
A Privacy-preserving Proof-of-Reputation
Marina DEHEZ-CLEMENTI

ISAE-SUPAERO
Université de Toulouse

Toulouse, France
0000-0003-0783-9848

Mourad RABAH
Laboratoire L3i

La Rochelle University
La Rochelle, France
0000-0001-8136-5949

Yacine GHAMRI-DOUDANE
Laboratoire L3i

La Rochelle University
La Rochelle, France
0000-0002-7986-2476

Abstract—The sharing of high-quality information is essential
for improving the user experience in distributed systems such
as vehicular networks or IoT-based monitoring systems. Crowd-
sourced data collection systems rely heavily on a secure and
efficient consensus algorithm. However, consensus algorithms are
often considered a bottleneck for scalability. With the emergence
of blockchains, proof-of-work (PoW) has become the most pop-
ular and secure consensus algorithm for open and asynchronous
distributed networks. However, PoW has been criticized for its
energy consumption and waste of resources. To address this issue,
alternative consensus protocols such as proof-of-stake (PoS) and
proof-of-authority (PoA) have been proposed. Reputation-based
consensus algorithms have recently gained attention but suffer
from limitations in terms of privacy and predictability. In this
paper, we propose a privacy-preserving proof-of-reputation (PoR)
mechanism that combines ring signatures and dlog-based zero-
knowledge proof systems. The proposed PoR algorithm aims to
build unpredictable blockchain consensus algorithms that are
privacy-friendly for permissioned blockchains. We describe the
main algorithms used in PoR, demonstrate their security, and
evaluate their performance through an experimental study. We
conclude by discussing how these algorithms can be scaled to
permissionless blockchain settings.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Reputation is traditionally defined as a numerical value, or
a score, given to an entity and which evaluates its trustworthi-
ness in a system w.r.t. other members of a same environment.
In P2P networks, reputation is mostly used to facilitate inter-
actions as each participant can individually decide whether to
trust another based on this score [1], [2].

This metric has been reused in the context of blockchains
since 2018 for the design of an alternative consensus algorithm
family named Proof-of-Reputation (PoR). The advantages of
using reputation scores in permissioned blockchains are mul-
tiple: firstly, since all the identities are known, it reduces the
impact of the consensus on the system’s efficiency and energy
consumption; secondly, since they have the same properties
as electronic money (numerical variables, approved by all
participants), they are easy to compute and take decisions
upon. The scaling to permissionless blockchains can then
be managed by a system of locking/unlocking deposits as
presented in [3].

In the context of Blockchains, Gramoli defines the con-
sensus problem as the process by which “the non-faulty or

ISBN 978-3-903176-57-7© 2023 IFIP

correct processes of a distributed system agree on one block
of transactions at a given index of a chain of block” [4]. The
consensus problem must comply with three essential security
properties: agreement: no two correct processes decided dif-
ferent blocks; validity: the decided block was proposed by one
process; termination: eventually, correct processes will decide
on one block. Most of the existing reputation-based consensus
algorithms comply with these requirements.

In 2020, Boneh et al. introduce one additional security prop-
erty called unpredictability. Applied to blockchain consensus,
the property should prevent an attacker from identifying and
targeting the next leader (the node elected and authorized to
produce a new block of transactions) via a DoS attack in order
to make it unavailable, or by bribing them [5], [6]. Current
reputation-based consensus algorithms are built upon proofs
of reputation that are strongly attached to the identity of the
proving peers, as such the election of the next block producer
is therefore deterministic. Thus, these PoR-based consensus
algorithms do not respect the unpredictability property.

In this paper, we propose the construction of a
privacy-preserving proof-of-reputation mechanism for un-
predictable reputation-based consensus algorithms in permis-
sioned blockchain systems. To this end, we combine powerful
cryptographic primitives such as ring signatures and tradi-
tional zero knowledge proofs for discrete-logarithm (dlog)
based cryptosystems with the distributed nature of blockchain
systems. In Section II, we analyse the exiting literature on
reputation-based consensus algorithms. Then, in Section III,
we give the cryptographic background for the proposed
scheme. In Section IV, we describe the main algorithms of
our PoR, and demonstrate their security in Section V. In
Section VI, we detail the implementation and analyze its
performance (execution time and memory occupation). Finally,
we show their usefulness to design unpredictable privacy-
friendly consensus algorithms for permissioned blockchains,
and discuss the scaling to permissionless settings in the
Section VIII.

II. RELATED WORK

In [7], Gai et al. design the first reputation-based consensus
algorithm for blockchain systems as an alternative to the
traditional Proof-of-Work. The algorithm aims to address the
known limitations of reputation management systems (namely
the presence of a single point of failure and the lack of global

1

reputation evidence) by providing a distributed ledger of rep-
utation. Although it is specific for permissioned blockchains,
it facilitates the efficient and secure sharing of unmodified
reputation scores. The implementation gives promising results
in terms of scalability, block production rate and transac-
tion throughput. Nonetheless, the proposition necessitates to
query another blockchain, dedicated to reputation manage-
ment, which complicates its use. In addition, the rewriting
of the chain of reputation is technically possible and only
cognitively disregarded as the attack would be “too costly to
be carried out”.

Zhuang et al. [8] extend on previous work by proposing a
new block structure which enable them to embed reputation
scores inside data blocks (thus, transactions can be verified
along with the reputation score of their respective issuer). The
novelty of the algorithm lies in the leader election method
and block validation: indeed, the next miner is selected as
the node with the highest reputation score among the set of
transacting nodes (whose transactions are to be inserted in
the next block). Then, the leader submits the new block to a
consortium of nodes made of the top 20% with the highest
reputation scores. While this selection criteria reduces the
communication complexity caused by the block submission
and verification process, one can question the justifying Pareto
argument as it weakens the distribution of the network, thus
facilitating the 51% attacks.

