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Abstract—Radio map or radio coverage prediction in indoor
and outdoor remains a challenge of great interest due to the large
number of applications it allows. Many techniques such as data-
driven interpolation methods, model-based data fitting methods,
model-based prediction methods exist. However, each of them
has their limitations (computation time, accuracy, level of input
information required, generalization to different environments).
Also indoors seems less studied than outdoors.

In this paper, a multi-material model and its enhanced version
boosted by attention mechanism for indoor radio map prediction
are introduced. The proposed models are based on conditional
Generative Adversarial Networks (cGANs) and take floor plan
images as input. We also propose a new method for floor plan im-
ages preprocessing by segmentation to characterize the materials
in the environment of interest, which alleviates user’s effort. The
validity and efficiency of our method in generating high quality
radio maps in different environments and its ability to consider
the electromagnetic properties of materials are verified on two
simulated datasets. Numerical results show that our approach
outperforms state of the art methods.

Index Terms—Radio map prediction, path loss, indoor plan-
ning, propagation, conditional generative adversarial networks,
deep learning, floor plan segmentation

I. INTRODUCTION

The development of the 5G and Internet of Thing (IoT)
sectors have led to an increase in the number of telecom-
munications services and networks users. Network planning,
optimization is therefore becoming a very important issue
for a good Quality of Service (QoS). For example, one can
highlight that the need for good QoS in indoor and small
offices is increasingly important since the widespread use of
fiber access. In telecommunications and wireless networks,
QoS is paramount for user experience. Many criteria are
known to have an impact on QoS such as the choice of
technology (e.g. Wi-Fi, 5G), the environment, the coverage
which depends on the placement of the access points (APs) and
many others. Since coverage is a key factor, we need to know
how to characterize and improve it. The path loss function
related to the coverage provides the radio map representing

the distribution of a signal through an environment. This
map depends on several factors like walls, doors, building
materials and many other obstacles that can block the waves.
Thus, a detailed description of the environment leads to better
quality radio maps. Predicting a reliable radio map in a few
milliseconds is possible with deep learning methods and thus,
allowing many applications such as network optimization,
network planning, interference management, power control,
real-time radio map visualization, fingerprint based localiza-
tion and many others [1][2][3][4]. With conventional methods
like ray tracing (RT) widely used, expert assistance is needed
especially for the characterization of the materials, simulation
parameters selection, optimal locations for AP placement, etc.
All these tasks are time consuming and very expensive for
telecommunications operators.

Several works have been proposed in the context of radio
map prediction (RMP) to alleviate the user effort in particular
in term of simplicity of use. There are five main categories of
path loss models for RMP:
Empirical path loss models, also called statistical models,
combine measurements with mathematical equations to predict
path loss but do not consider detailed floor plans or building
representation. These models have two advantages: speed of
execution and limited dependence on detailed knowledge of
the terrain. However, they are not very accurate. The log-
distance model [5] and COST-231 [6] are such examples.
Semi-deterministic path loss models consider measurements
at given positions to calibrate the model parameters and a
few information on the environment in order to predict the
path loss. Motley Keenan’s [7] and Dominant Path Model
(DPM) [8] models are examples of this category. These models
represent a good balance between simplicity and precision.
Deterministic path loss models turn out to be very accurate,
but require high computing resources and a detailed descrip-
tion of the environment. We can quote for example the ray
model [9] which requires a 3D description of the propagation
environment.
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Non-generative Deep learning-based models, among the
approaches in this category, some are based on Multilayer per-
ceptron (MLP) and others on Convolutional Neural Networks
(CNNs). The former are limited and not generalizable to new
environments and seem to be unaware of the physical structure
of the environment. This is a simple regression problem [10].
The latter stand out by their ability to generalize to other
environments and to consider the type of materials and the
physical dimensions of the environment.

At a first level of complexity in deep learning based
propagation modeling, Teganya et al. [11] proposed an Auto-
Encoder for radio map completion. [11] evaluates the impact
of the number of input measurement points in completion task.
In the same vein, Hashimoto et al. [12] proposed a CNN-based
spatial interpolation method for estimating the radio map that
is environmentally independent.

