
Secure Middlebox-Assisted QUIC
Mike Kosek, Benedikt Spies, Jörg Ott

Technical University of Munich, Germany
[kosek | spiesbe | ott]@in.tum.de

Abstract—While the evolution of the Internet was driven by
the end-to-end model, it has been challenged by many flavors
of middleboxes over the decades. Yet, the basic idea is still
fundamental: reliability and security are usually realized end-to-
end, where the strong trend towards ubiquitous traffic protection
supports this notion. However, reasons to break up, or redefine
the ends of, end-to-end connections have always been put forward
in order to improve transport layer performance. Yet, the
consolidation of the transport layer with the end-to-end security
model as introduced by QUIC protects most protocol information
from the network, thereby eliminating the ability to modify
protocol exchanges. In this paper, we enhance QUIC to selectively
expose information to intermediaries, thereby enabling endpoints
to consciously insert middleboxes into an end-to-end encrypted
QUIC connection while preserving its privacy, integrity, and
authenticity. We evaluate our design in a distributed Performance
Enhancing Proxy environment over satellite networks, finding
that the performance improvements are dependent on the path
and application layer properties: the higher the round-trip time
and loss, and the more data is transferred over a connection, the
higher the benefits of Secure Middlebox-Assisted QUIC.

I. INTRODUCTION

The end-to-end model and networks doing just routing and
forwarding have served the evolution of the Internet and a
myriad of applications well. Even though this principle has
been challenged by many flavors of middleboxes appearing
over the decades, it is still fundamental to service and content
delivery in the Internet: reliability, congestion control, and
security are usually realized by end-to-end (transport) con-
nections. The (recent) strong push towards ubiquitous traffic
protection, naturally end-to-end, emphasizes this.

Yet, reasons to break up—or redefine the ends of—end-
to-end connections have repeatedly been put forward, e.g., to
improve performance for the user and/or the network operator.
Such optimizations may take different shapes, illustrated by:
(a) Content Distribution Networks effectively “cheat” on the
origin server certificates to allow for faster content and service
delivery to the users from closer-by locations: they do maintain
the end-to-end transport but redefine the server-end [1].
(b) Operators of (sub)networks with path properties that are
notably different from the “typical” Internet characteristics
often apply flavors of connection splitting using Performance
Enhancing Proxies (PEPs) to create independent control loops,
typically for congestion or error control, in order to speed up
connections at the transport layer [2].
(c) Live streaming contribution and distribution networks seek
to push media contents to a production system and then fan-
out connections to the consumers, effectively creating transport
layer overlays. The branching points in such overlays may

ISBN 978-3-903176-57-7© 2023 IFIP

need to perform rate adaptation to match the capabilities of
their downstream receivers but, at the same time, shall not be
able to access the content carried in those streams [3].

The middleboxes in the above examples rely on access to
the information conveyed in the end-to-end connection and on
the ability to modify the protocol exchanges. Because of this
reliance, any such intermediate system has to make (implicit)
assumptions about the end-to-end protocol behavior. Acting
upon these assumptions may contribute to the ossification of
the Internet as the expected behavior may become a prereq-
uisite for traffic to pass now and in the future [4], [5]. Thus,
middleboxes—in particular the supposedly transparent ones—
built with good intentions of performance improvement, may
hinder future network and protocol evolution.

There appears to be general consensus on protecting the
end-to-end information exchange from observation and mod-
ification inside the network, rendering any sort of transparent
middlebox a non-starter1. This implies that introducing “in-
network” functions like the above require a conscious decision
and consent by either or both endpoints of an end-to-end
connection to selectively expose information to specific nodes.

Such controlled information exposure can basically happen
in two ways: (1) In-band of the end-to-end transport connec-
tion by explicitly including middleboxes en route either during
the initial setup as is the case with explicitly chosen proxies, or
by inserting them later as could be achieved with redirection
mechanisms, or (2) Out-of-band of the end-to-end transport
connection by establishing an independent signaling channel
between one or both endpoints and one or more middleboxes.
In both cases, the amount of information shared is controllable
by the endpoints: in the out-of-band case, this information is
explicitly compiled and sent to the middleboxes while, in the
in-band case, different levels of encryption can be used to
selectively expose information flowing end-to-end.

The intermediary functions themselves may be located on-
path, i.e., within the path determined by IP routing; this
enabled transparent middlebox operation in the past, e.g., if
PEPs were on the default route. Or they may be off-path, in
which case they need to be configured or actively discovered.
To achieve controlled information exposure, endpoints need to
become explicitly aware of and consent to the middleboxes
in the first place, which reduces the former advantage of
(transparent) on-path functions.

The actions a middlebox can sensibly perform depend on
how much it is aware of the protocol state and is authorized to

1This consensus is witnessed, e.g., by the design of QUIC [6] to protect
pretty much all protocol information from the network, or by over-the-top
name resolution such as DNS-over-HTTPS [7] or DNS-over-TLS [8].

change it, i.e., has the appropriate keying material to interact
with the endpoints. Endpoints may share detailed protocol state
and thus enable modifying this state at the cost of providing
more insight into the application interaction patterns (e.g., to
adapt protocol behavior across different network segments).
Without access to the protocol state, a middlebox does not
become part of the end-to-end protocol and thus the communi-
cation remains opaque, which limits its operational capabilities
to handling of the packets passing through. These may incur
prioritizing, delaying, dropping, marking, or otherwise shaping
traffic [9], but also error repair (retransmission, Forward Error
Correction (FEC)) [10]. These may also be applied to impact
the protocol state indirectly, as the modified packet flow (e.g.,
timing, losses) is interpreted by the protocol state machines
at the endpoints. As a very recent example of an out-of-band
signaling, Yuan et al. [9] introduce a design that works with
on-path middleboxes to perform packet scheduling adaptation
and also foresees other operations as a function of information
shared via explicit endpoint signaling.

In this paper, we take a different road. We explore an
in-band design to enable building middleboxes for QUIC in
a way that preserves the privacy, integrity, and authenticity
of information end-to-end while supporting QUIC-specific
adaptation functions in selected middleboxes. Our design of
Secure Middlebox-Assisted QUIC (SMAQ, see Fig. 1 and §II)
has three complementary elements: (1) a state handover mech-
anism that allows endpoints to consciously insert a middlebox
into an end-to-end encrypted QUIC connection and share
keying material to operate on selected protocol state; (2)
enhanced QUIC connection migration that enables directing
connection traffic also to off-path middleboxes; and (3) an
additional security layer to preserve end-to-end security in
spite of middleboxes. The main non-functional goal is lever-
aging readily available QUIC mechanisms such as connection
migration and key exchange as much as possible. We use the
sample case of a distributed PEP to isolate the specifics of
a satellite network segment as an evaluation scenario in §III.
Following, we extensively discuss limitations in §IV before
§V details related work and we conclude in §VI.

