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Abstract—We consider the multi-band channel selection prob-
lem, where the best channel is to be selected from n distinct
frequency bands, each containing m wireless channels. The
objective is to select the channel with the best average signal-to-
interference-plus-noise ratio (SiNR), where the SiNR for each
channel follows a parametric distribution, generated from a
band-dependent prior distribution. We introduce a Bayesian
Hierarchical Bandit (BHB) model that captures the correlation
induced by the hierarchical relationship between channels and
band, and develop a Hierarchical Thompson sampling (HTS)
algorithm which leverages the underlying Bayesian Hierarchical
structure to efficiently determine which channel is optimal. We
demonstrate that the HTS algorithm outperforms traditional
bandit algorithms by a factor of n when the bands are sufficiently
dissimilar. Through extensive simulation, we characterize the
Bayesian regret of the HTS algorithm under varying degrees
of band similarity and demonstrate that the Bayesian regret of
HTS does not increase linearly with n, in contrast to traditional
bandit algorithms.

I. INTRODUCTION

Wireless communication networks are increasingly moving
beyond static spectrum allocations in favor of dynamic spec-
trum access over multiple frequency bands. For example, the
5G NR frequency bands include low-band spectrum below
1GHz, like 600 MHz and 700 MHz, mid-band spectrum
between 1-6 GHz, such as 3.5 GHz and 4.9 GHz, and high-
band spectrum above 6 GHz, such as 24 GHz, 28 GHz, and
39 GHz [1]. Multi-band radio communication is also utilized
in both public safety and military networks, where the use of
multiple radio access technologies, such as satellite communi-
cation in conjunction with terrestrial wireless communication,
enhances the wireless network’s flexibility and ability to
withstand disruptions [2]. Dynamic Channel Selection (DCS)
is a cognitive networking paradigm that enables radios to
adapt to the wireless propagation and noise environment by
dynamically selecting different channels in order to learn the
optimal channel [3]. The goal of DCS is to improve the
overall performance of the wireless communication system by
maximizing the throughput, minimizing the interference, and
increasing the reliability of communication [4].
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In the single-band DCS problem, all channels share the
same frequency band and are subject to the same propagation
conditions. In the Multi-band DCS problem, channels are
grouped into separate frequency bands as shown in Figure 1.
Channels in the same band share the same propagation path
and experience similar environmental conditions, however,
there may still be variation in channel quality due to small-
scale fading and interference. On the other hand, channels
in different frequency bands may experience vastly different
large-scale fading effects such as free-space path loss and
shadowing, resulting in a bigger difference in channel quality
between channels in different bands compared to channels
within the same band. This correlation provides additional
structure, and the information this structure provides can be
exploited to improve the channel selection process. Addition-
ally, prior knowledge regarding the quality of each band may
provide valuable knowledge that may be leveraged in the
multi-band DCS problem. This prior belief may be based
on historical data or from simulations of the propagation
environment. Due to these differences between the single-
band and multi-band DCS problems, previous models and
algorithms for the single-band case are insufficient for the
multi-band DCS problem considered in this paper.

Fig. 1: Grouping of n ×m individual channels
ci,j into n distinct frequency bands

Multi-armed bandit (MAB) problems have been widely
studied in the field of cognitive networking. In an MAB
problem, a decision agent interacts with multiple independent
arms or actions over multiple rounds. In each round, the agent
chooses an arm and receives a random reward drawn i.i.d. from
the arm’s reward distribution. The objective is to maximize the
expected cumulative reward over the problem’s time horizon.
The reward distributions are not known a priori, and thus
the agent must balance exploration: learning about each arm
reward distribution, and exploitation: selecting the arm(s)
with the greatest estimated expected reward to maximize the
expected cumulative reward. The MAB framework can be
applied to DCS problems with ease: a cognitive radio selects
channels sequentially, evaluating their quality using metrics



such as interference or the signal-to-interfere-plus-noise ratio
(SiNR), with the aim of identifying the optimal channel.
MAB frameworks have been used for other problems in the
cognitive networking literature such as dynamic spectrum
access: where spectrum resources are dynamically accessed
by users of a shared spectrum [4]–[6], wireless scheduling:
where channels are assigned to one or more users dynamically
by a centralized entity or in a distributed manner [7], [8], and
for self-organizing networks: where a network dynamically
optimizes its topology and resources based on current traffic
demands and network conditions [9], [10]. MAB problems
have also been used to model sequential decision making
in other domains including clinical trials, recommendation
systems, and finance. For an overview on MAB problems,
their variations, and applications, readers are directed to [11],
[12].

