
Full Exploitation of Limited Memory in Quantum
Entanglement Switching

Panagiotis Promponas∗, Vı́ctor Valls†, and Leandros Tassiulas∗

{panagiotis.promponas@yale.edu, victor.valls@ibm.com, leandros.tassiulas@yale.edu}
∗ Department of Electrical Engineering and Institute for Network Science, Yale University, USA

† IBM Research Dublin

Abstract—We study the problem of operating a quantum
switch with memory constraints. In particular, the switch has
to allocate quantum memories to clients to generate link-level
entanglements (LLEs), and then use these to serve end-to-end
entanglements requests. The paper’s main contributions are (i)
to characterize the switch’s capacity region, and (ii) to propose
a memory allocation policy (MEW) that is throughput optimal.
The worst-case time complexity of MEW is exponential on the
system parameters. However, when the requests are bipartite and
the LLE attempts are always successful, we propose a variant
of MEW (MEW2) that has polynomial time complexity. We
evaluate the proposed policies numerically and illustrate their
performance depending on the requests arrivals characteristics
and the time available to obtain a memory allocation.

I. INTRODUCTION

Quantum computing will transform the world by allowing us
to solve problems that are too complex for classical computers
[1] (e.g., Shor’s algorithm [2]). However, we are still nowhere
near that day. Quantum programs of meaningful size require
quantum computers with thousands of qubits [3], which is far
from the number of qubits that quantum computers currently
have [4], [5].

One way to increase the number of qubits of a quantum
computer is to connect multiple quantum processors [6], [7],
[8] with a quantum switch. In brief, a quantum switch is anal-
ogous to a classic packet switch, but its task is to create end-
to-end entanglements with the clients it is connected. Figure
1 shows an example of how a quantum switch operates. The
switch first generates link-level entanglements (LLEs)1 with
the clients/processors (Figure 1b), and then it uses these to
create end-to-end entanglements (Figure 1c & d).2 The end-to-
end entanglements are used by the quantum applications to, for
example, teleport information qubits or carry out distributed
quantum operations (via non-local CNOT gates [9]).

Quantum networking is in its infancy since single-hop com-
munications are still challenging [12]. However, the building
blocks of how quantum networks will operate already exist,

The research work was supported by the Army Research Office MURI
under the project number W911NF2110325 and by the National Science Foun-
dation under project numbers EEC-1941583 CQN ERC and CNS 1955744.
ISBN 978-3-903176-57-7© 2023 IFIP.

1Also known as EPR pairs. A LLE or EPR pair consists of two entangled
qubits [9]. One qubit at the switch and the other qubits at the client.

2An end-to-end entanglement is created by performing a measurement
(BSM or GHZ) on the qubits at the switch [10]. The process is also known
as entanglement swapping when the requests are bipartite [11], [12].

(a) (b) (c) (d)

Entanglement

swapping

End-to-end

entanglement

LLE

Figure 1. Illustrating the operation of a quantum switch. (b) LLEs are
created between the switch and the clients (e.g., quantum processors). (c)
The switch performs an entanglement swapping operation. (d) An end-to-
end entanglement is created as a result. An entanglement swapping operation
consists of performing a joint BSM measurement with the qubits at the switch.

prompting researchers to start designing the algorithms that
will run the networks when the hardware becomes available
[13], [14], [15], [16], [17]. Regarding quantum switches,
previous work has studied their operation under a variety
of settings [18], [19], [20], [21]. In brief, [18] and [19]
study an idealized switch with bipartite and tripartite end-
to-end entanglements requests when the request arrivals are
symmetric and decoherence [22] is negligible. The work in
[20] studies a quantum switch with bipartite requests when
there is no memory decoherence and LLE attempts succeed
probabilistically. The contributions of [20] are to characterize
the switch capacity region and to propose on-demand policies
that are throughput optimal. Similarly, the recent work in [21]
extends the setting in [20] to capture that LLEs expire (i.e.,
“decohere”) after some time in practical systems. In sum,
previous work has focused primarily on studying quantum
switches for different decoherence models. However, none of
them consider that quantum memory is a scarce resource that
must be managed. In practice, quantum switches can only store
a limited number of qubits (in analogy to quantum computers),
constricting the LLEs that can exist at a given time and,
therefore, the requests that the switch can serve.

In this paper, we study the problem of operating a quantum
switch when it can store a limited number of qubits. In
particular, the switch has fewer quantum memories than the
number of clients it is connected, and so it has to decide how
to allocate quantum memories to generate LLEs. Studying this
problem is important because memory is a scarce resource in
practical quantum systems. To this end, this paper makes the
following contributions:

• We present the first mathematical model of a quantum
switch that has to operate with fewer quantum memories

Figure 2. Example of a quantum switch with three types of requests. The
switch is connected to three users, which only allows it to serve requests of
type 2 and 3.

than the number of clients it is connected (Section II).
Our model allows LLEs to decohere and end-to-end
entanglement requests to be multipartite.

• We characterize the capacity region of the quantum
switch with memory constraints (Section III-A), i.e., the
set of end-to-end entanglement request arrival rates for
which there exists a policy that can stabilize the switch.

• We propose a memory allocation policy (MEW) that sta-
bilizes the switch when (i) the LLEs last one time slot and
(ii) the arrivals of end-to-end entanglement requests are in
the interior of the capacity region (Section III-B). Finding
a throughput optimal policy in this setting is challenging
because the admissible scheduling decisions depend on
the memory allocation. Such coupling is typically not
allowed in classic networking problems (e.g., wireless)
where the set of available actions can vary over time, in
an i.i.d. manner [23] (see discussion after Theorem 1).