II. DESIGN

Secure Middlebox-Assisted QUIC (SMAQ) allows endpoints
to consciously insert middleboxes into an end-to-end en-
crypted QUIC connection while preserving its privacy, in-
tegrity, and authenticity. We assume that the middlebox is
trusted to a certain extent to perform data forwarding and
enhancement functions, e.g., since it is run by the endpoint’s
network operator. Note again that the degree of trust is limited
to QUIC protocol operation and excludes access to application
data. We stipulate further that trust into a middlebox implies
entitling it to add additional—mutually trusted—middleboxes
(of the same provider) as a practical consideration since mid-
dleboxes might be in a much better position to locate suitable
further intermediaries for a given connection compared to the
endpoint having to discover those.

Fig. 1. SMAQ design overview: Following an end-to-end QUIC Handshake
with an additional security layer (blue), the client hands over its QUIC state
to a middlebox (green), which then splits the original end-to-end connection
in-band into two independent connections using connection migration (orange
and magenta).

We focus on the design and initial evaluation of mid-
dlebox extensions for QUIC connections and deliberately
leave the discovery of middleboxes as well as authorization
and auditability for future work (see §IV). In the following,
we assume that a client already discovered and established
a connection to a middlebox in the past enabling 0-RTT
connection establishment. Moreover, we assume that QUIC
Address Validation Using Retry Packets [6, Sec. 8.1.2] is dis-
abled: While previous work showed that enforcing the traffic
amplification limit effectively safeguards against amplification
attacks, Address Validation Using Retry Packets can safely be
skipped, thereby reducing first time connection establishments
by 1×RTT [11].

We first detail the SMAQ connection setup and its overhead
in §II-A and §II-B, followed by §II-C outlining exception
handling. Subsequently, §II-D highlights the state properties,
and §II-E details the mechanisms leveraged to ensure end-to-
end security of application data. The section concludes with a
discussion on the security considerations in §II-F.

A. Connection Setup

The SMAQ connection setup is detailed in Fig. 2. First, a
QUIC connection between a client and a server is initiated
(blue), where both indicate support for SMAQ by including
the smaq transport parameter within the Initial packet as
defined by QUIC [6, Sec. 7.4]. Subsequently, both client
and server derive keying material for an additional security
layer on top of the QUIC transport security itself: The Extra
Application Data Security (XADS) is used for encrypting the
application layer data, where the derived keys are maintained
exclusively by client and server (see §II-E). At this point,
both the cryptographic keys for the QUIC connection itself
and XADS are established. Hence, SMAQ is able to par-
allelize the completion of the end-to-end QUIC connection
(Fig. 2 blue) and the state handover to the middlebox, where
the latter is performed using an independently established
0-RTT QUIC connection (Fig. 2 green). Because the SMAQ
state contains the connection properties and cryptographic
information of the original connection, excluding XADS keys
(see §II-D), the middlebox is able to restore the state in-
band, splitting the connection into two independent control
loops (Fig. 2 orange and magenta). This is achieved with
QUIC’s connection migration feature: Since every QUIC
connection features a Connection ID (CID), connections are
identifiable independent of the endpoint IP addresses and
port numbers. Using non-zero-length CIDs, QUIC connections
can be maintained even across IP address or port number

Fig. 2. SMAQ connection setup using out-of-band 0-RTT handover (green)
following QUIC connection initiation (blue). Subsequent to the SMAQ state
restore, QUIC PING frames are send to the client (orange) and server
(magenta) to trigger QUIC connection migration on both endpoints, splitting
the QUIC connection in-band into two independent control loops. Data is
end-to-end encrypted between client and server with XADS keys (cyan).

changes [6, Sec. 5.1], e.g., when migrating to a new network.
Following the state restore, the middlebox sends QUIC PING
frames to client and server, triggering connection migration
on both endpoints while acting as a migrated server (client-
facing, Fig. 2 orange) and migrated client (server-facing, Fig. 2
magenta), respectively. Hence, SMAQ requires both the client
and server endpoint to migrate (see § IV).

The connection migration can only succeed once the
handshake is confirmed, i.e., the server has received the
QUIC Handshake packet, and the client has received the
HANDSHAKE_DONE frame [6, Sec. 9] (Fig. 2 blue). Once the mi-
gration of the client completes (server-facing, Fig. 2 magenta),
the server initiates Path Validation (PATH_CHALLENGE and
PATH_RESPONSE) on the migrated address to verify the reacha-
bility [6, Sec. 8.2]. This validation can be skipped between the
client and the middlebox as the reachability is already verified
with the SMAQ state handover and its response (Fig. 2 green).
Following connection migration, the connection is split into
two independent control loops, and the middlebox splices the
connection on behalf of the endpoints. The end-to-end security
of the application layer data is maintained (Fig. 2 cyan) as they
are protected by the XADS keys which are only known to the
client and server (see §II-D, §II-E).

Since QUIC connection migration is transparent to the
application layer, the SMAQ handover is transparent as well.
However, it must be prevented that client and server directly

exchange data during the handover process to ensure that
the restored state on the middlebox is consistent with the
handed over state. Since the client is the initiator of the SMAQ
handover, it simply does not send any data until the SMAQ
connection setup is completed. The server, on the other hand,
does not have any knowledge if a handover will be performed,
and therefore may send data; hence, the client is required to
drop any received data from the original server.

B. Connection Setup Overhead
A client of a regular QUIC connection is able to send appli-

cation data once the required keys are established, which cor-
responds to 1×RTT. Using SMAQ, however, the client cannot
send application data until the migration is completed, i.e., the
client has received the PING following the HANDSHAKE_DONE
frame (Fig. 2 orange). While the HANDSHAKE_DONE is received
after 2×RTTs, the time required for the PING to arrive depends
on the one-way delay between middlebox and client and on
the retransmission timer of the middlebox. Hence, in the best
case, the SMAQ connection setup requires slightly more than
2×RTTs if the middlebox is located on-path and close to
the client (e.g., within the same local network), resulting in
an initial overhead of SMAQ compared to QUIC of slightly
more than 1×RTT. At this point, our design does not consider
0-RTT connection establishment between client and server,
which may be exploited to further optimize SMAQ connection
establishment.

