-II (Non-dominated Sorting Genetic Algorithm

II) [5] to further find the optimal nodes for replica placement

with a guaranteed reduction in replication time and the cost is

central to the Favor computation. NSGA-II is improved from

NSGA, which uses an elite-preserving strategy to guarantee

the convergence of the algorithm and the quality of the Pareto-

optimal set, which refers to the non-dominated set of the entire

feasible decision space [20].

To minimize replication time and cost, we can use a multi-

objective optimization function expressed as follows:

{
F (favor) = min(f1(favor), f2(favor))

favor = (cost, time) ∈ R2 (1)

where F (favor) contains two objective functions;

fi(favor) (i = 1, 2) is the i-th objective function; favor is

the solution vector with two-dimensional variables cost and

time; and R2 is the space of decision variables.



To determine Pareto domination, ∀cost, time ∈ favor, if

fi(cost) ≤ fi(time)(i = 1, 2) and if ∃i ∈ {1, 2} such that

fi(cost) < fi(time), then we say that cost dominates time,

expressed mathematically as (cost � time), where cost is

non-dominated and time is dominated.

It’s worth noting that when dealing with three or more ob-

jectives, NSGA-III [6] is recommended over NSGA-II used in

GNSGA. NSGA-III is a reference point-based many-objective

optimization algorithm that emphasizes non-dominant solu-

tions close to a set of provided reference points. It’s applicable

to multi-objective test problems with 3 to 15 objectives.

However, we do not utilize NGSA-III for our algorithm and

will investigate it in a future study.

C. Time Complexity

This section analyzes the complexity of the GNSGA al-

gorithm. We first call the sort() function according to file

size with average time complexity of O(NlogN), and the

time complexity of the for loop to find the optimal solution

according to the greedy strategy is O(N). Therefore, the

time complexity of the Greedy algorithm is O(NlogN). For

NSGA-II, the time complexity consists of three parts: fast

non-dominated sort: O(M(2N)2); calculating the crowding

distance assignment: O(M(2N)log(2N)); constructing the

partially ordered set (sorting): O(2Nlog2N); So the total time

complexity is O(MN2) [5]. Therefore, the time complexity

of the GNSGA algorithm is O(NlogN +MN2), ), where M

is the number of objectives and N is the number of files.

IV. REPLICATION MODEL

A. Replication model description based on GNSGA

The node with the files to be replicated (hereafter referred

to as the client node) directs replication requests to the

appropriate nodes based on the Favor of the other nodes and

the location and load of each node. We assume this node

ingests the files from the publisher and make is available

for replication to the other nodes in the federation. In this

work, we utilize a large FABRIC topology spanning ten

geographic regions in the US. The ten nodes are located in

MAX (University of Maryland), STAR (StarLight), UTAH

(University of Utah), TACC (UT Austin), MICH (University of

Michigan), NCSA (UIUC), DALL (Dallas), SALT (Salt Lake

City), WASH (Washington DC), and MASS (Massachusetts),

and have different distances from the client node. For more

details, see table I.

To visualize the problem, the client node and other nodes

are generated on one coordinate, based on the actual latitude

and longitude. The client node is the node with file(s) repli-

cation requests. In the simulation experiments, two different

coordinates are set for the client node of the experiments, as

detailed in Section V.

The number of files with replication requests in the client

node is N , and the corresponding file size is denoted as C Ni,

where i = 1, 2, ..., N . Other nodes are named according to

their location, the number of nodes is denoted as S, and the

TABLE I
NODES ARE SELECTED BASED ON THE SHORTEST DISTANCE.

Nodes Closest Node Distance (km)
MICH STAR 326.15
UTAH SALT 5.09
TACC DALL 280.84
WASH MAX 24.50
NCSA STAR 206.64
DALL TACC 280.84
MAX WASH 24.50
MASS MAX 511.78
SALT UTAH 5.09
STAR NCSA 206.64

storage capacity of each corresponding node is denoted as

C Sj , where j = 1, 2, ..., S.

It’s important to note that GNSGA replicates files rather

than chunks, which simplifies the replication process and

reduces overhead. Otherwise, GNSGA would need to account

for the relationship between the chunk and files to ensure that

each file is fully replicated. In addition, the size of the chunks

would need to be carefully chosen to balance replication

overhead and transmission efficiency.