• We present MEW2, a polynomial time variant of MEW
tailored to the case where end-to-end entanglements
are bipartite and LLE attempts are always successful.
This case is important since multipartite requests can
be divided into multiple bipartite requests (universality
of two-qubit gates [22]) and because, with sufficient
entanglement distillation, LLEs attempts succeed almost
surely [24].

Finally, in Section V, we evaluate MEW and MEW2 numer-
ically depending on the requests arrivals characteristics and the
time available to obtain a memory allocation.

II. QUANTUM SWITCH MODEL & OPERATION

A. Switch model and operation overview

We consider a quantum switch with M quantum memories
and N clients that operates in slotted time. In each time slot
t = 1, 2, 3, . . . , the switch receives a vector of requests

A(t) = (A1(t), . . . , AR(t)),

where Ar(t) ∈ {0, 1} for all r ∈ {1, . . . , R}. A request Ar(t)
involves connecting two or more clients (i.e., it is multipartite),
and we use set

Ω(r) ⊆ {1, . . . , N} (1)

to denote the clients that participate in a request. For example,
Ω(r) = {1, 2} if a request of type r connects clients 1 and 2.

. . .

. . .

. . .

Memory

allocation

LLEs

generation

Figure 3. Illustrating how the quantum memory allocation results in different
possible connectivities in a quantum switch with M = 3 and N = 4. Observe
from the figure that different memory allocations can result in the same switch
connectivity.

Upon arrival, the requests are stored in separate queues
Q(t) = (Q1(t), . . . , QR(t)) to await service. The queues
evolve as follows:

Q(t+ 1) = [Q(t)− b(t)]+ +A(t), (2)

where [·]+ := max{0, ·} and

b(t) = (b1(t), . . . , bR(t))

indicates the requests served in time slot t. In particular,
br(t) = 1 if a request r ∈ {1, . . . , R} is served, and br(t) = 0
otherwise.

The switch’s task is to serve as many requests as possible
subject to operational constraints. In particular, the switch can
only serve a request if all the clients that participate in it have
an active LLE. Figure 2 shows an example of a switch with
four clients and three types of requests r ∈ {1, 2, 3}. Observe
from the figure that the switch can serve requests of type 2 and
3, but not of type 1 because one of the clients is not connected
with the switch.

In the next section, we describe how the switch allocates
quantum memories to clients and how that affects the switch
connectivity and the set of admissible service vectors.3

B. Switch operation and decision variables

In each time slot, the quantum switch performs three types
of actions. It (i) allocates quantum memories to clients; (ii)
generates LLEs; and (iii) serves multipartite requests by using
the LLEs. Importantly, a LLE can only be used to serve
one request as this is consumed to generate an end-to-end
entanglement [19]. Next, we describe the control variables that
the switch can select in each time slot.

1) Quantum memory allocation: When M < N , the
switch has to decide how to allocate memories to clients. We
use mn(t) to denote whether the switch assigns a quantum
memory to a node n ∈ {1, . . . , N} in time slot t, and collect
these in vector

m(t) = (m1(t), . . . ,mN (t)).

3i.e., the requests that can be served given a switch connectivity.

The set of eligible memory allocations M is given by

M =

{
(m1, . . . ,mN) : mn ∈ {0, 1} ∀n ∈ {1, . . . , N}

with
N∑

n=1

mn ≤ M

}
.

That is, M contains the binary vectors whose components’
sum is smaller than or equal to the number of memories
available (i.e., M).

2) LLEs generation and switch connectivity: After the
memory allocation, the switch has to generate LLEs with the
clients that are connected to a memory. The switch attempts
to create LLEs by sending entangled qubits (e.g., photons)
over a fiber-optical channel, but only a fraction of the LLE
attempts are successful due to interference [25]. Also, LLEs
last for a limited amount of time due to a phenomenon known
as decoherence [26].

We model the switch connectivity in a time slot as follows.
Let pn ∈ [0, 1], n ∈ {1, . . . , N} be the probability that a LLE
attempt succeeds. Vector

k(t) = (k1(t), . . . , kN (t))

with

kn(t) =

0, mn(t) = 0,

0, mn(t) = 1 w.p. 1− pn

1, mn(t) = 1 w.p. pn

(3)

denotes the collection of successful LLEs in a time slot, i.e.,
the switch’s connectivity. We use set

K(m(t)) ⊆ {0, 1}N (4)

to capture all the possible switch connectivities for a given
memory allocation m(t) ∈ M. Note that a memory allocation
has a total of |K(m)| = 2M possible switch connectivites if
all the memories are used.4 Figure 3 shows how the switch
connectivity depends on different memory allocations and the
successful LLEs. Also, observe from the figure that different
memory allocations can result in the same connectivity due to
some LLE attempts failing.

The duration of a switch connectivity depends on how long
LLEs last. In this paper, we make the following assumption:

Assumption 1. LLEs last for one time slot.

This assumption is standard (e.g., [21]), and it allows us to
align the duration of a LLE with the frequency in which the
switch allocates quantum memories and serves requests.

3) End-to-end entanglement requests service: The switch
connectivity in a time slot affects the set of available service
vectors. Let k(t) ∈ K(m(t)) with m(t) ∈ M(t) be the
switch connectivity at time slot t. The set of admissible service
vectors is given by:5

4Otherwise, the switch has 2
∑R

r=1 mr(t) possible connectivities.
5Although the set B(m(t), k(t)) depends only on the network connectivity,

k(t), we parameterize it with m(t) as well to emphasize that the service
vectors are picked after the memory allocation.