With [9], Cai et al. add the dynamicity property. Indeed,
up until there, reputation-based consensus algorithms only
considered fixed-size networks and focused on developing the
reputation attribution function (calculation and update), along
with the mechanics of leader election and block validation. To
deal with dynamicity, authors divide their network into four
categories of nodes, notably the monitoring node. This division
enables the authors to define: firstly, a dynamic protocol for
adding new node to the network via a join/issue-like interac-
tive protocol with this monitoring node. The communication
overhead of the joining process and the latency induced by
consensus termination and block validation are thus reduced.
Secondly, the update of reputation score is automatic and
fast as it is handled by one entity in the network. While
the presence of the monitoring node drastically improves the
performance of the algorithm, it is also the main identified
flaw in this work, as it centralizes the reputation management
authority.

Later on that year, De Oliveira et al. propose a dynamic
reputation-based consensus algorithm which decentralized the
role of the monitoring node [10]. Each node has a reputation
score which is calculated based on the node’s action and its age
in the system: oldest nodes are privileged to become miners,
they call this metric the maturity of the node. Access control
is therefore handled by the miners: when a user wants to
join it interacts with one or more of the consensus nodes
which accept or not to let it in. Each miner is assigned a
random group of judges to compute their reputation score.
The scheme effectively reduces resources’ consumption while
maintaining a certain level of decentralization. Moreover, se-

curity arguments are given in favor of a resilience against well-
known blockchain-related attacks (namely double spend, 51%,
impersonation, selfish miner, eclipse and Denial of Service —
DoS — attacks). Yet, the group of judges is publicly known
and fixed in time, thus one only has to compromise half of
one miner’s group of judges to influence its reputation score
and eventually exclude the targeted node.

All aforementioned proof-of-reputation systems only work
in permissioned environments. Instead, Adbo et al. propose
in [3] the first permissionless reputation-based consensus al-
gorithm. The core idea is to replace the identity-based access
control by a monetary deposit. The incentive is no longer the
reputation but money: if a node behaves honestly, they get their
deposit fund back, otherwise the money is destroyed. Authors’
goal is to enable the mixing between their PoR and any other
Proof-of-Anything (PoX).

However, none of the work above clearly discusses the
unpredictability property. Indeed, in previous propositions, the
election of the leader is often based on the highest reputation
value; thus, it is easy to quickly predict which node will mine
the next block and to target it (by a Denial of Service attack
for instance).

III. PRELIMINARIES

This section examines key concepts and theories that are
fundamental to our work.

A. Cryptographic hash functions

A cryptographic hash function H : {0, 1}∗ → {0, 1}n is
a one-way deterministic function used to map input data of
arbitrary size to fixed-size (here of n bits) output values, also
called hash values. Cryptographic hash functions are a basic
tool of modern cryptography and as such must comply with
four properties: it should be efficient, and comply with the
collision resistance, preimage resistance, and second preimage
resistance requirements [11]. In this paper, we consider that
hash functions are random oracles and, as such, we are
working in the Random Oracle Model [12].

B. Ring Signatures

Let P = P1, . . . , Pn be a set of processes arranged in a
distributed system. Let R ⊆ P be the ring. Each Pi ∈ R is
a possible signer, but only the one that produces the actual
signature will be called the signer. A ring signature scheme
RS = (RGen,RSign,RVerify) consists of the following three
Probabilistic Polynomial Time (PPT) algorithms [13]:

• (rpk, rsk) ← RGen(1k): The key generation algorithm
takes as input the security parameter k and outputs a ring
private key rsk also known as the signing key, and the
corresponding ring public key rpk, also referred to as the
verification key.

• σ ← RSign(m,R, rsk): The signing algorithm is given
a message m ∈ M to be signed (with M the message
space), a ring R and the secret key of the signer rsk. It
outputs the signature σ of message m.

2

• 1/0← RVerify(R,m, σ): The (deterministic) verification
algorithm, given a ring R, a message m and a signature
σ, outputs either 1 for “accept” or 0 meaning “reject”.

We adopt the same security framework as the one presented
in [13] and recall the related definitions in Sub-section III-C.

C. Security model for Ring Signatures

In this sub-section, we recall the traditional security model
for evaluating the security of ring signatures.

1) Correctness: We adopt the same security notion as
presented in [13]. A ring signature scheme RS is secure in
the Ideal Cipher Model (ICM) if and only if it is correct,
unforgeable under chosen-message attacks (CMA) and anony-
mous under full key exposure of which we recall the definition
in the next paragraphs. Let n ≡ n(k) be a polynomial in k.

For the correctness property, we ask that Equation 1 holds
for all k ∈ N, m ∈ M, (rpk, rsk) ← RGen(1k), and R the
ring such that rpk ∈ R:

RVerify(R,m,RSig(m,R, rsk)) = 1 (1)

2) Unforgeability:

Definition 1. (Unforgeability under CMA)
Consider the experiment ExpEUF−CMA

rsig , parametrized by the
number of verification keys n, between a challenger C and an
adversary A.

1) C generates (rpki, rski) ← RGen(1k) for all i ∈
J1, nJ. Then, C gives the set of verification keys rp ←
(rpk1, . . . , rpkn) to A and sets Ssig ← ∅.