In a distributed system with many designs such as load

balancing, web server, application code, database server, etc.,

the instability of any node will affect the availability of data.

When using GNSGA, M can be set to 4 when the desired

replication degree is 3. This means that the 4 nodes with

the highest favor value ranking voluntarily replicate the data

and the 4th node is the alternate/backup node. When the

communication between nodes fails and the service becomes

unavailable, GNSGA automatically selects the node with the

fourth-highest favor value for the replication operation.

B. Objectives and Constraints

The main focus of our optimization is to reduce the time

and cost of file replication between nodes, and the notations

used in the GNSGA algorithm are explained in Table II. In the

above context, the model for selecting nodes to place replicas

by Favor can be described as:

where the objective function (2) seeks to minimize the

replication time (network time + read/write time) and (3) seeks

to minimize the replication cost.

Constraint (4) requires that the total size of files replicated

by a node does not exceed the node storage limit.

A “1” in constraint (5) means that the i-th file is replicated

on the j-th node, and 0 means that the i-th file is not replicated

on the j-th node, i.e., it is not selected.

Constraint (6) indicates a node can replicate up to N files.

Constraint (7) implies that M nodes (M replicas) are

required for file replication.

f1(favor) =

N∑
i=1

S∑
j=1

C Ni/(α · (Di · xij/RTT )) +

N∑
i=1

C Ni/2v

(2)

f2(favor) = c1 + c2 (3)



TABLE II
MEANING OF THE NOTATIONS

Notation Meaning
N Number of files to be replicated
C Ni Size of different files (GB)
α Bandwidth set (Gbps)
M Number of replicas
S Number of nodes
C Sj Storage capacity allocated to files per node (GB)
Di Distance from the client node to the i-th nodes (km)
ν File read/write speeds (GB/s)
c1 Cost of bandwidth per month ($)
c2 Cost of read/write speed per month ($)

s.t.

N∑
i=1

C Ni · xij ≤ C Sj (4)

xij =

{
1
0

(5)

N∑
i=1

C Ni ≤ N (6)

S∑
j=1

xij = M (7)

C. Replication Benchmarks

When discussing replica placement, the first thing that

comes to mind is choosing the closest node for replication,

perhaps the fastest. However, ignoring distant but potentially

less costly nodes and forcing the closest node to replicate may

waste a lot of storage space and bandwidth.

The simple formula of time = distance/speed tells us that

to get a faster time, we need to reduce distance. Servers of

different physical distances show that servers closer together

do have better latency performance. Since each of the 10 nodes

has its own latitude and longitude, to find the shortest physical

distance between two nodes, all we have to do is to calculate

the spherical distance between the two nodes.

In our proof of concept experiment, we use two distance

formulas, the Vincenty formula [22] and the Haversine formula

[21]. In the case of considering only the distance between two

nodes, we use the Vincenty formula, which is an ellipsoidal

model with several iterations and high theoretical accuracy.

The Haversine formula will be applied to GNSGA and the

upgraded PSO algorithms, because the Haversine formula is

faster than Vincenty and more suitable for distance calculation

of a large number of nodes, and although the precision is not

as high as Vincenty, the error between these two formulas is

completely negligible at 64-bit floating point precision.

In addition to the closest node as the benchmark, we also

chose the node with the fastest transfer rate. Table III shows

the average transfer rates for three file objects of 100 MB,

1 GB, and 10 GB respectively. Each node took turns as a

client, and after storing the inserted file, the other 9 nodes

acted as servers to replicate the inserted file, running the

replication command three times and taking the average and

standard deviation. Table III also shows the node with the

fastest transfer rate corresponding to each node, e.g., for all

three file sizes, the node with the fastest transfer rate to MICH

is STAR.

The purpose of Table I and III is to evaluate the GNSGA

algorithm compared to the replication case without the algo-

rithm. Also, we observed that the closest node is not neces-

sarily the fastest node due to latency or bandwidth factors.

The closest node to DALL is TACC, and the fastest node for

DALL to transfer objects is STAR; similarly, the closest node

to MASS is MAX and the fastest node to MASS is WASH in

this experiment.

TABLE III
FASTEST NODE TRANSFER RATE (GBPS) FOR DIFFERENT OBJECT SIZES.