B(m(t), k(t)) =

{
br ∈ {0, 1}, r ∈ {1, . . . , R} :

there exists a matrix S ∈ {0, 1}R×N

s.t. srn = 1 for all n ∈ Ω(r) iff br = 1,

and
R∑

r=1

srn ≤ kn(t) ∀n ∈ {1, . . . , N}

}
.

That is, B(m(t), k(t)) contains a collection of binary vectors,
where the r’th entry of a vector is equal to one if and only if
(i) all the clients involved in a request of type r have an active
LLE with the switch, and (ii) a LLE is only used to serve one
request.

III. CAPACITY REGION AND
THROUGHPUT OPTIMAL POLICY

In this section, we present the main contributions of the
paper: the characterization of the capacity region of the quan-
tum switch (Section III-A), and a memory allocation policy
that is throughput optimal (Section III-B). In Section III-C,
we discuss the scalability of the proposed policy.

A. Capacity region

Before designing an algorithm, we need to characterize the
set of arrival rates that the switch can support. To start, let

λ := lim
T→∞

1

T

T∑
t=1

A(t) (5)

be the long-term arrival rate of requests at the quantum
switch. We say an arrival vector λ is admissible (or, it can
be supported) if there exists a policy π that can generate a
sequence of service rate vectors {bπ(t)}∞t=1 such that

λr ≤ fπ
r := lim

T→∞

1

T

T∑
t=1

bπr (t) ∀r ∈ {1, . . . , R}. (6)

That is, for a given vector λ, the switch must be able to
generate a long-term service vector fπ that is equal to or
larger than λ component-wise. Hence, by characterizing all
the service vectors fπ that the switch can generate, we know
the arrival vectors that the switch can support (i.e., the switch
capacity region).

To define the switch capacity region, we decouple the
decision variables from the time slot index t and express
them as the fraction of time they can occur. In short, let θm
denote the fraction of time a memory allocation m ∈ M is
used, and P(k;m) the probability that a switch connectivity
k ∈ K(m) occurs for a given a memory allocation m ∈ M.
Similarly, let δk,mb be the fraction of time that each service
vector b ∈ B(m, k) is used for a given switch connectivity
and memory allocation. We have the following proposition.

Algorithm 1 (MEW)
1: Set: t = 0
2: while switch is operating do
3: t← t+ 1
4: (S1) Quantum memory allocation: Select the memory allo-

cation

m(t) ∈ argmax
m∈M

R∑
r=1

Qr(t)µr(m,Q(t)), (8)

where

µ(m,Q(t)) :=
∑

k∈K(m)

P(k)w(k,Q(t)) (9)

w(k,Q(t)) ∈ argmax
u∈B(m,k)

R∑
r=1

Qr(t)ur. (10)

5: (S2) LLEs generation: The switch attempts to create LLEs
with the clients that have a memory connected. The successful
LLEs determine the switch connectivity k(t) and the action
set B(m(t), k(t)).

6: (S3) Requests service: Select a service vector with the update

b(t) ∈ argmax
u∈B(m(t),k(t))

R∑
r=1

Qr(t)ur

7: (S4) Queue update: Serve end-to-end entanglement requests
and update the queues with arrivals A(t):

Q(t+ 1) = [Q(t)− b(t)]+ +A(t) (11)

8: end while

Proposition 1 (Quantum switch capacity region). The capac-
ity region of the quantum switch is:

Λ :=

{
fπ : fπ =

∑
m∈M

θm
∑

k∈K(m)

P(k;m)
∑

b∈B(m,k)

δm,k
b b,

∑
m∈M

θm = 1,
∑

b∈B(m,k)

δm,k
b = 1,

θm ≥ 0, δm,k
b ≥ 0,

for all b ∈ B(m, k), k ∈ K(m), m ∈M

}
. (7)

Proof sketch: The full proof is omitted due to space
constraints. However, it follows the same methodology as in
[23], [27]: writing the fraction of time that the service vectors
can be generated—depending on the memory allocations and
switch connectivities in our case.

Note that if λ ∈ Λ (i.e., the long-term average of requests
arrivals is in the capacity region), then there exists a vector
fπ that satisfies (6). Having λ ∈ Λ is usually known as the
necessary condition for having stable queues [23].

B. MEW: A max-weight algorithm for allocating quantum
memory and serving requests

We present Maximum Expected Weight (MEW), an algo-
rithm that stabilizes the queues when the long-term arrival
of requests is in the interior of the capacity region. MEW
(Algorithm 1) consists of three steps. The first step (S1)
allocates the quantum memories to clients using (8), which

consists of maximizing the sum of the expected service in
each queue (i.e., µr) multiplied by the queue occupancies
(i.e., Qr). This update can be regarded as an “expected”
max-weight maximization, where the updates in (9) and (10)
are intermediate steps to compute the expected rate vectors
µ(m,Q(t)) = (µ1(m,Q(t)), . . . , µR(m,Q(t))) used in (8).
The second step (S2) generates the LLEs with the clients that
have a memory connected. Only some LLE attempts succeed
due to interference, which affects the network connectivity
and the set of admissible requests service vectors, i.e., set
B(m(t), k(t)). The third step (S3) consists of finding the
service vector b(t) that maximizes the dot product with the
vector of queues Q(t). Once all the decision variables have
been made, the queues are updated as indicated in (11). We
have the following theorem.