2) A is allowed to make signing queries of the form
(R, j,m), where R is a ring of public keys, j ∈ J1, nK an
index such as rpkj ∈ R, and m ∈M. When C receives
(R, j,m), it computes σ ← RSign(m,R, rskj), sends
the signature σ to A and appends (m,R, σ) to Ssig .

3) A outputs a tuple (R∗,m∗, σ∗).
This game defines the following experiment:

ExpEUF−CMA
rsig (A) ≡ (RVerify(R∗,m∗, σ∗) = 1)

∧ ((R∗, ·,m∗) /∈ Ssig)

Thus, a ring signature scheme RS is unforgeable under
adaptative chosen-message attacks in the Ideal Cipher Model
if for any adversary A, the adversarial advantage in winning
the security experiment ExpEUF−CMA

rsig in PPT is negligible,
i.e. we have:

AdvCMA
rsig,A(k) ≡ Pr[ExpEUF−CMA

rsig (A) = 1] ≤ negl(k) (2)

where negl(·) represents the negligible function.

3) Anonymity:

Definition 2. (Anonymity)
Consider the following game, parametrized by the number of
verification keys n, between a challenger C and an adversary
A.

1) C generates (rpki, rski) ← RGen(1k; ri) for all i ∈
J1, nJ, where ri is a randomness for generating the

keypairs (rpki, rski). Then, C gives the set of the public
keys R = rpkii∈J1,nK and the random values rii∈J1,nK
to A.

2) A requests a challenge to C by sending a tuple
(i0, i1, R

∗,m∗), where i0 and i1 are indices such
that rpki0 ∈ R∗ and rpki1 ∈ R∗. Then, C sam-
ples a challenge bit b

$←− {0, 1}, computes σ∗ ←
RSign(m∗, R∗, rskib), and gives σ∗ to A.

3) A outputs a bit b
′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A
as

Advanonrsig,A(k) ≡ 2 · |Pr[b = b
′
]− 1

2
| (3)

We say that the ring signature scheme RS satisfies uncon-
ditional anonymity under full key exposure if for any compu-
tationally unbounded adversary A, Advanonrsig,A(k) ≤ negl(k)
holds.

D. Zero Knowledge Proofs for dlog-based cryptosystems

In this paper, we use a common non-interactive zero-
knowledge (NIZK) proof technique for showing the equality
of the two discrete logarithms to assert that A knows tsk the
temporary secret key associated to the account they used ta
during the execution of the application. It is defined by the
(P, V) algorithms for respectively generating and verifying
the zero knowledge proof of knowledge [14]; practically, we
use the same algorithms as described in [15] but on different
inputs. The security framework of ZKP for discrete logarithm
(dlog)-based cryptosystems is briefly recalled in the next sub-
section.
Algorithm 1: P (x1, y1, x2, y2, α)

Comment: To show that dlogx1 (y1) = dlogx2 (y2) holds without
revealing the discrete logarithm α, a prover proceeds as
follows:

1 Function Main:
2 Compute t1 = xw

1 adding t2 = xw
2 for w ∈R Zq

3 Compute c = H(x1, y1, x2, y2, t1, t2)
4 Compute r = w − α · c(mod q)
5 Output π = ⟨c, r⟩

Algorithm 2: V (x1, y1, x2, y2, π)

Comment: To check the correctness of a proof π = ⟨c, r⟩, showing
that dlogx1 (y1) = dlogx2 (y2) holds, a verifier proceeds
as follows:

1 Function Main:
2 Compute t

′
1 = xr

1 · yc1 adding t
′
2 = xr

2 · yc2
3 Output VALID if c = H(x1, y1, x2, y2, t

′
1, t

′
2) hold ; output

INVALID otherwise

E. Security model for ZKPs

Informally, a proof of knowledge allows a prover to con-
vince (prove to) a verifier that he knows a solution of a hard-
to-solve problem, s.t. the following properties hold, with L a
language:

i. completeness: an honest prover, knowing a solution, can
successfully convince the verifier. More formally, if the
prover runs its predetermined program P , then for every

3

constant c > 0 and large enough x ∈ L, the verifier
accepts the common input x with probability at least
1− |x|−c;

ii. soundness: with overwhelming probability, a cheating
prover, not knowing any solution, will fail to convince
the verifier. In a more formal way, for every program P ∗,
run by the prover, for every constant c > 0 and a large
enough x /∈ L, the verifier rejects x with probability at
least 1− |x|−c;

iii. minimum-disclosure: the verifier obtain no useful infor-
mation about the solution the prover knows. [16].

Algorithms P and V from [15] have been proven to comply
with the three aforementioned properties [14].

IV. PRIVACY-PRESERVING PROVE’N’CLAIM MECHANISM

In this section, we present our Prove’n’Claim scheme
for reputation-based applications. It consists in four func-
tions: proofGenerate(·), proofVerify(·), claimGenerate(·)
and claimVerify(·). In the following paragraphs, we detail
the system model, including considerations regarding the
communication, connectivity and synchrony requirements. We
then detail each algorithm and illustrate the execution flow
in Figure 2. The algorithms are declined into five major
phases: during the 1 proof generation and the 2 proof
verification phases, A generates a proof that they own a
threshold reputation score and B verifies this proof; upon
acceptance, the 3 application starts; and finally, the 4 claim
generation and 5 claim verification phases see A gaining
or loosing reputation depending on their behavior during the
application.

a) System model: We consider a set of N distinct entities
(also indifferently referred to as nodes, processes or peers)
P = (P1, . . . , PN), with N ∈ N∗ as shown on Figure 1.
We designate A and B two distinct nodes in P and consider
that A wants to prove to B that its reputation score rsA is
greater than a certain threshold score rsthr without disclosing
its identity to B. In the rest of this paper, we will demonstrate
that the following algorithms enable A to produce such proof
that we named privacy-preserving proof of reputation.