File Size
MICH UTAH TACC WASH

avg std avg std avg std avg std

100 MB 2.15 0.74 14.13 2.35 0.237 0 5.30 0.21
1 GB 3.86 1.04 14.10 4.16 0.277 0.58 8.60 0.10

10 GB 2.80 0.32 11.60 1.35 0.281 0.58 9.30 0.02
Fastest node STAR SALT DALL MAX

NCSA DALL MAX MASS
100 MB 3.04 0.25 0.94 0.12 5.30 0.21 0.15 0

1 GB 5.25 1.50 1.17 0.05 8.60 0.10 0.17 12.17
10 GB 3.45 0.34 1.22 0.01 9.30 0.02 0.16 13.01

Fastest node STAR STAR WASH WASH

SALT STAR
100 MB 14.13 2.35 3.04 0.25

1 GB 14.10 4.16 5.25 1.50
10 GB 11.60 1.35 3.45 0.34

Fastest node UTAH NCSA

D. Upgraded PSO

Particle Swarm Optimization (PSO) [11] is a swarm intelli-

gence algorithm inspired by the learning of flocking of birds

or fish, which randomly generates an initial population and

assigns a random velocity to each particle, and dynamically

adjusts the velocity and particle trajectory during flight based

on their own and their peers’ flight experience. The standard

PSO algorithm mainly suffers from the early convergence

problem, i.e., the algorithm stops prematurely at the local

optimum and does not perform global exploration well. To

avoid early convergence, other algorithms can be added to

improve the performance of the PSO algorithm.

In the upgraded PSO, we marked the nodes in a two-

dimensional coordinate system according to their actual lat-

itude and longitude, the same as we did in GNSGA. The con-

cept of “center” means that the central particle is located at the

center of the population in each iteration [23]. We applied the

center to the PSO solution space based on physical distance.

The upgraded PSO algorithm not only calculates the particular

position of the population center but also dynamically adjusts

the weights according to the fitness of individual particles

[10], which more effectively solves the problem that the PSO

algorithm falls into local optimum at the late stage of diversity

reduction.



TABLE IV
NODES READ/WRITE SPEED AND MONTHLY COST

Nodes Monthly storage cost ($) w/r speed (GB/s)
MICH 12 485
UTAH 11 380
TACC 12 483
WASH 5 256
NCSA 5 280
DALL 7 298
MAX 7 339
MASS 7 291
SALT 9 377
STAR 9 345

Fig. 2. Particle swarm optimization results for node selection.

To analyze the performance of the proposed GNSGA algo-

rithm for solving the optimal node problem, we conducted

tests on Fabric (see Section V-B2 for more details) and

compared the results with the upgraded PSO. Table IV shows

the different read/write speeds and relative monthly costs. The

purpose of using these parameters is to select nodes with a

lower cost while maintaining the replication speed.

In ten nodes, we used the standard and upgraded PSO

algorithms. After 50 iterations, the average fitness and the best

fitness of the population change as shown in Figure 2. The

parameters are as follows: population size p = 1000 , numbers

of center o = 3, inertia weights wmax = 0.2, wmin = 0.1,

learning factors c1 = 0.4, c2 = 1.6, and number of iterations

gmax = 50. Compared with the standard PSO, the upgraded

PSO has significantly better fitness, because the upgraded

PSO can dynamically adjust the values of inertia weights

and learning factors in the algorithm, which is conducive to

balancing the global search and local search abilities of the

algorithm and thus improving the performance. However, we

note that GNSGA works even better than the upgraded PSO

when tested on FABRIC, see Section V-B2 for details.

V. SIMULATION AND EXPERIMENTS

Given that the research in this paper only addresses the

issue of replica placement in distributed systems, we used

random node selection as the baseline for our experiments,

and GNSGA was originally designed to calculate the Favor

value in the distributed system, which refers to the suitability

of a node to host one or more files. An overview of distributed

storage framework can be found in Section II-B.