Theorem 1. Consider the quantum switch model in Section
II, and suppose that the long-term arrival rate of requests λ
is in the interior of the capacity region Λ. That is, there exists
a vector b̂ ∈ Λ such that

λr + ϵ ≤ b̂r ∀r ∈ {1, . . . , R}
for some ϵ > 0. Then, MEW (Algorithm 1) ensures that

lim
T→∞

1

T

T∑
t=1

R∑
r=1

E[Qr(t)] ≤
N2

ϵ
,

i.e., the queues are strongly stable.

Proof: See Section VII-A.
Strong stability implies that all the requests that arrive are

eventually served (i.e., (6) is satisfied), but also that the queues
are bounded [28]. The result in Theorem 1 is based on max-
weight techniques widely employed in network scheduling
problems [27], [23], and the novelty of our contribution resides
in the fact that the switch connectivity is random and depends
on how we assign quantum memories to links/clients. The
latter is different from wireless network models with time-
varying connectivity since the allocation of quantum memories
affects the switch’s connections and, therefore, the set of
admissible service vectors. Such coupling is typically not
allowed in max-weight or backpressure approaches where the
set of available actions can vary over time; however, usually
in an i.i.d. manner [29]. In our problem, the action sets
{B(m(t), k(t))}∞t=1 are not i.i.d. because they depend on the
memory allocation decisions {m(t) ∈ M}∞t=1. Our approach
to tackle this problem is to exploit the linearity of (8), (9),
and (10), and evaluate all the possible scheduling decisions for
every connectivity. However, enumerating all the cases can be
computationally expensive sometimes, as we discuss next.

C. MEW scalability
The step with higher computational cost is the allocation

of quantum memories (S1), which involves computing (8),
(9), and (10). In brief, the maximization in (8) is over the
set of all possible memory allocations, which has cardinality
|M| =

(
N
M

)
.6 Furthermore, we need to compute (9) and

6Assuming we allocate all the memories to clients.

Figure 4. Quantum switch with N = 7 clients and M = 6 memories. When
requests for end-to-end entanglements involve only two clients, the update in
(10) reduces to finding a maximum weighted matching in a complete graph.

MEW MEW2

. . .

Figure 5. Schematic illustration of how MEW compares to MEW2 for a
switch with N = 8 clients and M = 6 quantum memories. MEW has to find
a maximum weighted matching in each of the

(8
6

)
= 28 different complete

graphs (with 6 nodes each). MEW2 selects a special type of matching with
at most M/2 edges in the 8-complete graph.

(10) for every memory allocation m ∈ M and network
connectivity k ∈ K(m) respectively. We could compute (10)
only once per switch connectivity since a switch connectivity
can be obtained by different quantum memory allocations
(see example in Figure 3). However, the number of possible
switch connectivities increases exponentially with the number
of memories since |K(m)| = 2M . In addition, the update
in (10) requires finding a maximum-weighted matching in
a complete hypergraph,7 which is known to be an NP-hard
problem [30].

In sum, MEW does not scale well with N and M since it
solves, in the worst case, an exponential number of NP-hard
problems for every memory allocation. However, MEW can be
used effectively when N , M and R are not very large. In the
next section, we focus on a special case where we can derive
a variant of MEW (MEW2) that has polynomial complexity.

IV. MEW2: EFFICIENT SCHEDULING FOR BIPARTITE
REQUESTS AND SUCCESSFUL LLES

In this section, we study the case where:

• (i) LLE attempts are always successful (i.e., pn = 1,
∀n ∈ {1, . . . , N}), and

• (ii) Requests involve only two clients.8

This case is important because of two reasons. First, we can
extend the duration of a time slot to perform entanglement

7A hypergraph is a generalization of a graph in which an edge can connect
any number of vertices.

8Without loss of generality we assume that M is even. With bipartite
requests, having an odd number of memories means that there will be an
unused memory.

distillation and increase the probability that every LLE suc-
ceed.9 Second, every multipartite request between clients can
be divided into (multiple) bipartite ones. That is because two-
qubit gates are universal, i.e., every quantum program can be
implemented with two-qubit gates [22].

This case allows us to derive a variant of MEW (MEW2)
that has lower computational cost. Specifically, we can allocate
memories and select which requests to serve by finding a
special type of matching with at most M/2 edges in an N -
complete graph (see Algorithm 2).10

A. Motivation: Complexity of MEW

When end-to-end entanglement requests involve only two
clients, (10) corresponds to finding a maximum weighted
matching in the complete graph of the clients with an active
LLE (see Figure 4). Finding such matching has polynomial
time complexity (see, for example, the survey in [31]). The
assumption that LLEs are always successful is useful to reduce
the number of times we need to call (10). In particular, we have
that a memory allocation is associated with a single switch
connectivity. Hence, |K(m(t))| = 1 for all m(t) ∈ M and

µ(m(t), Q(t)) = w(k(t), Q(t))

since m(t) = k(t). In sum, we can solve (10) in polynomial
time and only once for every admissible memory allocation.
Yet, that can still be too much in some cases. For example, if
N = 16 and M = 8, we need to find a maximum weighted
matching of

(
16
8

)
= 12, 870 different graphs to make a single

memory allocation decision.