Fig. 1: Overview of the system model

b) Assumptions: We assume that P is a fixed group
that defines a static distributed system. As such, all members
are aware of the exact list of the N entities in P , and
every Pi is directly connected to every Pj with j ̸= i

A BCN Pj

1 A generates
proof πrs

A sends proof πrs to Pj

2 Pj verifies proof
πrs with BCN data

3 Application

4 Pi generates
claim πA

Pi sends claim πA to BCN

5 BCN udpates Pi’s reputation

A
no

ny
m

ou
s

Po
R

R
ep

ut
at

io
n

U
pd

at
e

Fig. 2: Sequence diagram for the execution of Prove’n’Claim,
the proposed Proof of Reputation (with BCN: Blockchain
Network, PoR: proof of Reputation).

and j ∈ J1, NK. To this end, we assume that a public key
infrastructure is already deployed: each Pi ∈ P owns two pairs
of public/private keys namely (ei, di) which follow the RSA
construction, and (pki, ski) a dlog-based keypair. We attach to
each account a default reputation score rsi = 0.5. We remark
that the reputation function is out of the scope of this project.
Since we focus on peer-to-peer interactions, we consider that
communications are partially synchronous. We consider that
privacy-preserving techniques are employed at the transport
layer of the OSI model (e.g., dynamic IP addresses, traffic
encryption) and focus on anonymizing the data transferred so
as to ensure the functioning of the distributed application.

A. Proving reputation score with proofGen(·) — Step 1

When A wants to prove their reputation score rsA is
greater than a certain threshold score rsthr without revealing
their identity, they use the proofGen algorithm. It takes as
input A’s temporary address ta ← accGen(1k), a ring
R which is a subset of size r of P and, an index s and
the corresponding secret RSA key ds corresponding to A
(i.e. A ≡ Ps). As assumed, each Pi in the ring comes
with their one-way trapdoor permutations gi(·), and a pair
of public/private RSA keys (ei, di). The function starts by
deriving ta to get the corresponding temporary dlog-based
keypairs (tpk, tsk). Then, it computes a symmetric key as the
hash value of the public temporary address ta with the H(·)
hash function, and randomly selects a glue value v of size b
which defines the Ring Equation. Then, for all members of
the ring, it randomly selects (r − 1) xi and computes their
images yi after applying the corresponding one-way trapdoor
permutations gi(·). Next, it solves the Ring Equation, i.e. it
finds ys such as Ck,v(y1, . . . , ys, . . . , yr) == v holds, and
loops until it finds a correct value. By using the trapdoor ds,
it then inverts ys as xs. The algorithm finally returns the proof
of reputation as π which contains the ring R, the glue value

4

v, and the values (x1, . . . , xr). It also joins a signature of the
proof to attach it to the entity that generated it. Lastly, the
couple ⟨π, σ⟩ is sent from A to B.

Algorithm 3: proofGen(1k,params) — Step 1
Input: params contains an address ta, a ring

R = {P1, . . . , Pr} ⊆ P with corresponding one-way
trapdoor permutations gi(·), an index s ∈ J1, rK, a secret ds

Output: the proof πp = (R; v;x1, . . . , xr), a signature σp

1 Function Main:
2 (tpk, tsk)← derive(ta)
3 k ← H(ta) // Symmetric key

4 v
$←− {0, 1}b // The glue

5 for i ∈ J1, rK do
6 xi

$←− {0, 1}b; yi ← gi(xi)

7 ring= (Ck,v(y1, ..., yr) == v)
8 while !ring do
9 iterate ys // Solving the ring equation

10 xs ← g−1
s (ys) // Invert ys with ds

11 πp ← (P1, . . . , Pr; v;x1, . . . , xr) ; σp ← Sig(πp, tsk)
// Outputs

12 return ⟨πp, σp⟩

B. Verifying proof of reputation with proofVerify(·) — Step
2

When B receives ⟨π, σ⟩ from A, they will use the proofVer-
ify algorithm. The function takes as input the couple and
returns a decision under the form of a boolean acc (for
”accept”) if the proof is correct, or rej (for ”reject”) if the proof
is incorrect. To decide, the function first determines whether
the signature is valid. If not, it does not process the remaining
checks. Then, it evaluates the ring equation and asserts its
validity. If it is correct, the algorithm returns the acc(= True)
boolean value.

Algorithm 4: proofVerify(⟨πp,σp⟩) — Step 2
Input: the proof πp = (R; v;x1, . . . , xr), a signature σp

Output: a boolean decision acc/rej
1 Function Main:
2 res←rej
3 if (Verify(σp, tpk) == True) then
4 for i ∈ J1, rK do
5 yi ← gi(xi) // Retrieve yi values

6 k ← H(ta) // Retrieve symmetric key
7 if (Ck,v(y1, ..., yr) == v) then
8 res←acc // Check ring equation

9 return res

These two algorithms enable A to prove to B that they know
a secret key associated to a user Pj in the ring R without
disclosing their identity. As such, A proves in a privacy-
preserving manner (as will be shown in Section V) that their
account has a reputation score rsA greater than a threshold
value rsthr = mini=1..r(rsi) where rsi is the reputation score
of Pi.