A. Simulation

1) Simulation setup: To understand how GNSGA behaves,

we first simulate our algorithm in MATLAB. We first run

periodic measurements on the NSF FABRIC platform [3] and

record RTT, bandwidth, storage, and other parameters. We also

estimate the prices of hardware and operational costs. Note

that these are not actual numbers but our best guesses from

vendor quotes and public information. A partial survey shows

that the market price of storage used in the testbed ranges

from $20,375.81 to $30,260.08. We chose a price range of

$15,000-$35,000, which costs $250-$583 per month based on

an average storage lifetime of 5 years, corresponding to an

average read/write speed range of 5 GB/s - 12 GB/s, and

then generated random numbers and read/write speeds for

the one-month price range, which were assigned to each of

the 10 nodes. We will reiterate that the numbers are only to

demonstrate the utility of our algorithm. The exact values do

not matter in our comparison.

This experiment is divided into two groups. In the first

group, the node closest to the client node is selected as the

initial comparison for this experiment, with the node selected

by the GNSGA algorithm to clarify whether the algorithm

proposed in this paper has the expected performance; in the

second group, we compare the execution results of the node

with the lowest cost (the cheapest node) and the node selected

by GNSGA.

As shown in (8) below, we chose the average file replica-

tion time as an evaluation criterion in order to compare the

differences between those algorithms.

T =

∑i=1
n Ti

n
(8)

Where, Ti is the transfer time of the i-th file, and n is the

total number of files to be replicated. The average file transfer

time is the ratio of the total time to replicate all files to the

total number of files to be replicated. For users in a distributed

system, the average file transfer time is an important metric

for evaluating the merits of the replica placement algorithm.

The shorter the average transfer time, the higher the Favor,

which means that the selected node outperforms other nodes.

According to Table I, we use the node closest to the client

node to calculate the average transfer time and compare it

with the node selected by GNSGA.

In addition to reducing the replication time, reducing the

storage cost is also one of the goals of the GNSGA algorithm.

We let the client node chooses the lowest cost node based

on different storage prices, and then compare the average

file transfer time between the lowest cost node and the node

chosen by the GNSGA algorithm.
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2) Simulation results analysis: With a bandwidth of 100

Gbps and a read/write speed of 6.25 GB/s, we transferred 10

files with a total file size of 14.85 GB. As shown in Figure

3, the nodes selected by the GNSGA algorithm (solid line)

are slightly better than the nodes closest to the client (dashed

line) in terms of average file transfer time. Even with the

same bandwidth and the same read/write speed, the incurred

delays are different, such as slow command execution, network

delays, node delays, etc. Especially in the case of limited node

capacity, the problem becomes more complicated. It does not

matter if the data flow is jammed once or twice, but if it is

frequently jammed, the link bandwidth will not be utilized

at all, so it is necessary for GNSGA to consider the delay

problem.

Figure 4 uses 100% stacked bars, splitting each bar to show

the transfer time of each selected node as a percentage in the

case of transferring the same file. As shown in Figure 4, the

nodes selected by the GNSGA algorithm show considerable

Fig. 5. FABRIC topology overview of the client and storage nodes.

performance at 100 Gbps bandwidth and 14.85 GB object size

of 10 files, with an average transfer time reduction of about

80% compared to the cheapest node. Since GNSGA considers

the balance of multiple parameters such as node distance,

monthly cost, bandwidth, and read/write speed, the time spent

in WASH and NCSA is slightly slower than simply comparing

monthly costs. And when the node encounters high latency,

such as SALT, GNSGA’s replication time is significantly less

than the cheapest node.

B. Experiments on FABRIC

1) Experimental setup: To understand how the GNSGA

behaves in realistic scenarios, we first implemented the design

ideas of the GNSGA in MATLAB. Then we ran periodic

measurements [3] on NSF FABRIC platform and recorded

RTT, bandwidth, storage and other parameters. Then we set

the same parameters as FABRIC on MATLAB and ran to get

three replication nodes, which were then applied to FABRIC

for replication and used iperf3 to get the replication time. We

requested a slice in FABRIC containing five nodes, MICH,

UTAH, TACC, WASH and NCSA. The five nodes took turns

acting as the client node to transfer files. Figure 5 shows an

example of node 1 as a client node and nodes 2-5 as storage

nodes.