C. Exception Handling
§II-A and §II-B describe a successful connection setup, but

various issues may arise: If one endpoint does not (wish to)
support SMAQ, the smaq transport parameter is ignored [6,
Sec. 7.4] and a regular QUIC connection is established:
a SMAQ middlebox cannot be added to the connection
unilaterally.

Moreover, the server typically receives the QUIC PING after
the QUIC Handshake, at which point the HANDSHAKE_DONE
frame was already sent to the client. However, the
HANDSHAKE_DONE frame may be retransmitted after the migra-
tion of server and middlebox already completed. In this case,
the frame is send to the middlebox, which forwards it to the
client for the handshake to succeed. Furthermore, an endpoint
may receive the middlebox PING before the connection is
confirmed, which is also the expected behavior on the client.
In compliance with QUIC [6, Sec. 9], the endpoints do not
update the path on those early frames from another address, but
the middlebox resends it on its retransmission timer until the
migration completes or the connection migration fails (Fig. 2
red mark, illustrated for client only). If the migration fails for
either endpoint, the whole connection is closed by an error
or times out. Recovery mechanisms for failed migrations is
subject of future work.

D. State Properties
For state handover, the client creates a concise, serialized

state object containing only the essential connection proper-
ties and cryptographic information of the original connection

TABLE I
SMAQ STATE PROPERTIES.

Parameter Description

Active Connection IDs Active Connection IDs of client and server
with the associated sequence numbers

Stateless reset tokens All tokens with the associated Connection IDs
QUIC version Used QUIC version
Cipher suite Used TLS cipher suite
Key phase Number of the current key phase
Current traffic secrets Client and server phase traffic secrets, i.e.,

<sender>_application_traffic_secret_<phase>
Header protection keys Client and server header protection keys, i.e.,

<sender>_header_protection_key
Endpoint addresses IP addresses and ports of client and server
Transport parameters Sent transport parameters of client and server
Packet numbers Highest sent and received packet numbers

(excluding XADS keying material) required to restore its state
on the middlebox (see Tab. I). The state object can be created
as soon as the cryptographic keys for the QUIC connection
are established, i.e., the client received the QUIC Handshake
packet [12]. The state can only be restored if the QUIC
implementation of the middlebox supports the QUIC version,
cipher suite, and all transport parameters that are handed
over. If at least one requirement fails, the middlebox rejects
the handover with a SMAQ Error message, and the regular
QUIC connection is continued. If all requirements are met,
the successful handover is acknowledged with SMAQ OK (see
Fig. 2, green).

E. Extra Application Data Security (XADS)

To ensure end-to-end security of application data between
client and server, we present Extra Application Data Security
(XADS) which provides an additional security layer on top
of QUIC. Since QUIC without XADS uses the same crypto-
graphic keys to protect transport and application data, access
to one security context cannot be shared with a middlebox
independently from the other.

The XADS keying material remains on the endpoints, i.e,
it is not shared with the middlebox (see §II-D). Moreover,
it relies on the cryptographic TLS 1.3 handshake incorpo-
rated by the QUIC connection establishment which is de-
tailed in Fig. 3. After having received the Initial packet,
both client and server derive the xads_master_secret from
the exporter_master_secret using TLS keying material
exporters [13, Sec. 7.5] [14]. The key derivation is a one-way
pseudorandom function; i.e., the exporter_master_secret
can be used to derive arbitrary XADS key material, but not
vice versa. XADS uses the TLS 1.3 record protocol over
QUIC streams. For every opened unidirectional QUIC stream a
new secret is derived from the xads_master_secret. XADS
encapsulates the application data into TLS records, which
are protected by the corresponding client or server secret of
the current key phase; e.g., client_xse_0_secret_1 for
the client’s stream ID 0 within the 1st key phase. Hence,
by deriving the XADS keys from the cryptographic TLS 1.3
handshake incorporated by QUICs connection establishment,

Fig. 3. Derivation of cryptographic keys for QUIC and XADS. Due to forward
secrecy provided by HKDF, keys can only be derived in arrow direction.
<sender> is either client or server, <stream_id> is the ID of the stream to
protect. <phase> is the key phase, incremented by key updates.

no additional handshakes, and therefore no additional round
trips, are required for XADS.

After the first secret (i.e., key phase 0) for the XADS
stream has been derived from the xads_master_secret, it
is cryptographically independent of other streams, as well
as the other direction of a bidirectional stream. Hence, the
traffic secrets of every stream and direction can be updated
independently leveraging TLS 1.3 KeyUpdate [13, Sec. 4.6.3]:
When the lifetime of a traffic key is reached, a new key
is generated from the key of the previous phase, where the
forward secrecy relies on the Expand-Label function of HKDF
(HMAC-Based Key Derivation Function, [15]).

While TLS records are of variable length, a record can carry
at most 214 bytes of data with a minimum overhead of 22
byte per record [13, Sec. 5.2]; hence, the overhead induced
by XADSs’ TLS record encapsulation is at least ∼0.13 %.
Additionally, we investigated possible performance penalties
of XADS in comparison to regular QUIC, where we did not
find any significant differences in our scenarios while using
Hardware-assisted AES ciphers; a systematic performance eval-
uation is left for future work.

F. Security Considerations

SMAQ enables endpoints to consciously insert middleboxes
into an end-to-end encrypted QUIC connection while preserv-
ing its privacy, integrity, and authenticity. The fundamental
prerequisite for this is a secure end-to-end key exchange. With
SMAQ, the QUIC handshake remains end-to-end, enabling to
securely exchange the SMAQ transport parameter and derive
the XADS keys directly between endpoints [6, Sec. 7.4].

A SMAQ state contains the header protection keys and the
traffic secrets of the current key phase (see Tab. I). Since the
key derivation function is considered one-way [13, Sec. E.2],
traffic secrets of previous key phases, and secrets such as
the exporter master secret, are not exposed. However, with
the information contained in the SMAQ state, a middlebox
has full access to the QUIC connection itself, excluding the
XADS protected application data. Therefore, the SMAQ state
must be protected from access by third parties, must only
be transmitted on encrypted and authenticated channels, and
should be erased as soon as the state is no longer required.