C. Claiming reputation with claimGen(·) — Step 4

The two first algorithms, namely proofGen and proofVer-
ify, are used before executing a (set of) transaction(s) in

a reputation-based application. A gives to B a privacy-
preserving proof of (minimum) reputation such that B is not
able to tell which Pi in the ring R actually generates the
proof, yet they can trust A and the transferred data based on
this score rsA.

The claimGen algorithm has been designed to enable an
entity Ps in the system to claim its reputation score after a (set
of) transaction(s), in other words to update its reputation score.
The algorithm works as follows. It takes as inputs the generator
g (defined by the underlying dlog-based cryptosystem), Ps’s
temporary public key tpk that was used for the r-anonymous
transactions, Ps’s known public key pks, a symmetric key k
made of both sks and tsk by k = pktsks = tpksks = gsks·tsk,
and the tuple proof/signature ⟨π, σ⟩. The algorithm computes
the transient t1 and t2 values, uses the H(·) hash function on
public inputs along with transient markers t1, t2. The proof π
shows that Pi knows the secret key associated to the formerly
r-anonymous ta address. The algorithm attaches a signature
to it in order to preserve its integrity and authenticity.

Algorithm 5: claimGen(g,tpk,pks,k,tsk) — Step 4
Input: the generator g, the public key of the proving entity pks, the

temporary public key used by Ps to remaain anonymous
tpk, a symmetric key k = pktsks = tpksks = gsks·tsk , and
tsk the secret key corresponding to tpk

Output: the claim πc, and a signature σc

1 Function Main:
2 w

$←− Zq ; t1 ← gw ; t2 ← pkws
3 c← H(g, tpk, pks, k, t1, t2)
4 r ← w − tsk · c mod q
5 πc ← ⟨c, r⟩; σ ← Sig(πc, sks)
6 return ⟨πc, σc⟩

D. Verifying claim with claimVerify(·) — Step 5

The claim is generated with the claimGen algorithm and
automatically verified by the claimVerify function. The func-
tion checks the validity of both the signature and the proof,
and upon validation, updates Pi’s reputation score rsi and
broadcasts the result.

Algorithm 6: claimVerify(g,tpk,pks,k,⟨πc, σc⟩) —
Step 5

Input: the generator g, the public key of the proving entity pks, the
temporary public key used by Ps to remaain anonymous
tpk, a symmetric key k = pktsks , and the proof ⟨πc, σc⟩

Output: a boolean value valid/invalid
1 Function Main:
2 res← invalid
3 if (Verify(σc, pks) == True) then
4 ⟨r, c⟩ ← parse(πc)
5 t

′
1 ← gr · tpkc ; t

′
2 ← pkrs · kc

6 c̃← H(g, tpk, pks, k, t
′
1, t

′
2)

7 if c == c̃ then
8 res←valid // i.e. t

′
1 == t1 and t

′
2 == t2

9 return res

V. SECURITY ANALYSIS

In this section, we demonstrate that the proposed
Prove’n’Claim scheme for reputation-based applications com-

5

ply with the three following security properties: correctness,
k−anonymity, and reputation unforgeability. We first define
these properties in the context of the current study, then we
detail the corresponding proofs.

A. Security properties

Definition 3. (Correctness)
The correctness property is twofold: first, it asks that the proof
verification algorithm proofVerify successfully verifies the
proof legitimately generated by the proof generation algorithm
proofGen; then, it requires that the claim verification algo-
rithm claimVerify successfully verifies the claim legitimately
generated by the claim generation algorithm claimGen. This
is summarized by Equation 4:

(4)(proofVerify(proofGen(1k, params)) = 1)

∧ (claimVerify(pp, claimGen(pp, tsk)) = 1)

with pp = g, tpk, pks, k the public parameters.

Theorem 1. (Correctness of Prove’n’Claim)
Under the assumption that a secure k−anonymous existen-
tially unforgeable under chosen message attacks ring signature
scheme and a sound zero-knowledge proofs technique for
dlog-based cryptosystems exist, the Prove’n’Claim system is
correct.

Argument. This condition boils down to:

(5)(VSig(RSig(m,R, tsk)) = 1) ∧ (V(P(pp, tsk)) = 1)

Yet, since both the underlying ring signature scheme and ZKP
are correct, the condition is verified.

Definition 4. (Reputation Unforgeability) The reputation
unforgeability property of the Prove’n’Claim algorithm is
twofold: first, it ensures that no adversary A can convince
a honest user of having a reputation score rs greater than
the reputation score attached to their public identity; second,
it sets that no adversary A can claim transactions that they
did not actually generated (i.e. they cannot convince a honest
user that they know the secret key tsk associated to the
transacting account ta without actually knowing tsk). This
is characterized by a game between a challenger C and an
adversary A that we thoroughly describe below.

The game between a challenger C and an adversary A, on
which we elaborate our discussion on the reputation unforge-
ability property of the proposed Prove’n’Claim mechanism,
goes as follows:

• C generates the group P = {P1, . . . , Pn}:
(pki, ski, ei, di)

$←− accountGen(1k). In addition, C
generates n temporary accounts taj

$←− accountGen(1k)
for i = 1..n, meaning there is exactly one taj per Pi.
Then, C gives the set of public keys {(pki, ei)}i=1..n and
the set of temporary accounts’ public keys {(tpki)}i=1..n

to A. Finally, it sets Sproofs ← ∅ and Sclaims ← ∅.
• A is allowed to make proof queries of the form (R, j),

where R is a ring of public keys, j ∈ J1, nK an index

such as Pj ∈ R. In this context, the message to sign
m ∈ M is equal to tskj . When C receives (R, j), it
computes πP,j ← proofGen(1k, R, gs, s, ds). It sends
back the proof πP,j to A and appends (R, j) to Sproofs.
In parallel, A is allowed to make claim queries of the
form (i, tpki). Upon reception of the query, C computes
πC,i ← claimGen(g, tpki, pki, kii, tski). It sends back
πC,i to A and adds i to Sclaims.