At a second level of complexity, Levie et al. [13] proposed
two UNet based model, the first one for solving radio map
prediction given environment geometry and AP location and
the second for radio map completion task given some sparse
measurements as additional input. The authors also proposed
a new public dataset for outdoor called RadioMapSeer1 and
demonstrated the superiority of their methods to prior state-
of-art. The work in [14] propose a more performing UNet
based model by replacing the original UNet pooling layers by
strided convolutions and combine them with inception block.
The work in [15] is, to the best of our knowledge, the first to
use visual transformer (ViT) [16] for radio map prediction in
urban scenarios. The authors replaced transformer embedding
by a new consistent positional embedding for radio map pre-
diction. Concretely, they rely on the capacity of transformers to
capture long-range dependencies but still uses UNet and CNNs
as baseline. All these methods were developed for outdoor
applications. Note that CNNs based methods are generally
faster than transformers based methods in term of inference
time.
More recently, Bakirtzis et al. [10] proposed an efficient way
to predict radio map based on UNet architecture with atrous
convolutions and trained on ray tracing dataset. The proposed
method is designed for indoor and can deal with different floor
plans but still requires a user with radio engineering and radio
design expertise.
Generative Deep learning based models, the development
of generative models, more precisely cGANs, allowed many
advances in image-to-image translation problems. The authors
in [17] are among the first to use cGANs for radio map
prediction simultaneously with the automatic placement of
APs from floor plan images as an image-to-image translation
task. To achieve this goal, the authors rely on the cGANs
model (Pix2Pix) proposed in [18]. In their work, the authors
indicate that training the model under the cGANs framework
(with a discriminator) is better than training the model without
discriminator for RMP task. They also raise the difficulty of
their model to handle complex floor plans containing various

1https : //RadioMapSeer.github.io

non-uniform or unseen elements such as texts and annotations.
The authors in [19] propose an access-point-centered window
radio map generation network to shorten the training time in
which the floor plan materials are one-hot encoded. However,
the study uses only one environment for learning and testing
and does not give any prof of generalizability to other floor
plans. The authors in [20] and [21] also use a cGANs for
respectively radio map prediction and completion but for
outdoor.

Through the proposed approaches, some suffer from gen-
eralization, others do not really consider the geometry of the
map and are unable to handle complex floor plans with texts
and annotations. Moreover, most of them are designed for
outdoor and require good knowledge in deep learning and
radio propagation. Also the analysis of the proposed methods
is generally limited to ray tracing dataset and most of them
are UNet-based models.
Tab. I summarises different models presented above. The
models are classified according to four aspects: environment
(Indoor or Outdoor), cGANs based (yes or no), generalizability
(low, medium, high) of the model to other environments and
APs locations, and finally the use case considered: radio map
prediction (RMP), radio map completion (RMC) or automatic
cells placement (ACP).

TABLE I: Models comparison

Model Env cGANs Generalization Purpose
[17] Indoor yes medium ACP
[19] Indoor yes low RMP
[10] Indoor no high RMP

[22], [13], [14] Outdoor no medium RMP
[20] Outdoor yes medium RMP

[11], [12] Outdoor no low RMC
[21] Outdoor yes high RMC
[23] Outdoor yes medium RMC
[13] Outdoor no medium RMC

In this paper, we propose two models for radio maps
prediction named IRGAN (Indoor Radio cGAN) and the
enhanced version of IRGAN named E-IRGAN, which are
based on cGANs framework. Our models are designed to deal
with different indoor environments and AP locations. We in-
troduce the use of attention mechanism [24] coupled to dilated
convolution also called atrous convolution layers to boost our
baseline method performance. To make our models helpful for
non-experts, we propose a floor plan pre-processing method
based on segmentation. The proposed framework shows the
highest accuracy among state-of-the-art (SOTA) models.
The main contributions of our work are as follows.

• We introduce a new way to process floor plan images
through segmentation and a technique for a consistent
encoding of building materials that allows a better de-
scription of environment. The segmentation model helps
cleaning noise and extracting useful part (walls, doors)
of floor plan images.

• We design new cGANs architectures for accurate indoor
radio map prediction capable of operating on new en-



vironments with different AP locations based solely on
floor plan image, building physical dimensions and AP
location as inputs.

• We propose a dataset for floor plan images segmentation.
We show the ability of our models to deal with different
types of building materials and present a deep analysis
of their behavior according to materials.

• Unlike prior studies [17] [15] [22], we consider two sim-
ulated datasets developed specifically for home and small
offices environments in order to show the effectiveness of
our method.