The standard MAB model assumes arm reward distributions
are statistically independent. However, in multi-band radio
communication we cannot assume all channels are indepen-
dent as channel quality will have band-dependent correlation.
If the correlation between channels is known or can be learned,
the correlation can be leveraged to improve the channel
selection process. In this work we develop a Bayesian Hier-
archical Bandit (BHB) model to capture correlation between
channels in the multi-band DCS problem. The BHB model
is an extension of Bayesian hierarchical modeling into the
MAB problem domain. Bayesian hierarchical modeling uses
Bayesian probability theory to model the relationships between
different levels of a hierarchy, with each level representing
a different level of abstraction or granularity. This approach
allows for the estimation of unknown parameters by borrowing
information across different levels of the hierarchy [13, chapter
5].

In the BHB model, channels correspond to arms of the
MAB problem and are grouped into distinct frequency bands.
We naturally assume each channel can only belong to a
single band. The channel SiNR, or reward, distributions are
parametric with a unique parameter for each channel. Each
channel has an associated parametric prior distribution and
the parameters for each channel within the band are sampled
from its band’s prior distribution. For this paper we focus
on a specific model instance where the priors and SiNRs are
Gaussian distributed with unknown means. The agent begins
with knowledge of the parametric forms of the SiNR and
prior distributions, but the agent does not have the knowledge
of their respective parameters. During each time-step, the
agent probes a single channel from one of the bands and
measures the SiNR of that channel, which is obtained from that
channel’s underlying SiNR distribution. The SiNR it observes
provides information not only on the chosen channel’s param-
eter, but also the parameter of its associated band. As a result
of the relationship between the band’s prior distribution and its
associated channels, the agent indirectly obtains information
about all other channels within the band. While this is the
first paper to consider the BHB model in the context of DCS,
similar MAB extensions of Bayesian hierarchical models have

been applied outside of the cognitive networking literature
[14]–[18].

In addition to introducing this BHB model, we develop an
algorithm that exploits this hierarchical structure to minimize
the finite-time Bayesian regret, a metric which captures the
expected regret of an algorithm with respect to the prior
distribution. We show that when the band distributions are suf-
ficiently far apart, this algorithm improves upon the Bayesian
regret of classical MAB algorithms by a factor of n, where
n is the number of bands. Our contributions are as follows:
i.) We develop a novel Bayesian Hierarchical Bandit model
that captures interdependence between channels seen in multi-
band DCS problems. To the best of our knowledge, this is
the first work that utilizes Bayesian hierarchical modeling
in the cognitive radio/networking literature. ii.) We develop
the Hierarchical Thompson sampling (HTS) algorithm which
extends the posterior sampling framework of Thompson sam-
pling (TS) to Bayesian hierarchical models and provide theo-
retical justification for its improved performance over TS. iii.)
We demonstrate through simulation how the HTS algorithm
outperforms TS in numerous settings, and characterize the
problem settings where the performance gains are largest.

The remainder of this paper is outlined as follows. Section II
provides our Bayesian Hierarchical Bandit model. In Section
III, we present our extension of Thompson sampling, the
Hierarchical Thompson sampling Algorithm, which leverages
the hierarchical structure of the BHB model. Section IV
demonstrates the empirical performance of these algorithms
through simulation. Section V concludes the paper.

II. MODEL

We start by introducing notation. We use bold font to
indicate vectors b = {b1, b2, ..., bk} = {bi}i∈[k] where for
positive integer k, [k] = {1, 2, ..., k}. The i-th element of
vector v is represented as vi. If a vector vi is already indexed,
the we denote its j-th element by vi,j . We use upper-case
symbols to indicate random variables or vectors e.g. Θ or
Θ, and the corresponding lower-case symbols to indicate
realizations of a random variables or random vectors e.g. θ
or θ.