• A outputs (1) o1 ← ⟨πP,k1 , σP,k1⟩ and (2) o2 ←
langleπC,k2

, σC,k2
⟩ with k1 and k2 two integer values

such as (1) Pk1
∈ πP,k1

.R and (πP,k1
.R, k1) /∈ Sproofs,

and (2) k2 /∈ Sclaims.
We say that the Prove’n’Claim mechanism respects the

reputation unforgeability property ⇐⇒

(6)Pr[proofVerify(o1) == 1] < negl(k)
∧ Pr[claimVerify(o2) == 1] < negl(k)

with negl(k) the negligible function in k the security param-
eter.

Theorem 2. (Reputation unforgeability of Prove’n’Claim)
Under the assumption that a secure k−anonymous existen-
tially unforgeable under chosen message attacks ring signature
scheme and a sound zero-knowledge proofs technique for dlog-
based cryptosystems exist, the Prove’n’Claim system respects
the Reputation Unforgeability property.

Argument. The first half of the condition unfolds from the
existential unforgeability of the chosen ring signature scheme;
while the second half is given by the soundness of the selected
zero knowledge proofs technique.

Definition 5. (k−anonymity)
The k−anonymity property of the Prove’n’Claim algorithm
is characterized by the k−anonymity of the communicating
node during phases 1 to 3 . This is characterized by a
game between a challenger C and an adversary A that we
thoroughly describe below.

The game between a challenger C and an adversary A,
on which we elaborate our discussion on the k−anonymity
property of the proposed Prove’n’Claim mechanism, goes as
follows:

1) C generates the group P = {P1, . . . , Pn}:
(pki, ski, ei, di)

$←− accountGen(1k). In
addition, C generates n temporary accounts
taj

$←− accountGen(1k) for i = 1..n, meaning
there is exactly one taj per Pi. Then, C computes
the n proofs of reputation, one for each taj (i.e.
Pi) as ⟨πj , σj⟩ ← proofGen(1k, params) with
params = (P, gj(·), j, dj) as defined in Section IV.
Finally, C gives the set of public keys {(pki, ei)}i=1..n

and the set of proofs of reputation {⟨πj , σj⟩}j=1..n to
A.

2) A requests a challenge to C by sending a tuple
(i0, i1, R

∗), where i0 and i1 are indices such that Pi0 ∈

6

R∗ and Pi1 ∈ R∗. Then, C samples a challenge bit b $←−
{0, 1}, computes ⟨π∗, σ∗⟩ ← proofGen(1k, params),
and gives the resulting proof to A.

3) A outputs a bit b
′ ∈ {0, 1}.

We say that the Prove’n’Claim mechanism respects the
k−anonymity property ⇐⇒

(7)|Pr[b == b′]− 1

2
|< negl(k)

with negl(k) the negligible function in k the security param-
eter.

Theorem 3. (k−anonymity of Prove’n’Claim)
Under the assumption that a secure k−anonymous existen-
tially unforgeable under chosen message attacks ring signature
scheme exists, the Prove’n’Claim system is k−anonymous.

Proof. The demonstration directly unfolds from the construc-
tion of Prove’n’Claim which leverages the ring signature
scheme defined in Section III.

VI. SIMULATIONS

To highlight the feasibility and practicability of our
approach, we simulate the execution of our four main
functions proofGen(·), proofVerify(·), claimGen(·),
claimVerify(·) so as to analyze their behaviour when
the ring size increases. The testing bench is available at
https://github.com/mdehezcl/PNC.git.

The simulation bench is implemented in Python 3.10 and
testing is performed on a MacBook pro 15 with a Core i7
processor (2.5 GHz - 1 To HDD + SSD - RAM 16Go). For
all the experiments below, the network is composed of 100
distinct identities and we measured the time to execute the
proposed functions (proofGen, proofVerify, claimGen and
claimVerify) as well as the size of the output objects (PoR
and claims) while varying the size r of the ring from 5 to
100.

A. Execution time to generate/verify the PoR

Figure 3 provides the measured execution time for the
generation (blue) and verification (red) of our anonymous
proof-of-reputation. We first observe that the generation of
the proof is longer than its verification. Then, the polynomial
approximation shows that both plots evolve linearly according
to the size of the ring. We can approximate the execution
time per ring size for proofGen (resp. proofVerify) with the
function 0.015x+2.803 (resp. 0.015x+2.097). For a ring of
100 peers (hence providing 100−anonymity), the generation
of the proof is performed in less than 5 milliseconds and its
verification in about 3.5 milliseconds.

B. Execution time to generate/verify the Claim

Figure 4 provides the measured execution time for the gen-
eration (blue) and verification (red) of our claims of reputation.
We first observe that, unlike previously, the generation of the
claim is faster than its verification by a factor 2.3. Then, thanks
to the approximation polynomials (respectively 0.001x+2.681
and 0.002x + 6.329), we see that the execution time of

claimGen and claimVerify is constant and independent of the
size of the ring.

0 20 40 60 80 100

2

3

4

Ring size

Ti
m

e
(m

s)

proofGen(·)
proofVerify(·)

Fig. 3: Execution time (in ms) to generate/verify the proof
according to the size of the ring.