The rest of the paper is organized as follows. The proposed
neural networks architectures are described in Section II. The
loss functions are discussed in Section III. The experiments are
detailed in Section IV where the datasets and pre-processing
methods are introduced. The results are presented and ana-
lyzed in Section V. Finally, Section VI highlights our main
contributions and provides guidelines for future work.

II. PROPOSED NETWORKS ARCHITECTURE

Generative Adversarial Networks (GAN) are powerful gen-
erative models in image-to-image translation tasks such as
segmentation [25], colorization [18], super-resolution [26],
filling missing image data and many others. A conditional
Generative Adversarial Networks (cGAN) is composed of
2 models as illustrated in Fig. 1: a generator that learns
to generate data and a discriminator that gives feedback to
the generator about the quality of the generated data. Thus,
the quality of the generated data depends not only on the
capacity of the generator but also on that of the discriminator.
In our work we rely on the well-known PatchGAN [18] as
discriminator and test several generators.

Fig. 1: cGANs Framework

In the search for a new high-performance generator, we
tested the UNet-based cGANs as proposed in [18]. First, we
proposed a ResNet-like architecture as baseline named IRGAN
which is inspired by the work in [27] with few modifications.
Then, we proposed a new breakthrough architecture named
Enhanced IRGAN (E-IRGAN) combining the advantages of
dilated convolution layers, skips connection and attention

mechanism. Dilated Convolutions are a type of convolution
that expands the kernel size by inserting holes between the
kernel elements. This way, we increase the receptive field
without increasing the number of parameters compared to
standard convolutions. The parameter named dilation rate
indicates how much the kernel is widened (dilated). The
attention mechanism helps to decode and focus on the most
relevant part of a feature map.

To compare our models to state of the art, we have included
in our study two other recent proposed architectures namely
SegNet [10] and DeepRay [22] for radio map prediction.

IRGAN and E-IRGAN have several common elements.
Referring to Fig. 2 and 3, the decoder/encoder, and the initial
blocks are very similar: While IRGAN uses InstanceNor-
malization (IN), E-IRGAN uses BatchNormalization (BN)
after each convolution layer. In addition, we apply L1 kernel
regularization on the convolution layers in E-IRGAN which
results in a clear improvement of the performance.

Fig. 2: IRGAN generator architecture.

The initial block is composed of reflection padding +
Conv2D + IN/BN + Leaky ReLU. The down sampling blocks
(encoder block) are made up by Conv2D + IN/BN + Leaky
ReLU. The up sampling blocks (decoder block) are formed
by two Conv2D + IN/BN + Leaky ReLU. The final block
is composed by one Conv2D followed by Tanh activation
function. Gate blocks are composed of Conv2D + BN + Leaky
ReLU. Residual blocks are a sequence of two times Conv2D
+ IN + Leaky ReLU. Fig. 4 and 5 shows respectively the
architecture of attention blocks and dilated convolution blocks.

The proposed model architecture is the result of an exper-
imental test process. We started from a baseline model that
was experimentally improved by applying several operations
of adding, modifying, and deleting layers.

For the segmentation task, we chose the DeepLabV 3+
model which performs well on semantic segmentation bench-
marks. The implementation can be found on keras website2.
We do not give here more details on the segmentation model
but it should be noted that automatic floor plan processing
is not a straightforward task due to the amount of floor plan

2https : //keras.io/examples/vision/deeplabv3 plus/



Fig. 3: E-IRGAN generator architecture.
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styles, resolutions etc [28]. Once implemented DeepLabV 3+
model showed good performance on our dataset.
It is worthy to note that our radio map prediction models can
be used without our segmentation model as long as the input
floor plan image has been pre-processed as detailed in section
IV-B.

III. LOSS FUNCTIONS

The objective of a cGAN can be expressed by (1). Previous
approaches highlighted the importance of mixing the GANs
objective with more objective functions such as L2 [29],
and L1 [18]. The learning of the discriminator (D) remains
unchanged. The generator (G) is given the task of not only
fooling the discriminator but also predicting near ground truth
images by conforming to the additional losses. In the same

way, the objective of the proposed cGAN models is composed
of 3 loss functions presented below.