B. Maximum Expected Weight 2 (MEW2)

We propose Maximum Expected Weight 2 (MEW2), a policy
that selects a memory allocation by obtaining a special type
of matching in the N -complete graph (Algorithm 2). The
intuition behind MEW2 is shown in Figure 5 for a switch with
N = 8 clients and M = 6 memories. Recall that (S1) in MEW
computes a maximum weighted matching in

(
N
M

)
different M -

complete graphs, and picks one that has maximum weight.
Observe from the figure that such matching is also a (non-
maximal) matching in the N -complete graph. Thus, we can
replace step (S1) in MEW by directly computing a matching
with maximum weight among the matchings that have at most
M/2 edges. We have the following corollary of Theorem 1.

Corollary 1 (Theorem 1). Consider the setup of Theorem 1
where the LLE attempts are always successful (i.e., pn =
1,∀n ∈ {1, . . . , N}). Also, suppose that requests involve
connecting two clients and that M is even. Then, MEW2
ensures that the queues are strongly stable.

Proof: See Appendix (Section VII-B).

9Note that there is a trade-off between reducing the duration of a time slot
(thus increasing the number of service requests per unit of time), and increase
the probability that LLEs succeed.

10An N -complete graph is a graph with N nodes, in which each pair of
graph vertices is connected with an edge. The edges’ weights are the queue
backlogs.

Algorithm 2 (MEW2)
1: Set: t = 0
2: while switch is operating do
3: t← t+ 1
4: (S1b) Quantum memory allocation: Select a matching with

at most M/2 edges in the N -complete graph with maximum
possible weight:

l(t) ∈ argmax
u∈O

R∑
r=1

Qr(t) ur, (12)

where O := {u ∈ PN :
∑R

r=1 ur ≤ M/2} and PN the set
of matchings in the N -complete graph.
Assign a memory to every client/node that is connected to an
edge in l(t), i.e.,

m(t) ∈ {m ∈M : l(t) ∈ P(C(m))}, (13)

where C(m) is the complete graph of the clients n ∈
{1, . . . , N} with mn = 1.

5: (S2b) LLE generation: Generate LLEs with the clients that
have a memory connected.

6: (S3b) Requests service: Select

b(t) = l(t)

7: (S4b) Queue update:

Q(t+ 1) = [Q(t)− b(t)]+ +A(t) (14)

8: end while

Finding the matching described in (12), which characterizes
the complexity of MEW2, can be done in polynomial time.
In particular, we can find such matching by augmenting the
N -complete graph and then computing a maximum weighted
matching. Specifically, the augmented graph has n−M virtual
nodes connected to the others with edges that have infinite
weight. The solution to (12) corresponds to a maximum
weighted matching of the augmented graph, which can be
found in polynomial time [32], [31].

V. NUMERICAL EVALUATION

In this section, we perform three different simulations to
evaluate the performance of MEW and MEW2. Our goal is
to illustrate the algorithms’ behavior in different scenarios
(e.g., request load, LLEs generation) and to study MEW when
the update in (8) is carried out approximately. In particular,
when MEW uses only l memory allocations out of all the(
N
M

)
possibilities (Sections V-B and V-C). We refer to such

algorithm as l-Approximate MEW.

A. Simulation 1: Performance of MEW under different arrival
rates

This simulation evaluates the performance of MEW when
the requests arrive with three different intensities: 70%, 99%,
and 120% of the total load that the switch can support.11

For the simulation, we set N = 6, M = 3, and R = 8,
where all the requests involve connecting three clients (i.e.,

11An intensity of 100% is at the boundary of the capacity region.

0 1000 2000 3000 4000 5000
Iteration

0

20

40

60

80

100

Av
er
ag

e
Su

m
 o
f B

ac
kl
og

s

70% Traffic Intensity
99% Traffic Intensity
120% Traffic Intensity

Figure 6. Illustrating the simulation in Section V-A: The evolution of MEW
for a quantum switch with 6 clients and 3 memories for different arrival rates.
LLE attempts succeed with probability 0.9. Each line is the average of 10
different realizations.

the requests are tripartite). The probability of the LLE attempts
being successful is fixed to pn = 0.9 for all clients and loads.

We run MEW for the three different loads and show the
evolution of the queue occupancies over time in Figure 6.
Observe from the figure that when the arrival rates are in the
interior of the capacity region (70% and 99%), the backlogs
remain bounded. However, note that the “saturation” points
are different, which is in line with the queue stability bound
in Theorem 1. Higher intensity (i.e., smaller ϵ in Theorem 1)
implies larger backlogs. Finally, observe from the figure that
when the request arrival intensity is equal to 120% (outside
of the capacity region), the queues are not stable since their
occupancy increases linearly.

Conclusions: MEW stabilizes the queues when the arrivals
are in the interior of the capacity region. The average queue
occupancies depend on how close the long-term arrival rates
are to the boundary of the capacity region (Theorem 1).

B. Simulation 2: MEW with memory allocation decision dead-
lines

Recall from Section III-C that MEW needs to solve (10)
multiple times for every memory allocation. However, we may
not be able to evaluate all possible memory allocations since
in practice we need to select one within a time deadline. To
capture that, we reduce the search space of the problem in (8).