The Bayesian Hierarchical Bandit (BHB) model is as fol-
lows. There are n bands b = {bi}i∈[n], and each band contains
m channels. The set of all channels belonging to band bi is
denoted as ci = {ci,j}j∈[m], and the set of all channels across
all bands is represented as c = {ci}i∈[n]. Each band bi has
its own band parameter θi and each channel ci,j has its own
channel parameter θi,j . The set of all channel parameters for ci
is denoted as θi = {θi,j}j∈[m], and ϕi = {θi,θi} represents
the set of all parameters associated with band bi. The set of all
parameters in the BHB model is represented as ϕ = {ϕi}i∈[n].
For a problem instance, it is assumed that each parameter
is produced through the following generative process: each
band parameter {θi}i∈[n] is generated independently from its
band prior distribution πi = P (θi). Each channel parameter
θi,j ∈ {θi}i∈[n] is generated independently from its channel
prior distribution πi,j = P (θi,j |θi), which is parameterized



Fig. 2: Bayesian graphical model for the BHB
model

by the corresponding band parameter θi. We use P (ϕ) to
denote the joint prior distribution over all channel and band
parameters in the BHB model.

In each of the t ∈ [τ ] rounds, where τ is the time horizon,
an agent probes a single channel C(t) = ci,j and measures an
SiNR si,j(t) ∼ Pi,j , where Pi,j = P (si,j(t)|θi,j) is channel
ci,j’s SiNR distribution. Note that given θi,j , the SiNR Si,j(t)
is conditionally independent of band parameter θi. The band
parameter θi only effects Si,j(t) through the channel parameter
θi,j . This Bayesian hierarchical model can be given concisely
as:

θi ∼ πi

θi,j |θi ∼ πi,j , ∀ j ∈ [m], (1)
si,j(t)|θi,j ∼ Pi,j , ∀ C(t) = ci,j

and is also visualized in Figure 2. All n band prior distributions
are independent in our BHB model. This differs from the
Bayesian hierarchical models used in the Meta-bandit liter-
ature in which all parameters are related by a common prior
or root node in the Bayesian graphical model.

A. Parameter Estimation

Parameter estimation is crucial for the agent to exploit the
hierarchical structure underlying the BHB model. The agent’s
belief on the parameters of the model ϕ given the associated
priors and observed history is captured by a posterior distri-
bution. We denote the history by h(t) = {(c(t′), s(t′))}t′<t

which records all previous channel selections and observed
SiNRs up to round t. We represent the history for channel ci,j
and ci as hi,j(t) ∈ h(t) and hi(t) ∈ h(t) respectively. We
maintain independent posteriors for each ϕi ∈ ϕ as all bands
are independent from one another. The posterior distribution
over all channel and band parameters for band bi, represented

as P (ϕi|hi(t)), is a multi-variate and potentially complex non-
parametric distribution. However, the hierarchical relationship
between the parameters allows us to take advantage of condi-
tional independence, and express the posterior distributions as
a product of simpler closed-form distributions:

P (ϕi|hi(t)) = P (θi,θi|hi(t))

= P (θi|hi(t))P (θi|hi(t)) (2)

= P (θi|hi(t))
∏

j∈[m]

P (θi,j |θi,hi,j(t))

When the band posterior P (θi|hi(t)) and the channel posterior
P (θi,j |θi,hi,j(t))) are closed-form distributions, hierarchical
sampling as described in Section III can be used to sample
from the joint posterior distribution. Otherwise, inference and
sampling requires approximation techniques [13].

B. Three-level Normal Model

For this paper we will focus on the Three-Level Normal
(TLN) model. In the TLN model, the band prior, channel
prior, and SiNR distributions are all normally distributed with
unknown means and known variances. The prior model is
described by:

θi ∼ N(κi, γ
2
i )

θi,j |θi ∼ N(θi, λ
2
i ), ∀ j ∈ [m], (3)

si,j(t)|θi,j ∼ N(θi,j , σ
2
s), ∀ C(t) = ci,j

where N(µ, σ2) denotes a normal distribution with mean µ
and variance σ2. For each band, the prior band variance γ2

i

and prior channel variance λ2
i are assumed to be known by the

agent. Additionally, the SiNR variance σ2
s is the same for all

channels and is assumed to be known by the agent. This model
exhibits hierarchical conjugancy as the band posteriors and
channel posteriors are also normally distributed [13]. Under
the TLN model, the band and channel posteriors exist as closed
form distributions meaning they allow for exact sampling and
are easily interpretable. Given history hi(t), the band posterior
distribution is:

P (θi|hi(t)) = N(ui(t), v
2
i (t)) (4)

where the variance and mean parameters are

v2i (t) =

 1

γ2
i

+
∑
j∈[m]