A. Adversarial loss

With x as the input, y the target output and E the expecta-
tion, the adversarial loss of a cGANs can be expressed as:

LcGAN (G,D) = Ex,ylog(D(x, y)) +Exlog(1−D(x,G(x)))
(1)

We are in a minimax game where the generator tries to
confuse the discriminator by predicting data close to the
real one, and the discriminator tries to discriminate between
generated (fake) and real data. The equilibrium is reached
when the generator succeeds in generating data in such a way
that the discriminator can no longer distinguish between real
data and generated data.

B. L1 loss

We use L1 as in [18] to encourage the generator to produce
images that are close to the target in addition to its task of
fooling the discriminator. The L1 loss can be expressed as:

L1 = Ex,y pdata(x,y){||y −G(x)||1} (2)

C. Structural similarity (SSIM)

SSIM [30] calculates the similarity between two images. We
use a loss function based on SSIM to reinforce the similarity
of structure between the predicted radio map and the ground
truth radio map which is given by

LSSIM = 1− SSIM(y,G(x)) (3)

D. Total Loss

Finally, the total loss of our cGAN models is a weighted
sum of the above loss functions and is given by the following
equation:

L = LcGAN (G,D) + λ1L1 + λ2LSSIM (4)

Experimentally the values λ1 = 10 and λ2 = 10 turn out
to be good.



IV. EXPERIMENTS

At this stage of work, it is now necessary to introduce
the datasets description, the input data processing and the
implementation details.

A. Datasets description

Making radio measurements in various environments is
time-consuming and very expensive. For the study purposes,
due to the unavailability of public datasets for indoor unlike
outdoor, we opted for creating simulated datasets based on
very accurate path loss models while waiting for our own
real-world measurements. It is worth noting that fingerprinting
datasets [31] for localization are not suitable for our study
because they contain neither the floor plan of the building
nor the position of the APs and their characteristics. Also the
great dispersion of Received Signal Strength (RSS) according
to the devices used for measurement, as studied in [32],
makes useless any dataset without accurate information on
the measurements process and the receiving device. As part
of the training testing and analysis of our deep learning
models, we set up two simulated datasets with various building
materials typical for home and small office environments.
The datasets are based on Ray Tracing (RT) and Dominant
Path Model (DPM), two propagation models provided by
the simulation software Winprop [33], [34]. Note that the
RT is a deterministic propagation model and the DPM is a
semi-deterministic propagation model. Fig. 6 shows RT and
DPM simulation results on the same environment with the
same AP locations. Depending on the surface of the floor
plans, the average prediction time of the radio map with the
RT model is about 300 times greater than the DPM model.
For the training of the segmentation model, we set up an
annotated dataset whose floor plans come mostly from the
CubiCasa5K3 public dataset [35]. Our segmentation dataset
generated contains around 200 annotated floor plans.

Fig. 6: Illustration of the level of details between RT and DPM
models. From left to right : RT truth path loss, DPM truth path loss
in dB.

To generate the simulated datasets, we defined some settings
summarized in Tab. II. The path loss is calculated at the height
of 1.2 m as to mimic a phone in hand. The frequency used
is 2.4 GHz. In terms of type of materials for the walls and
doors description, we use two types of materials for internal
and external walls. We set the material type of doors to wood.
The resolution of the generated radio coverage maps is 0.05 m.

3https : //github.com/CubiCasa/CubiCasa5k

In other words, we generated simulated measurements every
5 cm from the AP position, which is a very fine resolution.
Our datasets include 24 different floor plans. Each floor plan
includes 4x26 radio maps with different APs locations. We
consider 4 different scenarios in terms of floor plan materi-
als composition: concrete-brick, concrete-plaster, brick-brick,
brick-plaster. For each scenario we generate 26 radio maps
among which 16 AP locations are the same in the remaining
scenarios of the concerned floor plan. Among the 16 locations,
10 are inside the building and 6 outside, the idea behind is
to characterize the impact of all building material types. The
other 10 locations are random. We selected 21 floor plans for
training, and the 3 remaining for testing. So, we obtain 312
(26x4x3) samples for test purpose. It is noteworthy that the
floor plans used for the test stage are different from those used
in the learning stage with different AP locations. To increase
the number of samples, we apply random data augmentation
during the training by flipping and rotating the images.