Although all application data remains end-to-end encrypted,
the middlebox can infer information of the application layer
using metadata, e.g., by observing length and timing of en-
crypted records as discussed in [13, Sec. E.3]. Moreover, a

middlebox can also analyze individual stream behavior, which
can reveal information about different application contexts as
they are likely carried on different streams. Furthermore, a
middlebox can also manipulate, drop, or inject, frames, which
could cause unexpected application layer behavior.

Exposing some information to the middlebox is a necessary
tradeoff for its capabilities. Hence, a minimum level of trust
is required between clients and middleboxes. While our work
focusses on the design and evaluation of SMAQ, we leave
authorization, accountability, and auditability open for future
work (see §IV).
Takeaway: SMAQ enables endpoints to consciously insert
middleboxes into an end-to-end encrypted QUIC connection
while preserving its privacy, integrity, and authenticity: the
connection state of an endpoint is handed over to a middlebox,
thereby splitting the connection in-band into two independent
control loops using connection migration. Yet, the end-to-end
security is ensured with an additional encryption layer on top
of QUIC’s encryption.

III. CASE STUDY: DISTRIBUTED PERFORMANCE
ENHANCING PROXIES

We now apply SMAQ to realize Performance Enhancing
Proxies (PEPs) for QUIC connections, a typical use case
for splitting end-to-end connections into multiple independent
control loops [2], [16]–[19]. Distributed PEPs placed on an
ingress and an egress point of a network can be used to
enhance the transport connection within the enclosed path
segment by applying path specific optimizations. While the
design presented in §II illustrates the use of a single mid-
dlebox, SMAQ supports transitive state handover to multiple
middleboxes, thereby enabling a distributed PEP setup.

Fig. 4 shows the simplified SMAQ connection setup using
two distributed PEPs. Following the QUIC connection initi-
ation (blue), the state is handed over out-of-band from the
client to PEP #1 (green). Subsequently, a new altered SMAQ
state is created by PEP #1, where the client address is replaced
with the address of PEP #1 itself. This new state is send to
PEP #2 out-of-band (light green), which then migrates the
connection in-band to PEP #1 (magenta), as well as to the
server (petrol); subsequently, the server initiates Path Valida-
tion on the migrated address in order to verify the reachability.
This validation is not required on the path between client and
PEP #1, as well as the path between PEP #1 and PEP #2, as the
reachability is already verified with the SMAQ state handover.
The end-to-end path now consists of three individual QUIC
connections, splitting the connection into three independent
control loops. Yet, the end-to-end security of application layer
data between the endpoints is maintained using XADS (cyan).

While the distributed PEP setup includes two handovers, the
initial overhead in terms of required round trips (see Fig. 4,
rightmost) in comparison to QUIC is identical to a single
handover, i.e., slightly more than 1×RTT in the best case if
both PEPs are on-path and PEP #1 is close to the client (e.g.,
within the same local network). In this setup, the distributed
PEPs can enhance the transport connection on the enclosed

Fig. 4. Simplified SMAQ connection setup using out-of-band 0-RTT handover
(green, light green) following QUIC connection initiation (blue) using 2
distributed PEPs, splitting the QUIC connection in-band into 3 independent
control loops (orange, magenta, petrol). Data is end-to-end encrypted between
client and server with XADS keys (cyan).

path segment, e.g., by adjusting QUIC parameters like the
Congestion Control Algorithm (CCA) or the Initial Window.

A. Test Environment

For our case-study, we implement SMAQ by extending
quic-go, building smaq-pep to provide PEP optimizations,
smaq-perf to perform Middlebox Migration Time and Bulk
Download measurements, as well as smaq-http-perf to
perform Web Peformance measurements in a distributed PEP
environment using the open source Satellite Communication
Emulation Testbed [18]. The testbed enables reproducible
measurements over SATCOM networks while featuring link-
layer emulation using OpenSAND [20]. Thereby, the testbed
follows the distributed PEP setup as presented in Fig. 4,
where the PEPs are placed on the ingress and egress point
of the SATCOM network in order to optimize the transport
connection in between. To enable the reproduction of our
findings, we make the developed tools publicly available,
aiming to facilitate future studies using SMAQ [21].

Using the default settings of the Satellite Communication
Emulation Testbed, the link-layer goodput in server to client
direction is parametrized with 20 Mbps, and two satellite orbits
(Low Earth Orbit (LEO) and Geostationary Orbit (GEO))
with two loss profiles (random distribution of 0.01 and 0.1 %

loss) are evaluated. While 0.01 % loss represents real world
satellite conditions, 0.1 % loss is considered an edge case [18].
PEP #1 ist placed within the local network of the client;
hence, the RTT between client and PEP #1 is below 1 ms.
Moreover, we optimize the retransmission timer of the client-
facing connection of PEP #1 in order to reduce the overhead
of the time required for the retransmitted PING to arrive
at the client following the HANDSHAKE_DONE (see §II-A),
thus optimizing the SMAQ connection setup: the Initial
RTT estimation is set to the Smoothed RTT from a previous
connection [22, Sec. 5], and exponential backoff is disabled
until the migration succeeds. For the GEO orbit, the one-
way delay of the SATCOM connection between PEP #1 and
PEP #2 is set to 250 ms as derived by the speed of light in a
vacuum, where the LEO one-way delay is set to 16 ms based
on measurements performed using Starlink [18]. Moreover, the
one-way delay between PEP #2 and the server is configured
with 40 ms for both GEO and LEO orbits in order to emulate
their terrestrial distance, resulting in a total RTT of 580 ms for
GEO, and 112 ms for LEO [18]. While both PEPs are placed
on-path, and PEP #1 is located within the local network of
the client, our case study represents a best case environment
for SMAQ where the initial overhead corresponds to slightly
more than 1×RTT in comparison to QUIC.

Every combination of satellite orbit and loss profile is mea-
sured using an end-to-end QUIC connection (dubbed QUIC),
as well as a PEP-optimized SMAQ connection (dubbed
SMAQ-PEP), resulting in a total of 8 measurement scenarios.
The end-to-end QUIC measurements use the default QUIC
Congestion Control Algorithm (CCA) based on NewReno with
an initial congestion window of 10 packets [22, Sec. 7]. For
SMAQ-PEP, we use the identical settings for both client and
server, but optimize the SATCOM transport connection with
the distributed PEPs by using Hybla-Westwood [23] as CCA:
While Hybla [24] improves the congestion window increase
on high latency connections by being more aggressive in
comparison to NewReno, Westwood [25] improves the goodput
over links with high packet loss by continuously estimating the
usable bandwidth in order to minimize the congestion window
reduction on non-congestion induced packet loss.