0 20 40 60 80 100

2

4

6

8

Ring size

Ti
m

e
(m

s)

claimGen(·)
claimVerify(·)

Fig. 4: Execution time (in ms) to generate/verify the claim
according to the size of the ring.

C. Size of the PoR/Claim

Figure 5 provides the measured execution size of the proofs
of reputation (blue) and the claims (red) according to the size
r of the ring. We observe that the PoR size grows linearly in
the ring size and weight 5 ·104 bytes, thus about 49 Kilobytes.
On the contrary, we see that the claim size is not correlated to
the size of the ring and has a median size equal to 39 Kilobytes
approximately.

D. From a transactional perspective

TABLE I: Parameters

Hypothesis Value
Gas per 256-bit-long word 20 000 gas [17]

Gas cost 16 - 19 gwei1

Equivalent USD 0.00000161 USD2

In Table I, we recall essential parameters to discuss the
applicability of Prove’n’Claim in the context of blockchains

7

0 20 40 60 80 100
0

1

2

3

4

5

·104

Ring size

Si
ze

(b
yt

es
)

PoR Size
Claim Size

Fig. 5: Size (in bytes) of the proof of reputation and the claim
according to the size of the ring.

TABLE II: Analysis

Object Size Gas cost Gwei equivalent Final USD
(KB) (·103) (·103) cost [18]

Maximum 49 31 360 501 760 - 595 840 807 - 959
PoR size
Average 39 24 960 399 360 - 474 240 642 - 763

Claim size

transactions. The table lists the amount of gas spent per 256-
bit-long words, the cost of one unit of gas in Gwei (1from
etherscan.io/gastracker), and the USD equivalent value (2from
cryps.info). Then, in Table II, we draw a short analysis of the
cost of each object, namely the anonymous PoR and the claim
objects. The final USD cost acts as a deterrent in the sense that
it reminds us the non-feasability to store all the data inside a
smart contract. Yet, there are two areas of improvements: the
first consists in determining which kind of data should abso-
lutely be stored inside the smart contract such as to provide
security and robustness to any overlaid application. The second
axis consists in optimizing the proposed algorithms by adding
signature aggregation and thus, proof aggregation.

VII. APPLICATIONS

We envision two main ways to apply the presented
Prove’n’Claim mechanism. In the first case, the scheme
can be used per se to improve privacy in reputation-based
crowdsourcing systems. The second case is the design of un-
predictable and privacy-preserving reputation based consensus
algorithms, example which opens a greater field of research
and necessitates further investigations.

A. Improving privacy in reputation-based crowdsourcing sys-
tems

The presented Prove’n’Claim mechanism can notably be
used per se in all applications that leverage reputation as
a determining metric to take decisions on. As quoted in
introduction, crowdsourced data collection systems are an

example of such applications. This data collection mecha-
nism is widely use in distributed systems and consists in
retrieving data from individual devices or processes to get
a global picture of the state of a decentralized system. It
is particularly prevalent in industrial settings to improve the
workload repartition and overall efficiency of an indutrial
system [19] or to reduce the CO2 emission of smart building
[20], in combinaison with IoT-based distributed systems to
implementation indoor localization systems [21] usable in
dangerous settings, or even in Vehicular Ad-hoc NETworks
to improve disaster management mechanisms [22]. Yet, these
systems traditionally leverage reputation as a metric of data
confidence. And reputation-based mechanisms yield several
limitations including the lack of anonymity since reputation is
often attached to an identity. This implies the vulnerability to
coercion as all actors are identifiable and prone to corruption
and facilitates targeted attacks such as Denial of Services.
Using the presented Prove’n’Claim mechanism solves these
limitations in the following way:

• Participants are anonymous when they issue transactions
or when they query a service;

• Decision making on collected data is still very quick as
based on a reputation score attached to their anonymous
identity;

• Good behaviors of users are easily traceable and reward-
able as they can claim reputation points based of their
behavioral history.

B. Design of an unpredictable and privacy-preserving repu-
tation based consensus algorithm

The presented Prove’n’Claim mechanism can also be used
to design unpredictable and privacy-preserving reputation
based consensus algorithms for permissioned blockchain set-
tings. It the following paragraphs, we decline the assumptions
that can be taken and the future issues we plan to tackle to
this end.

a) Realistic assumptions:
• All nodes in the P2P network are users and miners

i.e. they can generate and broadcast transactions, and
participate to the consensus protocol that validates the
block made with these transactions. This requirement is
easily reachable as long as the nodes have an Internet
access.

• The initial state of the system consists in N identi-
fied miners, each one initialized with the cryptographic
parameters in accordance with the Prove’n’Claim re-
quirements. This requirement can be achieved during the
deployement of the blockchain or on top on it.

• In order to be authorized to participate in the system,
each blockchain node Pi ∈ P must sign and commit to
their RSA keypair. Thus, we assume that all N initial
nodes did so in an initialization transaction. This is alike
registrations to an application.
b) Future work: In order to design a consensus algo-

rithm, one must define several aspects: the access control to

8

the network/application, the miner group selection, the leader
election, the reputation update and miner revocation/expulsion
as precised on Figure 6. The Prove’n’Claim mechanism
would be particularly useful to define the rules of transaction
validation, leader selection and block production.

Fig. 6: Overview of the system model for the consensus

VIII. CONCLUSION

The Prove’n’Claim algorithm proposed in this paper en-
ables blockchain users to generate privacy-preserving proofs
of reputation. we have demonstrated that the construction is
theoretically secure, correct, unforgeable, and k−anonymous
based on the security model described.