TABLE II: Dataset settings

General settings
Tx height 1 m Rx height 1.2 m
Frequency 2.4 GHz Resolution 0.5 cm

Inner walls Brick - 10 cm Outer walls Concrete - 20 cm
Plaster - 2.6 cm Brick - 20 cm

Propagation Model DPM, RT Signal Path Loss
Min surface 103 m2 Max surface 500 m2

B. Input feature engineering

Knowing that the performance of deep learning models
depends a lot on the quality of the data but also on the feature
representation, we decide to perform a few pre-processing
steps illustrated in Fig. 7. First, we use our segmentation
model to extract doors, internal and external walls from raw
floor plan images. The segmentation model enables to do
away with plan vectorization and use only simple floor plan
scans or photos. Then, to integrate the location of the AP
and the physical dimensions of the building, we set up one
more channel called free-space channel. We set to 1 the
pixel corresponding to the AP location, and the other pixels
values are calculated from the free-space path loss equation:
20 ∗ log10(d)+ 20 ∗ log10(f)+ 32.44 where d is the distance
in meters between the transmitter and the pixel concerned,
and f the frequency. Regarding the plan encoding, the pixels
corresponding to each materials are encoded by the value
of their permittivity. As an example, pixels belonging to a
concrete wall takes the permittivity of concrete as value. The
permittivity for concrete, brick, plaster, wood is respectively
5.24, 3.91, 2.73, 1.99. Note that the thickness of the same
material is different when inside or outside. To take walls
thickness into account, the value of the permittivity is mul-
tiplied by 2 when it is an external wall. Pixels identifying
background are set to 0. Added to the free-space channel, the
radio map generator in Fig. 7 has two channels as an input
and one for the output. As deep learning models have fixed
input size, we resize all images to 256x256 and normalize the



Fig. 7: Illustration of input processing and how it is fed to the generator.

range of pixels value to [-1,1]. For visualization purposes, we
inverted the value scale of the radio map in the figures as
depicted in Fig. 8.

C. Implementation Details

In our attempt to be fair, we followed the implementation
details of the authors for SegNet [22], and DeepRay [10]
models. However the batch size is set to 5 for all the models.

To train the cGANs models we use Adam Optimizer [36]
with β1 = 0.5 and β2 = 0.99. The learning rate is set to
1e − 4 and decrease progressively to 1e − 8. The learning
rate decreases by factor 0.5, when the error on test set does
not decrease after two epochs. We fix the number of epochs
to 80. Models implementation are based on TensorFlow [37].
The training of the models is realized on HP Z8 workstation
with 2 NVIDIA Quadro P5000 GPUs.

V. ANALYSIS AND RESULTS

This section is dedicated to the evaluation of the perfor-
mance of the tested models.
In order to assess the models, we use some conventional per-
formance metrics for image quality assessment: Peak Signal-
to-Noise Ratio (PSNR) which is the ratio of the highest
possible signal power to the noise power, SSIM [30] which
measures the similarity between two given images. SSIM is
bounded between 0 and 1 and SSIM values close to 1 mean
high similarity, and Root Mean Square Error (RMSE) in dB
which is a standard metric used in other work [10][14][22] to
evaluate models performance.

Tab. III summarizes the performance of the tested models
on DPM and RT dataset. Train and test set contain respectively
2184 and 312 samples. Models with ∗ have been trained under
cGANs framework. As shown in Tab. III, the E-IRGAN*
model achieves the best performance in both datasets followed
by IRGAN*. We can note with the UNet and UNet* that
training a model under cGANs framework yields to better
performance in RMP task.

Fig. 13 shows E-IRGAN prediction results on different floor
plans. One can observe the consistency and the capacity of our
model to deal with unseen floor plans. We can also observe that
the model behaves according to the type of building materials,
which can be seen in the surroundings of the doors in Fig. 13.

Tab. IV and V show respectively the sensitivity of IRGAN
and E-IRGAN models according to the type of floor plan mate-
rials. Numerical results show that the more the materials used
are attenuating the more the model makes errors. Indeed with
strong attenuating materials, the local perturbations around
the walls become stronger resulting in more errors. To bring
more elements of analysis in Fig. 9 and 10, we calculate the
accuracy of the models on 6 thresholds of tolerance from 1 to
6 dB. This accuracy is determined by calculating the absolute
errors map between the reference image and the prediction,
and then dividing the number of pixels under the threshold
by the total number of pixels of the radio map. It appears E-
IRGAN performs the best whatever is the tolerance threshold,
while IRGAN overcomes the performance of the other models
only for a tolerance threshold value greater than 3.