At last, we conducted experiments from 7 am to 9 am CST

and 7 pm to 9 pm CST. For example, we first uploaded the

file to node MICH, node MICH as the client, replicated the

file to the node selected by GNSGA and random selection,

entered the fabric interface on MICH, and ran the iperf -s
command. Next, we enter the interface from the selected node

and run iperf -c x.x.x.x -F filename, this com-

mand connects to the MICH with the IP address x.x.x.x
and replicates the file for the selected node.

The replication times of randomly selected nodes and the

GNSGA selected nodes were tested using two objects, 48.2

MB and 881.6 MB files. FABRIC has two bandwidths avail-

able for testing, 100 Gbps and 25 Gbps. We replicated each of

the two objects three times at different time periods to make

the experimental data more valid.

2) Experiment results analysis: As shown in Figure 6, we

first performed replication at 100 Gbps bandwidth. When
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replicating smaller objects, the difference in replication time

between the GNSGA algorithm and random selection is not

significant, and the performance is comparable; however, as

the object size increases, the GNSGA algorithm significantly

outperforms random selection. When the bandwidth is reduced

to 25 Gbps, the experiment results still show that the overall

replication time of the storage nodes with GNSGA is better

than without this algorithm. By analyzing the data of the

experiment results, it can be concluded that the replication

time is reduced by approximately 5.8%-14.3% when using the

nodes selected by GNSGA.

By analyzing the performance at both bandwidths, we

clearly show that the GNSGA algorithm performs better than

randomly selected nodes. Based on this, We requested another

slice containing seven nodes, MICH, UTAH, TACC, WASH,

NCSA, MASS, and DALL.

Comparative analysis was again performed at 100 Gbps

bandwidth. When a node sends a replication request, the other

six nodes are available for the upgraded PSO to replicate
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the object. As shown in Table IV, each node has a differ-

ent read/write speed and relative storage price. With equal

bandwidth, three fast and affordable nodes were selected.

In Figure 7, as the number of nodes increases, GNSGA

reduced the total replication time by about 14.8% compared to

random selection and 10.9% compared to upgraded PSO. After

excluding the same nodes selected by GNSGA and random

selection, GNSGA and upgraded PSO, we note that in some

cases, such as when MASS acted as a client in Figure 7,

all three algorithms selected the same node for replication,

yielding the same replication time, which occurred only once

in the seven-node test, and we can deduce that when there

are more nodes, the less often the three algorithms select the

same node. Figure 8 indicates that although the reduction tends

to slow down, the overall algorithm still outperforms random

selection and upgraded PSO.

Finally, we conducted replication experiments for three

different sizes of objects, 100 MB, 250 MB, and 500 MB.

Figure 9 shows that when the size of the objects is relatively

small (≤ 100 MB), it can be observed that the replication

times of the three algorithms do not differ much, with GNSGA

performing slightly better, on average 0.7 seconds shorter

than the random selection and 0.4 seconds shorter than the

upgraded PSO. As the file size increases to 500 MB, the

GNSGA algorithm takes on average 2.8 seconds and 1.9

seconds shorter than the random selection and upgraded PSO,

respectively.

VI. CONCLUSION

In this work, we propose two novel ideas.First, we introduce

Favor - a numerical value that indicates a node’s preference for

replication. While we currently utilize a single Favor value in

this work, we plan to extend it to a per-namespace Favor value

in the future. We also introduced GNSGA, a novel replication

mechanism based on a combination of Greedy and NSGA-II

to take advantage of both algorithms. GNSGA quickly finds

the best file replication order using the greedy algorithm and
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then finds the optimal set of non-dominated solutions using

NSGA-II. GNSGA considers multiple conflicting goals, such

as cost, latency, and bandwidth, and can be used in a federation

of nodes with different amounts of resources. Through simu-

lations and an actual deployment on FABRIC, we demonstrate

that GNSGA can optimize multiple objectives and reduce

replication time and cost. GNSGA outperforms other strategies

such as replicating randomly, to the closest node, the node with

the lowest latency, or PSO-based algorithms.

We are working on several improvements to this algorithm.

First, we aim to investigate how the parallel transfer of files af-

fects our algorithm. We also plan to incorporate this algorithm

with Hydra and evaluate it in the context of real-world data

replication. In addition, We aim to investigate how the use of

network-layer multicast/broadcast affects the performance of

our algorithm. Finally, we plan to utilize NSGA-III to improve

the capabilities of GNSGA.
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