B. Evaluation

We begin our evaluation by analyzing the Middlebox Mi-
gration Time of SMAQ-PEP, followed by Bulk Download
measurements for both SMAQ-PEP and QUIC connections.
We then present Web Performance measurements, highlighting
the potential benefits of SMAQ-PEP in comparison to QUIC
for web browsing. All measurements are performed using
QUIC version 1, where the Web Performance measurements
leverage HTTP/3 [26] on top of QUIC.
Middlebox Migration Time. We first verify our assumptions
of the initial overhead of the SMAQ-PEP connection setup
in comparison to QUIC. For this, we measure the time
between the client creating the SMAQ state (corresponding
to the client receiving the QUIC Handshake packet) until
SMAQ-PEP is able to send application data (corresponding

Fig. 5. Median received bytes after 10, 20, and 30 seconds bulk download
for 0.01 and 0.1 % loss in GEO (a, left) and LEO (b, right) orbits using QUIC
(blue) and SMAQ-PEP (orange).

to the client receiving PING, see Fig. 4 and §II-B). Since our
case study represents a best case environment for SMAQ-PEP
(see §III-A), the Middlebox Migration Time should correspond
to slightly more than 1×RTT. The measurements are repeated
100 times for both GEO and LEO orbits for 0.01 and 0.1 %
loss. For the Middlebox Migration Time, we find a median
of ∼585 ms for GEO, and a median of ∼117 ms for LEO,
each for both loss scenarios. Comparing the observations to
the expected RTTs of 580 ms for GEO and 112 ms for LEO,
we find a difference of ∼5 ms which we attribute to the time
required for the creation of the states and their restoration, and
the time required for the PING to arrive at the client following
the HANDSHAKE_DONE (see §II-B). Hence, the results confirm
our assumptions of the initial overhead of the SMAQ-PEP
connection setup to be slightly above one end-to-end RTT.
Bulk Download. For Bulk Download, we evaluate the bytes
received by the client over multiple time intervals: Following
connection establishment, the client sends an application layer
request to the server, which in turn sends randomized data to
the client while maximizing its goodput. Fig. 5 presents the
received bytes after 10, 20, and 30 seconds bulk download
following the client’s QUIC Initial for 0.01 and 0.1 % loss
in GEO (a, left) and LEO (b, right) orbits using QUIC (blue)
and SMAQ-PEP (orange). The measurements are repeated 100
times per scenario, and we present the medians as well as the
standard deviations over all measurement runs.

Evaluating the GEO orbit with an RTT of 580 ms (a, left),
we find that the client receives more bytes using SMAQ-PEP
in comparison to QUIC in every time interval and for every
loss configuration despite the initial overhead of the Middle-
box Migration. Analyzing 0.01 % loss, we find a maximum
relative increase of SMAQ-PEP in comparison to QUIC with
∼73 % after 10 s, decreasing to ∼33 % after 30 s. Yet, the
standard deviation of SMAQ-PEP with ∼1–2 MB is lower in
comparison to QUICs ∼4–15 MB. Evaluating 0.1 % loss, we
observe the same trends; however, the benefit of SMAQ-PEP
in comparison to QUIC is more pronounced with a relative
increase of bytes received with up to ∼494 % after 30 s.

For the LEO orbit with an RTT of 112 ms (b, right),
we observe that the received bytes using SMAQ-PEP are
comparable to QUIC for 0.01 % loss, where the standard
deviation is again lower using SMAQ-PEP. Yet, despite the
initial overhead of the Middlebox Migration, SMAQ-PEP does

Fig. 6. Relative median difference of approximated Page Load Time (aPLT)
of SMAQ-PEP in comparison to QUIC for 0.01 and 0.1 % loss in GEO
(a, left) and LEO (b, right) orbits for Tranco top 10 webpages. Number of
connections established by each webpage are in parenthesis. Sorted ascending
by the average number of bytes transferred per connection (in square brackets).
Negative values colored in green indicate a faster page load using SMAQ-PEP.

increase the bytes received in comparison to QUIC after 10
and 20 s slightly with ∼1–2 %, increasing to ∼7 % after 30 s.
Evaluating 0.1 % loss, we again observe a strong benefit of
SMAQ-PEP in comparison to QUIC with a maximum relative
increase of ∼193 % at 30 s, accompanied by a lower standard
deviation of ∼1–2 MB in comparison to QUICs ∼3–4 MB.

Combining our observations for both GEO and LEO orbits,
we find that the benefits of SMAQ-PEP increase the more
loss is present, resulting in an increase in bytes received with
a lower standard deviation despite the initial overhead of the
Middlebox Migration. We attribute the benefits to the usage of
the Hybla-Westwood CCA on the SATCOM connection (see
§III-A): With Westwoods resiliency against packet loss, and the
advantages of Hybla on high latency connections, the break-
even of SMAQ-PEP in comparison to QUIC is reached ∼1.9 s
(∼3.3×RTTs) on GEO orbits, respective ∼0.6 s (∼5.4×RTTs)
on LEO orbits following the client’s QUIC Initial.
Web Peformance. For our Web Performance measure-
ments, we evaluate the Page Load Time using HTTP/3 over
SMAQ-PEP in comparison to HTTP/3 over QUIC for the top
10 most popular webpages from the research-oriented Tranco
top list [27] as of December 22, 2022. We first download
the webpages leveraging wget with a User-Agent representing
Chrome 107, ensuring that all elements from all hostnames
required to render the webpage (images, fonts, scripts, etc.)
are downloaded. For the sake of simplicity, JavaScripts are
not executed, i.e., resources that are requested by those are not
considered. Subsequently, we issue self-signed TLS certificates
for each hostname of every webpage in order to serve all
hostnames within our emulation testbed on dedicated servers,
requiring the client to establish a new connection for each
hostname requested; with this, a realistic HTTP/3 client be-
havior is obtained. Therefore, the client requests all elements
from all hostnames required to render the webpage, enabling
the approximation of the Page Load Time: Since SMAQ is not

yet implemented in browsers, we evaluate the approximated
Page Load Time (aPLT) by leveraging smaq-perf, measuring
the time between the client’s QUIC Initial until all required
elements are received. Since both SMAQ-PEP and QUIC are
measured with the outlined methodology, our comparative
evaluation of the relative differences of the aPLT enables us
to assess the potential benefits of SMAQ-PEP in comparison
to QUIC in a typical web browsing use-case.