1

λ2
i +

σ2
s

ki,j(t)

−1

(5)

ui(t) = v2i (t)

 κi

γ2
i

+
∑
j∈[m]

s̄i,j(t)

λ2
i + σ2

s/ki,j(t)

 (6)

and
s̄i,j(t) =

1

ki,j(t)

∑
si,j(t)∈hi,j(t)

si,j(t) (7)

is the average of all previous SiNR measurements for channel
cij . Here, ki,j(t) = |hij(t)| is the number of times channel
ci,j has been chosen up to time t. Equations (5) and (6)
provide intuition on what algorithms would result in accurate



estimations of the band parameter θi. The band posterior mean
ui(t) is a weighted average of the prior mean κi and the
average SiNR measurements s̄i,j(t) for each channel within
the band. The posterior mean is initially biased by the the prior
mean parameter κi,and the weight of this bias is proportional
to the prior variance γ2

i . The weight of each s̄i,j(t) term is
proportional to the uncertainty. When ci,j has not been selected
yet, s̄i,j(t) does not contribute to the average. After being
selected, the weight of s̄i,j(t) increases from 1/(λ2

i + σ2
s) to

1/λ2
i as ki,j(t) → ∞. Similarly, the posterior variance cannot

be minimized by selecting only a single channel. Thus, to
reduce the overall uncertainty in θi it is necessary to explore
the various channels within the band. The necessary amount
of exploration depends on the prior variance parameters γ2

i

and λ2
i .

The channel posterior distribution is:

P (θi,j |θi,hi,j(t)) = N
(
ui,j(t), v

2
i,j(t)

)
(8)

where

v2i,j(t) =

(
1

λ2
i

+
ki,j(t)

σ2
s

)−1

(9)

ui,j(t) = v2i,j(t)

(
θi
λ2
i

+
s̄i,j(t)

σ2
s/ki,j(t)

)
(10)

Unlike the band posterior, the channel posterior variance
only depends on the observations from the particular channel.
Additionally, the channel posterior mean is a weighted average
of the conditional band parameter θi and averaged observed
SiNR s̄i,j(t) for the channel. In practice, the band channel
parameter θi is usually replaced by a sample θ̂i from the
current band posterior. Like the band prior mean κi in the
band posterior, θi acts a bias term and its influence on the
channel posterior mean decays as confidence in the channel
parameter grows. More specifically, as ki,j(t) → ∞, the
channel posterior variance decays vi,j(t) → 0, and the channel
posterior mean approaches the average observed SiNR for
that channel ui,j(t) → s̄i,j(t). The posterior parameters in
equations (5), (6), (9) and (10) can be derived from [15,
Appendix D].

C. Performance Measure

Denote a policy Ψ : h(t) → c(t) as mapping from
histories to channel probing decisions. For a given instance
of parameters ϕ and policy Ψ, the τ round regret is:

R(τ,ϕ,Ψ) = E

[
τ∑

t=1

µ∗ − µ(c(t))

∣∣∣∣ϕ
]

(11)

where µ(c(t)) is the expected SiNR of channel chosen in round
t, and µ∗ = maxci,j∈c µ(ci,j) is the max expected SiNR of
any channel across all bands. The Bayesian regret for policy
Ψ over τ rounds is defined as:

BR(τ, P,Ψ) = Eϕ∼P [R(τ,ϕ,Ψ)] (12)

where the expectation is taken with respect to the joint prior
distribution P (ϕ). Bayesian regret is a weaker notion than
worst-case regret:

R(τ,Ψ) = max
ϕ

R(τ,ϕ,Ψ) (13)

in the sense that any bound on the worst-case regret implies a
bound on the Bayesian regret as well [12]. However, in many
real-world applications such as wireless channel selection,
historical data or simulations may allow a decision maker to
form a prior belief before interacting with the environment.
In these applications, Bayesian regret is a good theoretical
performance measure as it gives greater weight to likely
problem instances compared to worst-case regret. Also, we
focus on finite-time Bayesian regret as opposed to asymptotic
regret as it best reflects the multi-band channel selection
problem.