As in Section V-A, we consider N = 6 clients, M = 3
memories, and probabilities for successful LLE attempts equal
to pn = 0.9 for all clients. However, we now consider all types
of bipartite and tripartite requests (i.e., R =

(
6
2

)
+

(
6
3

)
= 35),

hence the time needed to compute (10) increases.
We run MEW and the {1, 10}-Approximate variant for

different arrival rate intensities (70%, 99%, and 120%) and
show the results in Figure 7. Observe from the figure that
MEW stabilizes the queues when the arrivals are in the interior
of the capacity region. However, for the l-approximation, the
stability depends on the value of l and the traffic intensity.
Specifically, the 1-Approximate MEW stabilizes the system
when the traffic intensity is 70% (Figure 7a), but not when
the intensity is equal to 99% (Figure 7b). In contrast, the 10-
Approximation keeps the queues bounded similar to MEW.

0 2000 4000 6000 8000 10000
Iteration

0
10
20
30
40
50
60
70

Av
er
ag

e
Su

m
 o
f B

ac
kl
og

s
MEW
1-Approximate MEW
10-Approximate MEW

(a) 70% Traffic intensity

0 10000 20000 30000 40000 50000
Iteration

0

200

400

600

800

1000

Av
er
ag

e
Su

m
 o
f B

ac
kl
og

s

MEW
1-Approximate MEW
10-Approximate MEW

(b) 99% Traffic intensity
Figure 7. Illustrating the simulation in Section V-B: The evolution of MEW
and {1, 10}-Approximate MEW for a quantum switch with N = 6, M = 3
and pn = 0.9 for every client n. Each line is the average of 10 different
realizations.

0 10000 20000 30000 40000 50000
Iteration

0
100
200
300
400
500
600
700

Av
er
ag

e
Su

m
 o
f B

ac
kl
og

s

MEW
MEW2
1-Approximate MEW

Figure 8. Illustrating the simulation in Section V-C: The evolution of MEW,
MEW2 and 1-Approximate MEW for a quantum switch with N = 7,
M = 4 and bipartite requests. The traffic intensity is 99% and the LLE
attempts succeed with probability 0.9. Each line is the average of 10 different
realizations.

Conclusions: The l-Approximate MEW can stabilize the
queues when the value of l is large enough. How large l should
be is related to how close the arrival rates are to the boundary
of the capacity region. As future work, it is interesting to
investigate how the capacity region scales when the memory
allocation is obtained approximately (e.g., as a function of the
parameter l).

C. Simulation 3: Performance of MEW2

In this simulation, we compare MEW2 to MEW and 1-
Approximate MEW in a switch with N = 7 clients and
M = 4 memories. The traffic intensity is fixed to 99%, and
we assume that the LLE attempts are always successful. Also,

all the requests for end-to-end entanglements are bipartite with
R =

(
7
2

)
= 21.

We run the three algorithms and show the results in Figure
8. Observe from the figure that MEW2 can keep the queues
stable and that its behavior is similar to MEW. Nonetheless,
recall that MEW has as higher computational cost than MEW2
(see discussion in Section IV). Next, observe from Figure 8
that the 1-Approximate MEW (which has a comparable cost
to MEW2) cannot stabilize the queues.

Conclusions: The behavior of MEW2 is similar to MEW
even though its complexity is significantly lower. The 1-
Approximate MEW does not keep the queues stable despite
having a similar computational cost to MEW2.

VI. CONCLUSIONS

In this paper, we have studied the problem of operating a
quantum switch with memory constraints. The switch has to
allocate quantum memories to clients to generate link-level
entanglements (LLEs), and then use these to serve end-to-
end entanglements requests. The paper’s main contribution is
twofold: (i) to characterize the switch’s capacity region, and
(ii) to propose a policy (MEW) that is throughput optimal. We
also present MEW2, a polynomial time variant of MEW tai-
lored to the case where end-to-end entanglements are bipartite
and LLE attempts are always successful.

VII. APPENDIX

A. Proof of Theorem 1

We prove that the queues are stable by using a quadratic
Lyapunov function, and ultimately showing that the proposed
policy has expected negative drift. That is, the queues at time
slots t and t+1 satisfy: E[∥Q(t+1)∥2−∥Q(t)∥2] < 0, where
the expectations are w.r.t. the (i) request arrivals; (ii) successful
LLEs; and (iii) all possible queue values at time t. To start,
observe that

∥Q(t+ 1)∥2 =

= ∥[Q(t)− b(t)]+∥2 + ∥A(t)∥2 + 2

R∑
r=1

[Qr(t)− br(t)]
+Ar(t)

≤ ∥Q(t)− b(t)∥2 + ∥A(t)∥2 + 2

R∑
r=1

[Qr(t)− br(t)]
+Ar(t)

= ∥Q(t)∥2 + ∥b(t)∥2 + ∥A(t)∥2 − 2

R∑
r=1

Qr(t)br(t)

+ 2

R∑
r=1

[Qr(t)− br(t)]
+Ar(t)

≤ ∥Q(t)∥2 + ∥b(t)∥2 + ∥A(t)∥2 − 2

R∑
r=1

Qr(t)br(t)

+ 2

R∑
r=1

Qr(t)Ar(t)

= ∥Q(t)∥2 + ∥A(t)∥2 + ∥b(t)∥2 + 2

R∑
r=1

Qr(t)(Ar(t)− br(t)).