Fig. 6 presents the median relative aPLT difference of
SMAQ-PEP in comparison to QUIC for 0.01 and 0.1 % loss
in GEO (a, left) and LEO (b, right) orbits, where the measure-
ment are repeated 100 times per scenario. The webpages are
sorted ascending from top to bottom by the average number
of bytes transferred per connection (in square brackets), where
the number of connections established by each webpage are
presented in parenthesis. E.g., while 4 connections are estab-
lished by requesting google, 170 KB are transferred over each
of the 4 connections on average.

Evaluating the GEO orbit (a, left), we find that the page load
using SMAQ-PEP improves over QUIC for every webpage and
loss configuration with up to ∼29 % for 0.01 % loss (twitter),
and up to ∼72 % for 0.1 % loss (apple). On the other hand, the
LEO orbit (b, right) shows that SMAQ-PEP does prolong the
page load in comparison to QUIC for every webpage for the
0.01 % loss scenario, where for 0.1 % loss SMAQ-PEP does
improve over QUIC in 4 out of the 10 webpages.

Combining our observations for both GEO and LEO orbits,
we again find that the benefits of SMAQ-PEP increase the
more loss is present; yet, the initial overhead of the Middlebox
Migration does prolong the page load for most webpage/loss
configurations on the faster LEO satellite connection. Next to
the orbit and loss configuration, we find that the architecture
of the webpages is the most decisive factor for the observed
relative differences. Comparing the average number of bytes
transferred per connection for each webpage (Fig. 6, square
brackets, sorted ascending), we find that SMAQ-PEP tends to
be more beneficial in comparison to QUIC the more bytes
are transferred per connection. Hence, we constitute that the
higher the RTT and loss, and the more data is transferred
over a connection, the likelier that the initial overhead of
the Middlebox Migration is overcome, which in turn leads
to a higher benefit of SMAQ-PEP. However, the overhead is
typically only induced once per hostname: when browsing the
website, requests re-use the already established connections,
and subsequent pageloads directly benefit from SMAQ-PEP.
Takeaway: Our case-study shows the potential benefits of
SMAQ applied in a distributed PEP environment: While the
initial overhead of the Middlebox Migration does add ∼1 RTT
to the connection setup, the break-even is reached after
∼1.9 s (∼3.3 RTT) on GEO orbits and ∼0.6 s (∼5.4 RTT) on
LEO orbits for Bulk Downloads. While the Page Load Time
improves over GEO orbits using SMAQ, however, most LEO
page loads are prolonged, thereby showing the dependency
to the path properties and webpage architecture: The higher
the RTT and loss, and the more data is transferred over a
connection, the higher the potential benefits of SMAQ.

IV. LIMITATIONS AND FUTURE WORK

While SMAQ enables endpoints to consciously insert mid-
dleboxes into an end-to-end encrypted QUIC connection while
preserving its privacy, integrity, and authenticity, its design is
currently in an early stage with multiple open challenges.
Authorization, Accountability and Auditability. With
SMAQ, middleboxes have full access to control information
of QUIC connections. Hence, middleboxes can manipulate,
drop, or inject, frames, or even migrate the connection to
additional middleboxes without being accountable for any
changes made. Our design therefore requires a minimum
level of trust which can be achieved on the basis of, e.g.,
a secure credential exchange, or Public Key Infrastructure
(PKI). Moreover, we are exploring more fine-grained controls
with a least-privilege approach, i.e., restricting the access of
middleboxes to information which are required for its task,
allowing access only to specific frame types for example. For
this purpose, multiple encryption contexts could be leveraged
as proposed by Naylor et al. [28]. Further, the mechanisms
introduced by Lee et al. [29] could be adopted in order to
provide accountability and auditability.
Server Migration. Our design requires both the client
and server endpoint to migrate, where server migration was
omitted from QUIC version 1 in order to reduce its complex-
ity [30]. While our work shows a general application for server
migration, it is not unprecedented: interest around the concept
sparks in the area of container migration at the edge [31], [32],
justifying an exploration for future QUIC versions.
NAT Traversal. Our design assumes that all addresses
between handover-partners are reachable, which is sufficient
for constellations where the handover does not cross network
domains (e.g., distributed PEPs where all addresses are reach-
able within a network segment, see §III). Yet, Network Address
Translation (NAT) traversal must be considered, where two
challenges arise: 1) The client might not know its public
address assigned by the NAT and therefore cannot pass it on
to the middlebox, and 2), the NAT may not allow ingress
traffic from an unknown address, e.g., the middlebox. A
solution for this is to multiplex the out-of-band SMAQ state
handover and the migrated in-band QUIC connection over
the same UDP port: While the handover is initiated by the
client, a NAT binding is created on the gateway between
client and middlebox, where the same IP address and port are
subsequently reused for the handover of the QUIC connection.
However, an open problem still to overcome is the possible
collision of Connection IDs.
Handovers and Connection Establishment. The presented
work does currently only consider client-initiated handovers;
however, the design does also allow for server-initiated han-
dovers which we are currently exploring. Moreover, handovers
are currently limited to be performed during the QUIC hand-
shake in order to simplify state creation and restoration. Yet,
endpoints can make more informed decisions about potential
benefits of an SMAQ handover following connection establish-
ment, i.e., based on transport and/or application layer observa-

tions (e.g., experienced RTT, requested HTTP/3 payload). We
will therefore investigate handovers which are performed at
arbitrary times during the lifetime of a connection in the future.
In addition, the interplay of 0-RTT client-server handshakes
and SMAQ is not yet considered, showing potential to further
optimize SMAQ connection establishment.
Feature Negotiation. SMAQ requires all middleboxes to
support the QUIC features negotiated between client an server,
e.g., version, cipher suite, or extensions. Clients could be
informed about supported features of middleboxes during dis-
covery and authentication; hence, they can limit their offered
features within the QUIC Initial to an intersection between
client and middlebox capabilities. However, this hinders in-
cremental deployment of features (as also identified by [29]),
which may lead to security degradation and ossification of
QUIC. To address these issues, we will therefore explore
explicit feature negotiation mechanisms for SMAQ in order
to decouple the requirements.
Application Data Security. To ensure end-to-end security
of application data, XADS provides an additional encryption
layer, where currently only STREAM frames are considered.
Hence, XADS needs to be extended to also encrypt other
frame types [6, Sec. 19], as well as other QUIC extensions
carrying application data such as the Unreliable Datagram
Extension [33].