While we have briefly discussed the performance, both in
terms of computational cost and communication overhead, of
the proposed algorithms, further discussion on the linearity of
the execution time could be included in future work to validate
the approximations for any ring size. In addition, a comparison
with state-of-the-art approaches, for instance [10], could be
made to further evaluate the proposed algorithm. However, this
was not the focus of this paper, and we have instead focused
on demonstrating the security and feasibility of our approach.
Finally, there may be threats to the validity of the simulation
results due to the assumptions made in the simulation, such
as the network model, node behavior, and attacker model. The
performance results were obtained using simulations and may
differ from actual implementation results. Nevertheless, we
have demonstrated the effectiveness of the proposed algorithm
in achieving privacy-preserving proofs of reputation, which is
a promising step towards designing unpredictable consensus
algorithms.

In future work, we aim to further explore the application
of Prove’n’Claim in the design of unpredictable consensus
algorithms for permissioned and permissionless blockchains.
Additionally, we plan to investigate the scalability and assess
the practical feasibility of our approach in larger networks.

ACKNOWLEDGMENT

We would like to express our gratitude to B4IoT (Région Nouvelle-
Aquitaine), FEDER MISMAR, and ISAE-SUPAERO for their sup-
port in conducting this research.

REFERENCES

[1] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-
peer networks,” in Proceedings of the 13th International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
ser. NOSSDAV ’03. New York, NY, USA: ACM, 2003, p. 144–152.

[2] A. Selcuk, E. Uzun, and M. Pariente, “A reputation-based trust manage-
ment system for p2p networks,” in IEEE International Symposium on
Cluster Computing and the Grid, 2004., 2004, pp. 251–258.

[3] J. Bou Abdo, R. El Sibai, and J. Demerjian, “Permissionless proof-of-
reputation-x: A hybrid reputation-based consensus algorithm for permis-
sionless blockchains,” Transactions on Emerging Telecommunications
Technologies, vol. 32, no. 1, p. e4148, 2021.

[4] V. Gramoli, “From blockchain consensus back to byzantine consensus,”
Future Generation Computer Systems, vol. 107, pp. 760–769, 2020.

[5] A. Gouget, J. Patarin, and A. Toulemonde, “Unpredictability properties
in algorand consensus protocol,” in 2021 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1–3.

[6] J. Bonneau, E. W. Felten, S. Goldfeder, J. A. Kroll, and A. Narayanan,
“Why buy when you can rent? bribery attacks on bitcoin consensus,”
2016.

[7] F. Gai, B. Wang, W. Deng, and W. Peng, “Proof of reputation: A
reputation-based consensus protocol for peer-to-peer network,” in Inter-
national Conference on Database Systems for Advanced Applications.
Springer, 2018, pp. 666–681.

[8] Q. Zhuang, Y. Liu, L. Chen, and Z. Ai, “Proof of reputation: A
reputation-based consensus protocol for blockchain based systems,”
in Proceedings of the 2019 International Electronics Communication
Conference. New York, NY, USA: ACM, 2019, p. 131–138.

[9] W. Cai, W. Jiang, K. Xie, Y. Zhu, Y. Liu, and T. Shen, “Dynamic
reputation–based consensus mechanism: Real-time transactions for en-
ergy blockchain,” International Journal of Distributed Sensor Networks,
vol. 16, no. 3, p. 1550147720907335, 2020.

[10] M. T. de Oliveira, L. H. Reis, D. S. Medeiros, R. C. Carrano, S. D.
Olabarriaga, and D. M. Mattos, “Blockchain reputation-based consensus:
A scalable and resilient mechanism for distributed mistrusting applica-
tions,” Computer Networks, vol. 179, p. 107367, 2020.

[11] I. B. Damgård, “A design principle for hash functions,” in Proceedings
on Advances in Cryptology, ser. CRYPTO ’89. Berlin, Heidelberg:
Springer-Verlag, 1989, p. 416–427.

[12] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM
Conference on Computer and Communications Security. New York,
NY, USA: ACM, 1993, p. 62–73.

[13] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in
Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 552–565.

[14] J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” Technical Report/ETH Zurich, Department
of Computer Science, vol. 260, 1997.

[15] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Ethdkg: Dis-
tributed key generation with ethereum smart contracts,” Cryptology
ePrint Archive, 2019.

[16] D. Miyahara, T. Sasaki, T. Mizuki, and H. Sone, “Card-based physical
zero-knowledge proof for kakuro,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E102A,
no. 9, pp. 1072–1078, 2019.

[17] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, pp. 1–32, 2014.

[18] “Eth gas station,” last accessed: 4 August 2022.
[19] V. Pilloni, “How data will transform industrial processes: Crowdsensing,

crowdsourcing and big data as pillars of industry 4.0,” Future Internet,
vol. 10, no. 3, p. 24, 2018.

[20] M. Attia, N. Haidar, S. M. Senouci, and E.-H. Aglzim, “Towards an
efficient energy management to reduce co 2 emissions and billing cost in
smart buildings,” in 2018 15th IEEE Annual Consumer Communications
& Networking Conference (CCNC). IEEE, 2018, pp. 1–6.

[21] B. Lashkari, J. Rezazadeh, R. Farahbakhsh, and K. Sandrasegaran,
“Crowdsourcing and sensing for indoor localization in iot: A review,”
IEEE Sensors Journal, vol. 19, no. 7, pp. 2408–2434, 2019.

[22] M.-A. Lèbre, F. Le Mouël, and E. Ménard, “Efficient vehicular crowd-
sourcing models in vanet for disaster management,” in 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020, pp.
1–5.

9