Next, since ∥A(t)∥2 ≤ N2, ∥b(t)∥2 ≤ N2 (by assumption),
and E[A(t)] = λ by assumption, we can take expectations
with respect to Ar(t) for a fixed queue Q(t) to obtain:

E[∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)]

≤ 2N2 + 2

R∑
r=1

Qr(t)(λr − br(t)) (15)

We proceed to upper bound the expected value of
−
∑R

r=1 Qr(t)br(t). To start, because b(t) is a random vector
that depends on the switch connectivity and memory allocation
at time t, we have

E

[
−

R∑
r=1

Qr(t)br(t)

]
= −

R∑
r=1

Qr(t)µr(m(t), Q(t))

where µr(m(t), Q(t)) is defined in (9). Note that Q(t) does
not depend on the switch connectivity in time slot t. Combin-
ing the last equation with (15), we have

E[∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)]

≤ 2N2 + 2

R∑
r=1

Qr(t)(λr − µr(m(t), Q(t))).
(16)

where the expectation is with respect to the switch connectiv-
ities for a fixed memory allocation.

Next, observe that the memory allocation in (8) ensures that:

−
R∑

r=1

Qr(t)µr(m(t), Q(t))

≤ −
R∑

r=1

Qr(t)µr(m,Q(t)) ∀m ∈ M. (17)

since µ(m(t), Q(t)) maximizes
∑R

r=1 Qr(t)µr(m(t), Q(t)).
Now, let θm ≥ 0 with

∑
m∈M θm = 1 and observe that

−
R∑

r=1

Qr(t)µr(m(t), Q(t))

= −
∑

m∈M
θm

R∑
r=1

Qr(t)µr(m(t), Q(t))

(a)

≤ −
∑

m∈M
θm

R∑
r=1

Qr(t)µr(m,Q(t)),

(b)
= −

∑
m∈M

θm

R∑
r=1

Qr(t)
∑

k∈K(m)

P(k;m)wr(k,Q(t))

= −
∑

m∈M
θm

∑
k∈K(m)

P(k;m)

R∑
r=1

Qr(t)wr(k,Q(t))

where (a) follows by (17) and (b) by (9).
Now, recall w(k,Q(t)) maximizes

∑R
r=1 Qr(t)wr(k,Q(t))

because how we defined it in (10), and let

δm,k
b ≥ 0 for all b ∈ B(m, k),

∑
b∈B(m,k)

δm,k
b = 1

for every k ∈ K(m) and m ∈ M. Using the same strategy as
before, we have

−
R∑

r=1

Qr(t)wr(k,Q(t)) k ∈ K(m)

= −
∑

b∈B(m,k)

δm,k
b

R∑
r=1

Qr(t)wr(k,Q(t))

(a)

≤ −
∑

b∈B(m,k)

δm,k
b

R∑
r=1

Qr(t)br

= −
R∑

r=1

Qr(t)
∑

b∈B(m,k)

δm,k
b br

where b in inequality (a) holds for any vector in B(m, k).
Combining the previous equations, we obtain

−
R∑

r=1

Qr(t)µr(m(t), Q(t)) ≤ −
R∑

r=1

Qr(t)b̂r

where

b̂ =
∑

m∈M
θm

∑
k∈K(m)

P(k;m)
∑

b∈B(m,k)

δm,k
b b

is any vector in Λ (Proposition 1). Hence, from (16), we have

E[∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)]

≤ 2N2 + 2

R∑
r=1

Qr(t)(λr − b̂r(t))

The rest of the proof follows the usual max-weight argu-
ments. Because λr + ϵ ≤ b̂r for some ϵ > 0 by assumption, it
holds

E[∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)]

≤ 2N2 − 2

R∑
r=1

Qr(t)ϵ

Now, take expectations with respect to all the possible values
of Q(t) to obtain

E[∥Q(t+ 1)∥2 − ∥Q(t)∥2] ≤ 2N2 − 2

R∑
r=1

Qr(t)ϵ, (18)

and observe that E[∥Q(t + 1)∥2 − ∥Q(t)∥2] < 0 when∑R
r=1 Qr(t) > 2N2

2ϵ . That is, the queue drift is negative.
Finally, sum (18) from t = 1, . . . , T to obtain

E[∥Q(T + 1)∥2]− E[∥Q(0)∥2]

≤ 2TN2 − 2ϵ

T∑
t=1

R∑
r=1

E[Qr(t)]

Rearranging terms and dividing by T yields

1

T

T∑
t=1

R∑
r=1

E[Qr(t)] ≤
N2

ϵ
+

∥Q(0)∥2

2Tϵ
,

and taking T → ∞ we obtain the stated result.

B. Proof of Corollary 1

Let C(m) be the complete graph that results from the clients
n ∈ {1, . . . , N} for which mn = 1. Moreover, let P(G) be the
set of matchings of a graph G, and PN be the set of matchings
of the complete graph with N clients. The proof of Corollary
1 relies on finding a policy that is equivalent to MEW, which
we proved in Theorem 1 that stabilizes the queues.

We can rewrite step (S1) of MEW as follows:

m(t) ∈ argmax
m∈M

max
u∈P(C(m))

R∑
r=1

Qr(t) ur. (19)

Problem (19) summarizes MEW when LLE attempts are
always successful and the requests are bipartite. That holds
true because (i) its solution picks the memory allocation of
(S1), and (ii) the maximizer of the inner optimization problem
is the final service vector of step (S3). Let M∗(t) be the set
of solutions to problem (19) and define the sets

Π :=
⋃

m∈M

P(C(m)), O := {u ∈ PN :

R∑
r=1

ur ≤M/2}.