III. ALGORITHMS

Thompson sampling (TS) is the oldest Multi-Armed bandit
algorithm that dates back to 1933 [19]. However, TS was
largely ignored until empirical studies demonstrated its effi-
ciency [20] followed by theoretical performance guarantees
within the past decade [21]. The core idea of Thompson
sampling is to select an arm in each round according to
the probability the chosen arm is optimal. Consider a non-
hierarchical Bayesian bandit model with m independent arms,
each parameterized by their individual arm parameter θj . Let
P (c∗|h(t)) be the arm selection distribution which is a discrete
distribution over each arm. P (c∗ = cj |h(t)) corresponds to
the probability arm cj has the greatest expected reward given
history h(t). In each round, the selected arm c(t) is sampled
from P (c∗|h(t)). This sampling step is typically performed
by first sampling instances of arm parameters θ̂j(t) from
the marginal arm posterior distributions P (θj |h(t)) for all
j ∈ [m]. Then c(t) = argmaxcj∈c E

[
µ(cj)|θ̂j(t)

]
is the

corresponding sample from P (c∗|h(t)). The full TS algorithm
for the non-hierarchical Bayesian bandit is given in Algorithm
1.

Algorithm 1 Thompson sampling

Require: πj = P (θj) and P (sj(t) | θj)∀ j ∈ [m]
for t=1,...,τ do

for j = 1, ...,m do
Sample θ̂j ∼ P (θj |hj(t))

end for
c(t) = argmaxE

[
µ(cj)

∣∣θ̂j]
Select c(t) = cj and observe sj(t) ∼ P (sj(t)|θj)
Update P (θj |h(t))

end for

A. Hierarchical Thompson sampling

In this section we provide an extension of TS to the BHB
model. Like in TS, we need the ability to sample from the



channel selection distribution P (c∗|h(t)). Unlike TS, in the
BHB model the marginal channel posterior distribution is:

P (θi,j |hi(t)) =

∫
θi

P (θi,j , θi|hi(t))dP (θi) (14)

which is not explicitly defined in the model. Even in BHB
models with closed-form band posteriors and channel posteri-
ors, the marginal channel posterior distribution may be difficult
to compute or may not exist in closed form. Thus Hierarchical
Thompson sampling (HTS) uses sequential posterior sampling
to generate θ̂i,j(t) as follows:

1) Sample θ̂i(t) ∼ P (θi|hi(t)) for all i ∈ [n]

2) Sample θ̂i,j(t) ∼ P (θi,j |θ̂i(t),hi,j(t)) for all i ∈ [n] and
j ∈ [m]

This process is equivalent to drawing

θ̂i(t), θ̂i(t) ∼ P (θi,θi|hi(t))

and thus the samples θ̂i,j(t) ∈ θ̂i are equivalently sampled
according to their respective marginal posteriors P (θi,j |hi(t)).
As in TS, c(t) = argmaxci,j∈c E

[
µ(ci,j)|θ̂i,j(t)

]
is the corre-

sponding sample from P (c∗|h(t)).

Algorithm 2 Hierarchical Thompson sampling

Require: πi, πi,j and P (si,j(t) | θi,j)∀ i, j
for t=1,..., τ do

for i = 1, ..., n do
Sample θ̂i(t) ∼ P (θi|hi(t))
for j = 1, ...,m do

Sample θ̂i,j(t) ∼ P (·|θ̂i,hi,j(t))
end for

end for
c(t) = argmaxE[µ(ci,j)|θ̂i,j(t)]
Select c(t) = ci,j and observe si,j(t) ∼ P (si,j(t)|θi,j)
Update P (θi|hi(t)) and P(θi,j |θi,hi,j(t))

end for

The HTS algorithm learns both the channel and band
parameters. The knowledge of band parameters is then used
for more efficient exploration of the channels. For example,
say the agent quickly learned all θi ∈ θ for an instance
of the TLN model. This means sufficiently many channels
within each band have been chosen in previous rounds, and
the band posterior variance v2i (t) is small for each band. In
subsequent rounds, the posterior samples θ̂i(t) ≈ θi. As seen
from Equation (10), the channel posterior distributions, and
their samples, will be biased towards their respective band
parameter θi(t) when ki,j(t) is low. As a result, once the band
parameters are sufficiently learned, exploration will primarily
be focused on channels within the best bands.

B. Performance Improvement

To analyze the performance of HTS, we compare it to the
standard TS algorithm which does not take the hierarchical
modeling into account. The comparison highlights the value of

incorporating grouping information, e.g. a channel’s member-
ship to a band, in sequential decision making applications. For
a given BHB model, we define the corresponding TS bandit
model as one that considers all channels to be independent
but incorporates the same marginal channel prior knowledge
as the BHB model. The prior for each channel parameter in
the TS bandit model is derived by marginalizing the joint prior
of the BHB model over the band parameter.