V. RELATED WORK

Middleboxes for connection splitting or performance en-
hancement have a long history, dating back to at least the mid-
1990s when wireless and satellite links were “optimized” for
(mobile) Internet usage, some common practices documented
by the IETF [2]. With virtually ubiquitous TLS and now
the uptake of QUIC, application and transport layer infor-
mation is no longer accessible to intermediaries, requiring
explicit integration of intermediaries. Investigationg QUIC and
HTTP/3 performance over satellite links, Kosek et al. [18]
showed the benefits of QUIC PEPs for SATCOM; yet, the
protection of application data from middlebox access was
not considered, rendering the concept unsuitable for practical
use. On the other hand, middlebox-aware TLS (maTLS, [29]
and multi-context TLS (mcTLS [28]) offer middlebox support
while keeping control of their capabilities, in contrast to
earlier designs that would just split TLS and give full access
to application data [34]. The MASQUE WG of the IETF
explores middlebox control via HTTP/3 but terminates the
controlling QUIC connection and does not expose protocol
state to an intermediary so that QUIC traffic is only forwarded
as opaque packets [35]. Sidecar [9] is a recent design that
uses a side channel to enable simple operations (prioritizing,
delaying, dropping, etc.) on opaque packets in middleboxes.
The Onion Router (TOR, [36]) explicitly expands a connection
through TOR relays hop-by-hop, splitting up the transport
connections but achieving end-to-end security through mul-
tiple levels of encryption. Some early work supported state
handover across intermediaries [37], [38] or servers [39],
albeit not yet including security. QUIC inherently supports

connection migration with the help of the peer and thus can
redirect traffic securely [6], which we leverage in this paper.
Conforti et al. showed how QUIC’s connection migration can
be used for container relocation while preserving ongoing
connections [31], where the communication continues after
the container state is handed over to another machine.

VI. CONCLUSION

In this paper, we enhanced QUIC to selectively expose
information to intermediaries, thereby enabling endpoints to
consciously insert middleboxes into an end-to-end encrypted
QUIC connection while preserving its privacy, integrity, and
authenticity. We evaluated our design in a distributed PEP
environment over satellite networks, finding that the perfor-
mance improvements of SMAQ are dependent on the path
and application layer properties: the higher the RTT and loss,
and the more data is transferred over a connection, the higher
the benefits of SMAQ. Our findings highlight the potential of
SMAQ, warranting further exploration: while advancing the
design, problem-spaces such as load balancing or live service
migration promise exciting possibilities.

ACKNOWLEDGEMENTS

This work was supported by the Federal Ministry of Ed-
ucation and Research of Germany (BMBF) project 6G-Life
(16KISK002).

REFERENCES

[1] L. Alber et al., “Short-Lived Forward-Secure Delegation for
TLS,” in CCSW, 2020. [Online]. Available: https://doi.org/10.1145/
3411495.3421362

[2] J. Griner et al., “Performance Enhancing Proxies Intended to Mitigate
Link-Related Degradations,” RFC 3135, Jun. 2001. [Online]. Available:
https://www.rfc-editor.org/info/rfc3135

[3] IETF, “Media Over QUIC (moq),” [Accessed 2023-Apr-28]. [Online].
Available: https://datatracker.ietf.org/group/moq/about/

[4] M. Handley, “Why the Internet only just works,” BT Technology
Journal, vol. 24, no. 3, 7 2006. [Online]. Available: https:
//doi.org/10.1007/s10550-006-0084-z

[5] B. Trammel and M. Kuehlewind, “Report from the IAB Workshop on
Stack Evolution in a Middlebox Internet (SEMI),” RFC 7663, Oct.
2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7663

[6] J. Iyengar et al., “QUIC: A UDP-Based Multiplexed and Secure
Transport,” RFC 9000, May 2021. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9000

[7] P. E. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),”
RFC 8484, Oct. 2018. [Online]. Available: https://www.rfc-editor.org/
info/rfc8484

[8] Z. Hu et al., “Specification for DNS over Transport Layer
Security (TLS),” RFC 7858, May 2016. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc7858

[9] G. Yuan et al., “Sidecar: in-network performance enhancements in
the age of paranoid transport protocols,” HotNets, 2022. [Online].
Available: https://doi.org/10.1145/3563766.3564113

[10] Y. Wang, “tinyfecVPN,” [Accessed 2023-Apr-28]. [Online]. Available:
https://github.com/wangyu-/tinyfecVPN

[11] M. Nawrocki et al., “On the interplay between TLS certificates
and QUIC performance,” CoNEXT, 2022. [Online]. Available: https:
//doi.org/10.1145/3555050.3569123

[12] M. Thomson et al., “Using TLS to Secure QUIC,” RFC 9001, May
2021. [Online]. Available: https://www.rfc-editor.org/info/rfc9001

[13] Eric Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3,” RFC 8446, August 2018. [Online]. Available: https:
//www.rfc-editor.org/info/rfc8446

[14] E. Rescorla, “Keying Material Exporters for Transport Layer
Security (TLS),” RFC 5705, March 2010. [Online]. Available:
https://www.rfc-editor.org/info/rfc5705

[15] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key
Derivation Function (HKDF),” RFC 5869, May 2010. [Online].
Available: https://www.rfc-editor.org/info/rfc5869

[16] C. Caini et al., “PEPsal: a Performance Enhancing Proxy designed
for TCP satellite connections,” VTC, 2006. [Online]. Available:
https://doi.org/10.1109/VETECS.2006.1683339

[17] J. Pavur et al., “QPEP: An Actionable Approach to Secure and
Performant Broadband From Geostationary Orbit,” in NDSS, 2021.
[Online]. Available: https://doi.org/10.14722/ndss.2021.24074

[18] M. Kosek et al., “Exploring Proxying QUIC and HTTP/3 for
Satellite Communication,” IFIP Networking, 2022. [Online]. Available:
https://doi.org/10.23919/IFIPNetworking55013.2022.9829773

[19] T. Jones et al., “Enhancing Transport Protocols over Satellite
Networks,” IETF, Internet-Draft, Work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-jones-tsvwg-transport-for-satellite/

[20] “OpenSAND SATCOM emulation,” [Accessed 2023-Apr-28]. [Online].
Available: https://opensand.org/

[21] B. Spies and M. Kosek, “Secure Middlebox-Assisted QUIC,” [Accessed
2023-Apr-28]. [Online]. Available: https://github.com/kosekmi/2023-
ifip-nw-smaq