As illustrated in Fig. 3, the number of parameters, the
complexity and the performance of E-IRGAN model rely on
two elements: the number of encoding/decoding blocks and the
number of dilated blocks. Fig. 11 provides the RMSE function
of the number of encoder blocks and the number of dilated
blocks. We can observe performance improvement with the
increase of these 2 parameters. The cost of this performance
improvement is an increase in the number of parameters and
the complexity of the model. Note that for this part, the model
is trained only for 30 epochs.

Fig. 12 shows the path loss predictions of tested models on
DPM dataset. We can evaluate that in the context of cGANs,
all the models perform better and produce smoother radio
maps. Especially, IRGAN and E-IRGAN outperform the other
models.



Fig. 8: Example of pairs from DPM dataset. From left to right: Encoded floor plan, Access point and physical dimension, target.

TABLE III: Models performance on RT and DPM datasets.

RT DPM #parameters Inference
Models Test set Train set Test set Train set time

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE seconds
SegNet 24.15 0.922 6.23 26.10 0.936 5.83 25.96 0.944 4.72 26.88 0.951 4.81 15 M 0.17

DeepRay 25.83 0.923 4.95 26.52 0.928 5.47 25.24 0.936 5.18 25.98 0.946 5.34 21 M 0.19
UNet 25.11 0.927 5.84 25.93 0.933 5.93 26.29 0.950 4.57 28.88 0.960 3.79 54 M 0.19

UNet* 28.54 0.956 3.82 35.86 0.979 1.86 28.24 0.969 3.72 27.9 0.968 4.36 54 M 0.19
IRGAN* 28.88 0.963 3.52 32.38 0.978 2.78 28.32 0.974 3.64 34.55 0.989 2.12 32 M 0.13

E-IRGAN* 30.77 0.963 2.94 36.11 0.985 1.95 30.47 0.975 3.02 37.55 0.992 1.50 39 M 0.26
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Fig. 9: Models accuracy on DPM test set.
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Fig. 10: Models accuracy on RT test set.

VI. CONCLUSION

In this work, two new radio map prediction models named
IRGAN and E-IRGAN are proposed with the aim to ease
the radio map generation for the non-expert. IRGAN and
E-IRGAN are powered by a segmentation model, and have

TABLE IV: IRGAN performance according to materials type on
DPM test set

Materials (outer - inner) PSNR SSIM RMSE
brick - brick 28.62 0.975 3.33
brick - plaster 29.62 0.979 2.78
concrete - brick 27.29 0.969 4.38
concrete - plaster 27.62 0.952 4.08

TABLE V: E-IRGAN performance according to materials type on
DPM test set

Materials (outer - inner) PSNR SSIM RMSE
brick - brick 31.56 0.964 2.49
brick - plaster 32.43 0.972 2.08
concrete - brick 29.34 0.955 3.79
concrete - plaster 29.76 0.960 3.41
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Fig. 11: Complexity analysis.

several advantages: ease of use (no need to enter and draw
floor plans), speed compared to conventional methods (less
than 1 second compared to several minutes for RT and DPM
simulated radio maps), accuracy, multi-material capability, and
high generalization capability. The introduced segmentation
method is designed to reduce input noise and can be seen as a
dimension reduction given the diversity of floor plans images
we have as input (scan, drawing, photos etc). Two additional
loss functions are used to efficiently guide the learning process.



Fig. 12: Models predictions on DPM test set. First row, from left to right : target, E-IRGAN*, IRGAN*, UNet*. Second row, from left to
right : UNet, DeepRay, SegNet

Fig. 13: E-IRGAN predictions on different environments. First row: floor plans, second row: targets, third row: predictions, last row: absolute
error maps

The proposed models generate high quality radio maps from
only floor plan images, transmitter location and descriptive
information such as physical dimensions of the building, and
types of materials of the floor plan. Several experiments are
conducted based on a variety of environments to show the
efficiency of the proposed models to consider different types
of building materials. We obtain a RMSE of about ∼ 3 dB,
which is an improvement of approximately 1.5 dB compared
to state of art. In our future works, we plan to extend and
train our model on more frequencies and fine tune it to radio
measurements.
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