P (θi,j) =

∫
θi

P (θi)P (θi,j |θi)dP (θi) (15)

= N(κi, γ
2
i + λ2

i ) (16)

After marginalizing, all band specific dependencies are ig-
nored between channels and all channel parameters are treated
as independent in the TS bandit model. The corresponding TS
bandit model for the TLN model is:

θi,j ∼ N(κi, γ
2
i + λ2

i ) ∀ i ∈ [n], j ∈ [m] (17)

si,j(t)|θi,j ∼ N(θi,j , σ
2
s) ∀ C(t) = ci,j

The channel posteriors under the equivalent non-hierarchical
model are independent and follow from the Normal conjugate
prior model for unknown means [13, pg. 39]:

P (θi,j |hi,j(t)) = N(ũi,j(t), ṽ
2
i,j(t)) (18)

where

ṽ2i,j =

(
1

γ2
i + λ2

i

+
ki,j(t)

σ2
s

)−1

(19)

ũi,j(t) = ṽ2i,j(t)

(
κi

γ2
i + λ2

i,j

+
s̄i,j(t)

σ2
s/ki,j(t)

)
(20)

HTS improves upon TS in the case there is additional
information provided by grouping of channels into bands.
Its intuitively obvious that the greatest improvement of HTS
compared to TS would occur in environments where the
generative channel distributions P (θi,j |Θi = θi) for each band
are non-overlapping. Additionally, when all band distributions
are identical, we would expect there to be no advantage in
using HTS. We formalize these intuitions in the the following
claims.

Claim 1. There exists TLN priors such that the Bayesian regret
of HTS is the same as the Bayesian regret of TS

Proof. Assume the band and channel parameters are generated
from the the TLN model and let γi = 0, κi = κ, and
λi = λ for all i ∈ [n]. For environments generated from
this prior model, all band parameters θi = κ are equivalent.
Thus all channel parameters {θi,j}i∈[n],j∈[m] are distributed
according to P (θi,j) = N(κ, λ2) which is equivalently the
marginal prior that would be used by the the TS agent under
γi = 0. Additionally, given h(t), the expected marginal
posterior parameters (u̇i,j(t), v̇

2
i,j(t)) for the HTS model are

equivalent to the posterior parameters (ũi,j(t), ṽ
2
i,j(t)) for TS

model. Meaning the channel selection distribution P (c∗|h(t))



(a) Average regret over 30 random
environments from the “No” and
“Full” overlap scenarios

(b) Average regret over 30 random
environments from the low, moder-
ate (mod), and high similarity prior
settings.

(c) Average regret per round in four
scenarios with a different number of
bands but the same prior specifica-
tion

Fig. 3: Average regret over 5000 rounds for all scenarios discussed in Section IV
.

is the same for the TS and HTS algorithm. It follows that the
Bayesian regret is the same for both algorithms.

Claim 2. There exists TLN priors such that the Bayesian regret
of HTS is O(n) improvement over the Bayesian regret of TS

Proof. Assume the band and channel parameters are generated
from the TLN model, and let κi = κ, γ2

i = γ, λ2
i = λ2 for

all i ∈ [m]. Furthermore, assume γ2 ≫ λ2. If the difference
between the band prior variance γ2 and channel prior variance
λ2 is sufficiently large, after probing one channel from each
band, all band posteriors P (θi|hi(t)) will be non-overlapping.
Under the HTS algorithm, after O(n) rounds a single best band
will be identified and further exploration will be constrained
to channels within the best band. Under the same prior
specification, all non-selected channels under the TS algorithm
will have the same prior until being selected and exploration
will not be constrained to a single band. Since TS is guaranteed
to explore all nm channels, while the HTS algorithm will
only explore O(m) channels, the Bayesian regret of the HTS
algorithm is an O(n) improvement over the Bayesian regret
of the TS algorithm.