[22] J. Iyengar et al., “QUIC Loss Detection and Congestion Control,” RFC
9002, May 2021. [Online]. Available: https://www.rfc-editor.org/info/
rfc9002

[23] R. Dayma et al., “Improved TCP Hybla: A TCP enhancement for link
with high RTT and error rate,” NUiCONE, 2012. [Online]. Available:
https://doi.org/10.1109/NUICONE.2012.6493205

[24] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for
heterogeneous networks,” IJSCN, vol. 22, no. 5, pp. 547–566, 2004.
[Online]. Available: https://doi.org/10.1002/sat.799

[25] S. Mascolo et al., “TCP westwood: Bandwidth estimation for enhanced
transport over wireless links,” ACM Mobicom, 2001. [Online]. Available:
https://doi.org/10.1145/381677.381704

[26] M. Bishop et al., “HTTP/3,” RFC 9114, Jun. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9114

[27] V. L. Pochat et al., “Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation,” in NDSS 2019. [Online]. Available:
https://doi.org/10.14722/ndss.2019.23386

[28] D. Naylor et al., “Multi-Context TLS (mcTLS): Enabling Secure
In-Network Functionality in TLS,” in ACM SIGCOMM CCR, vol. 45,
2015. [Online]. Available: https://doi.org/10.1145/2829988.2787482

[29] H. Lee et al., “maTLS: How to Make TLS middlebox-aware?” NDSS,
2019. [Online]. Available: https://doi.org/10.14722/ndss.2019.23547

[30] M. Bishop, “Re: preferred_address outside of
handshake,” Sep. 2019, [Accessed 2023-Apr-28].
[Online]. Available: https://mailarchive.ietf.org/arch/msg/quic/
lq7i3wd_2S0CfAWqz7AmaNNrBWU/

[31] L. Conforti and other, “Extending the QUIC Protocol to Support
Live Container Migration at the Edge,” in WoWMoM 2021. [Online].
Available: https://doi.org/10.1109/WoWMoM51794.2021.00019

[32] F. Barbarulo et al., “Extending ETSI MEC Towards Stateful Application
Relocation Based on Container Migration,” in WoWMoM 2022. [Online].
Available: https://doi.org/10.1109/WoWMoM54355.2022.00035

[33] T. Pauly et al., “An Unreliable Datagram Extension to QUIC,” RFC
9221, Mar. 2022. [Online]. Available: https://www.rfc-editor.org/info/
rfc9221

[34] J. Jarmoc, “SSL/TLS Interception Proxies and Transitive Trust,” [Ac-
cessed 2023-Apr-28]. [Online]. Available: https://media.blackhat.com/
bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-SSL_TLS_Interception-WP.pdf

[35] D. Schinazi, “Proxying UDP in HTTP,” RFC 9298, Aug. 2022.
[Online]. Available: https://www.rfc-editor.org/info/rfc9298

[36] “The Onion Router,” [Accessed 2023-Apr-28]. [Online]. Available:
https://www.torproject.org

[37] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for Mobile Hosts,”
15th International Conference on Distributed Computing Systems,
1995. [Online]. Available: https://doi.org/10.1109/ICDCS.1995.500012

[38] Z. Haas et al., “Mobile-TCP: An Asymmetric Transport Protocol
Design for Mobile Systems,” in 3rd International Workshop on
Mobile Multimedia Communications, 1997. [Online]. Available: https:
//doi.org/10.1109/ICC.1997.610040

[39] F. Sultan et al., “Migratory TCP: Highly Available Internet Services
Using Connection Migration,” International Conference on Distributed
Computing Systems, 2001. [Online]. Available: https://core.ac.uk/
display/24586194

https://doi.org/10.1145/3411495.3421362
https://doi.org/10.1145/3411495.3421362
https://www.rfc-editor.org/info/rfc3135
https://datatracker.ietf.org/group/moq/about/
https://doi.org/10.1007/s10550-006-0084-z
https://doi.org/10.1007/s10550-006-0084-z
https://www.rfc-editor.org/info/rfc7663
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/rfc/rfc7858
https://www.rfc-editor.org/rfc/rfc7858
https://doi.org/10.1145/3563766.3564113
https://github.com/wangyu-/tinyfecVPN
https://doi.org/10.1145/3555050.3569123
https://doi.org/10.1145/3555050.3569123
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc5869
https://doi.org/10.1109/VETECS.2006.1683339
https://doi.org/10.14722/ndss.2021.24074
https://doi.org/10.23919/IFIPNetworking55013.2022.9829773
https://datatracker.ietf.org/doc/draft-jones-tsvwg-transport-for-satellite/
https://opensand.org/
https://github.com/kosekmi/2023-ifip-nw-smaq
https://github.com/kosekmi/2023-ifip-nw-smaq
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://doi.org/10.1109/NUICONE.2012.6493205
https://doi.org/10.1002/sat.799
https://doi.org/10.1145/381677.381704
https://www.rfc-editor.org/info/rfc9114
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/2829988.2787482
https://doi.org/10.14722/ndss.2019.23547
https://mailarchive.ietf.org/arch/msg/quic/lq7i3wd_2S0CfAWqz7AmaNNrBWU/
https://mailarchive.ietf.org/arch/msg/quic/lq7i3wd_2S0CfAWqz7AmaNNrBWU/
https://doi.org/10.1109/WoWMoM51794.2021.00019
https://doi.org/10.1109/WoWMoM54355.2022.00035
https://www.rfc-editor.org/info/rfc9221
https://www.rfc-editor.org/info/rfc9221
https://media.blackhat.com/bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-SSL_TLS_Interception-WP.pdf
https://media.blackhat.com/bh-eu-12/Jarmoc/bh-eu-12-Jarmoc-SSL_TLS_Interception-WP.pdf
https://www.rfc-editor.org/info/rfc9298
https://www.torproject.org
https://doi.org/10.1109/ICDCS.1995.500012
https://doi.org/10.1109/ICC.1997.610040
https://doi.org/10.1109/ICC.1997.610040
https://core.ac.uk/display/24586194
https://core.ac.uk/display/24586194

	Introduction
	Design
	Connection Setup
	Connection Setup Overhead
	Exception Handling
	State Properties
	Extra Application Data Security (XADS)
	Security Considerations

	Case Study: Distributed Performance Enhancing Proxies
	Test Environment
	Evaluation

	Limitations and Future Work
	Related Work
	Conclusion
	References