Recall that M is even. Then, step (S3), is equivalent to

b(t) ∈
⋃

m∗∈M∗(t)

argmax
u∈P(C(m∗))

R∑
r=1

Qr(t)ur (20)

= argmax
u∈Π

R∑
r=1

Qr(t)ur

= argmax
u∈O

R∑
r=1

Qr(t)ur. (21)

Therefore, step (S3) of MEW can be solved immediately by
solving the problem (21) (see step (S1b) in MEW2). Note that
(21) does not depend on the optimal set M∗ and therefore we
can solve it before allocating the quantum memory. However,
to characterize the policy we have to find a memory allocation
that would make b(t) computed in (21) a feasible service
vector. In (19) note that any memory allocation that includes
the clients involved in the matching b(t) (step (S1b)), belongs
in M∗ and therefore would be an optimal memory allocation.

REFERENCES

[1] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[3] Ibm unveils new roadmap to practical quantum computing
era; plans to deliver 4,000+ qubit system. [Online]. Available:
https://newsroom.ibm.com/2022-05-10-IBM-Unveils-New-Roadmap-
to-Practical-Quantum-Computing-Era-Plans-to-Deliver-4,000-Qubit-
System

[4] “IBM unveils breakthrough 127-qubit quantum processor,” Available
at https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-
127-Qubit-Quantum-Processor.

[5] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[6] R. Van Meter and S. J. Devitt, “The path to scalable distributed quantum
computing,” Computer, vol. 49, no. 9, pp. 31–42, 2016.

[7] S. Guha and C. Gagatsos, “Cluster-state quantum computing methods
and systems,” Jul. 7 2022, uS Patent App. 17/594,874.

[8] C. Qiao, Y. Zhao, G. Zhao, and H. Xu, “Quantum data networking
for distributed quantum computing: Opportunities and challenges,” in
INFOCOM. IEEE, 2022, pp. 1–6.

[9] A. Yimsiriwattana and S. J. Lomonaco Jr, “Generalized ghz states and
distributed quantum computing,” arXiv: quant-ph/0402148, 2004.

[10] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[11] J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Exper-
imental entanglement swapping: entangling photons that never inter-
acted,” Physical review letters, vol. 80, no. 18, p. 3891, 1998.

[12] R.-B. Jin, M. Takeoka, U. Takagi, R. Shimizu, and M. Sasaki, “Highly
efficient entanglement swapping and teleportation at telecom wave-
length,” Scientific reports, vol. 5, no. 1, pp. 1–7, 2015.

[13] W. Dai and D. Towsley, “Entanglement swapping for repeater
chains with finite memory sizes,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.10994

[14] M. G. de Andrade, W. Dai, S. Guha, and D. Towsley, “Optimal
policies for distributed quantum computing with quantum walk control
plane protocol,” in 2021 IEEE International Conference on Quantum
Computing and Engineering (QCE), 2021, pp. 452–453.

[15] C. Cicconetti, M. Conti, and A. Passarella, “Request scheduling in
quantum networks,” IEEE Transactions on Quantum Engineering, vol. 2,
pp. 2–17, 2021.

[16] L. Le and T. N. Nguyen, “Dqra: Deep quantum routing agent for
entanglement routing in quantum networks,” IEEE Transactions on
Quantum Engineering, vol. 3, pp. 1–12, 2022.

[17] N. K. Panigrahy, P. Dhara, D. Towsley, S. Guha, and L. Tassiulas, “Opti-
mal entanglement distribution using satellite based quantum networks,”
arXiv preprint arXiv:2205.12354, 2022.

[18] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the exact analysis
of an idealized quantum switch,” SIGMETRICS Perform. Eval. Rev.,
vol. 48, no. 3, pp. 79–80, mar 2021.

[19] P. Nain, G. Vardoyan, S. Guha, and D. Towsley, “Analysis of a tripartite
entanglement distribution switch,” Queueing Systems, 2022.

[20] W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in
quantum switches: Protocol design and stability analysis,” 2021.
[Online]. Available: https://arxiv.org/abs/2110.04116

[21] T. Vasantam and D. Towsley, “A throughput optimal scheduling policy
for a quantum switch,” in Quantum Computing, Communication, and
Simulation II, P. R. Hemmer and A. L. Migdall, Eds. SPIE, mar 2022.

[22] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[23] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking, 2006, vol. 1, no. 1.

[24] J.-W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement
purification for quantum communication,” Nature, vol. 410, no. 6832,
pp. 1067–1070, 2001.

[25] Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang,
H. Liu, M.-Y. Zheng, X.-P. Xie et al., “Entanglement of two quantum
memories via fibres over dozens of kilometres,” Nature, vol. 578, no.
7794, pp. 240–245, 2020.

[26] G. Bacciagaluppi, “The Role of Decoherence in Quantum Mechanics,”
in The Stanford Encyclopedia of Philosophy, Fall 2020 ed., E. N. Zalta,
Ed. Metaphysics Research Lab, Stanford University, 2020.

[27] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[28] M. J. Neely, “Stability and capacity regions or discrete time queueing
networks,” arXiv preprint arXiv:1003.3396, 2010.

[29] L. Tassiulas, “Scheduling and performance limits of networks with con-
stantly changing topology,” IEEE Transactions on Information Theory,
vol. 43, no. 3, pp. 1067–1073, 1997.

[30] J. Han and A. Treglown, “The complexity of perfect matchings
and packings in dense hypergraphs,” 2016. [Online]. Available:
https://arxiv.org/abs/1609.06147

[31] A. Schrijver et al., Combinatorial optimization: polyhedra and effi-
ciency. Springer, 2003, vol. 24.

[32] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathemat-
ics, vol. 17, pp. 449–467, 1965.