Characterizing the Bayesian regret of HTS in terms of the
number of channels/bands and the prior parameters is an open
problem. The following upper-bound can be derived using the
same methodology as in [21]:

BR(τ, P,Ψ) ≤ E

[
√
τε(τ)

τ∑
t=1

v̇2i,j(t)

]
+max

i∈[n]
(γ2

i +λ2
i ) (21)

where v̇2i,j(t) is the marginal posterior variance of the arm
selected by the agent in round t and ε(τ) = ln((τ2 +
1)nm/(

√
2π)). An upper-bound on the Bayesian regret with

respect the number of channels/bands and the prior parameters
is not apparent from Equation (21). We conjecture that the
Bayesian regret of HTS is of order O(c(P (ϕ))m), where

c(P (ϕ)) ∈ [1, n] is a function of the similarity between the
band distribution for the band containing the best channel and
the remaining cluster distributions based on the prior P (ϕ).

In the following section, we validate these claims through
simulation and demonstrate empirically how the improvement
in Bayesian regret is dependent on the average band similarity
which is dictated by the prior distributions.

IV. NUMERICAL EXPERIMENTS

In this section we evaluate the empirical performance of
HTS using simulations. First, we provide background on
the generation process of problem instances used in the
simulations. Then we empirically validate Claims 1 and 2
via non-overlapping and overlapping BHB problem instances
respectively. Next, we compare the performance of HTS to TS
in more general problem instances. Finally, we demonstrate
how the performance improvement of HTS compared to TS
scales with the number of bands n.

A. Simulation Setup

For all experiments, a TLN prior P (ϕ) is specified by
setting the values of κi, γ2

i and λ2
i for all i ∈ [n]. Depend-

ing on the experiment, all band parameters {θi}i∈[n] were
either hand-picked or sampled from the environment’s band
prior distribution P (θi) = N(κi, γ

2
i ). For all experiments,

the channel parameters {θi,j}i∈[n],j∈[m] were sampled from
their respective channel parameter generating distributions
P (θi,j |Θi = θi) = N(θi, λ

2
i ). We denote a problem instance

as I = (P (ϕ),ϕ). Both TS (Algorithm 1) and HTS (Algo-
rithm 2) are run on each problem instance. The TS algorithm
considers all channels to be independent and uses the cor-
responding TS bandit model as specified by equations (17)–
(20). The HTS algorithm uses the TLN model as described
by equations (3)–(6) and (8)–(10). For each experiment, we
use the same prior parameters for all trials meaning κi = κ,
γ2
i = γ, and λ2

i = λ2 for all i ∈ [n]. Both HTS and TS
algorithms are initialized with these parameters. Note, using
the same prior parameters for each band does not mean all



(a) No band overlap obtained using
θ = {−10,−5, 0, 5, 10} and λ2 = 2

(b) Full band overlap obtained using θ =
{0, 0, 0, 0, 0} and λ2 = 4

(c) Low band overlap obtained using
κ = 0, γ2 = 25, and λ2 = 2

(d) Moderate band overlap obtained us-
ing κ = 0, γ2 = 16, and λ2 = 4

(e) High band overlap obtained us-
ing κ = 0, γ2 = 2, and λ2 = 9

Fig. 4: Examples of channel generating distributions for the scenarios in Table I and Table II. The black dashed
line in each subfigure is the band prior πi for each cluster, and the colored lines represent the channel parameter
generating distributions P (θi,j |Θi = θi) for each band. The colored arrows above the x-axes indicate the greatest
expected channel SiNR maxcij∈ci µ(ci,j) in each corresponding cluster.

generated band and channel parameters are identical, only that
the algorithms start with the same prior distribution over the
parameters.

1) Quantifying Overlap: To quantify the overlap between
two channel parameter generating distributions, we use the
overlap-coefficient (OVL) [22]:

OV L(fi(x), fi′(x) =

∫
x

min(fi(x), fi′(x))dx (22)

where fi(x) is the probability density function of P (θi,j |Θi =
θi). The OVL is the fraction of the shared probability mass for
the two densities and is always bounded by [0, 1]. The OVL
measures the overlap between a single pair of distributions. As
a measure of the amount of the average overlap in a problem
instance I = (P (ϕ),ϕ) with n bands, we define the average
overlap score as:

V (I) = 1

P(n)

∑
i∈[n],

(i′>i)∈[n]

OV L(fi(x), fi′(x)

where P(n) = n(n−1)
2 is the number of unique pairwise OVL

scores computed in the sum, and is included to bound V (I) ∈
[0, 1].

B. Numerical Validation of Claims

We begin by empirically validating Claims 1 and 2. For
validating these claims we generated 30 TLN instances with
V (I) = 0 and 30 TLN instances with V (I) = 1 re-
spectively. To ensure the each instance generated had the
intended average overlap score, we fixed the band param-
eters θ = {−10,−5, 0, 5, 10} for all Claim 1 trials and
θ = {0, 0, 0, 0, 0} for all Claim 2 trial. Each band contained
m = 100 channels, and the channel parameter generating
distributions P (θi,j |Θi = θi) for these tests are shown in
Figures 4a and 4b. For each TLN instance, HTS and TS
were run for a total of τ = 5000 rounds. The regret per
round averaged all 30 problem instances for each experiment
is plotted in Figure 3a, and the final average regret is found
in Table I along with prior parameters used for each trial. Its
clear that in the case there is no overlap, HTS outperforms TS
by a factor greater than n = 5. When the channel parameter
generating distributions are fully overlapping, there is no
difference in the performance as HTS and TS are functionally
equivalent.

C. Performance vs Overlap

Next we demonstrate the performance when the overlap
lies between the two extremes. In the following experiments,
the band parameters {θi}i∈[n] were sampled from their band



Overlap
Scenario

Avg. Cluster
Overlap κ γ2 λ2 Average Regret Factor

ImprovementHTS TS
No 0 0 25 2 220.80 1327.92 6.0
Full 1 0 25 4 647.49 661.94 1.0

TABLE I: Prior parameters and results for the
No and Full overlap scenarios

priors {P (θi)}i∈[n], meaning the generated band parameters
were random and no longer identical for each problem in-
stance within a single experiment. The amount of overlap
between bands was controlled via the specification of the
priors. We utilized three different sets of priors and reference
the corresponding experiments as “Low”, “Moderate”, and
“High” overlap scenarios. Each band contained m = 100
channels, and the prior parameters used to generate the TLN
instances for each scenario are given in Table II. Once again,
we generated 30 problem instances for each experiment and
both algorithms were run for a total of τ = 5000 rounds on
each problem instance. Figure 3b plots the average regret per
round for these experiments and the final average regret values
are found in Table II. These results suggests that as the overlap
between bands decreases, the performance improvement of
HTS increases.

Overlap
Scenario

Avg. Cluster
Overlap κ γ2 λ2 Average Regret Factor

ImprovementHTS TS
Low 0.32 0 25 2 297.44 1012.14 3.4

Moderate 0.61 0 16 4 543.96 908.29 1.7
High 0.89 0 4 9 936.59 1063.10 1.1

TABLE II: Prior parameters and results for the
Low, Moderate, and High overlap scenarios

D. Number of bands comparison

Next we examine how the number of bands n effects the
the magnitude of improvement of HTS over TS. For this
comparison, we ran experiments with n = 2, 4, 6, and 8
bands per problem instance. For each experiment, the moderate
overlap prior parameters were used (κi = 0, γ2

i = 16, and
λ2
i = 4 for all i ∈ [n] ), and each band contained m = 100

channels. Once again 30 different problem instances were
generated for each experiment, and the results were averaged
over these problem instances. Both HTS and TS were ran on
each problem instance for a total of τ = 5000 rounds. Figure
3c plots the average regret per round over all problem instances
for each experiment. Table III provides the final average regret
for each experiment. It is evident that the average regret of TS
scales linearly with n while average regret of HTS only scales
sub-linearly with n. As expected, this implies the largest gains
in performance over TS would be seen in scenarios that have
many well-separated bands.

V. CONCLUDING REMARKS

In this work, we introduced our Bayesian Hierarchical
Bandit model for the DCS problem. We then provided a bandit
algorithm, Hierarchical Thompson sampling, that leverages
the known hierarchical structure to efficiently select channels
to minimize the Bayesian regret. We provided theoretical

n Average Regret Factor
ImprovementHTS TS

2 1069 1650 1.5
4 1283 3922 3.1
6 1737 6733 3.9
8 1821 9244 5.1

TABLE III: τ = 5000 round average regret for
the scenarios plotted in Figure 3c

justification for the improved performance of HTS over TS.
Finally, we demonstrated empirically that HTS outperforms TS
in numerous settings, with the performance gain being envi-
ronment dependent. One possible direction of future work is to
develop prior-dependent Bayesian regret bounds. These regret
bounds would allow us to better understand the performance
improvements over TS demonstrated empirically in Section
IV. Extending the HTS algorithm to BHB models without
closed-form posteriors is another promising future direction.
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