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Abstract—Handling volumetric attacks and high loads is fun-

damental for Domain Name System (DNS) resolvers. While one
can often scale up resources to cope with high loads, this costly
solution is not always viable. Thus, our work revisits the design
of DNS resolvers and maps the design decisions that most impact
the resolver’s robustness to high loads and volumetric attacks.
Our work suggests a novel resolver composed of deadline-
aware queue management, optimized cache policy, and high-load
handling mechanisms. An evaluation with real DNS traces shows
a consistent improvement of 21% in a high load scenario and by
40% under an NXDomain attack when compared with the best
alternative method.

Index Terms—DNS Resolver, Volumetric Attacks, Cache Policy,
Queue Management, Count-Min Sketch.

I. INTRODUCTION

Volumetric attacks on critical Internet infrastructure are an
increasing concern. Domain Name Systems (DNS) provides a
mapping between easy-to-remember domain names and the IP
addresses of the servers that host the site. DNS is perhaps the
most critical Internet infrastructure since most users cannot
access the Internet when denied access to a DNS server [1].
The Dyn attack in October 2016 exemplified the vulnerability
of the DNS infrastructure to volumetric attacks. In this attack,
millions of users in the eastern USA were denied Internet
access for an extended time.

The attack was a Nonexistent Domain (NXDomain) dis-
tributed denial of service attack [2]. In this attack, a large
number of compromised devices (also known as a botnet)
launched DNS queries for nonexistent domains to Dyn’s
servers. Such queries require more resources from the DNS
servers, and Dyn could not handle the massive attack traffic.
As a result, large parts of the eastern USA lost Internet access
for several hours. By taking down a single service, the attacker
effectively impacted banks, electronic commerce sites such as
eBay and Amazon, news sites, and many more.

In retrospect, the Dyn attack was not sophisticated and did
not expose new attack vectors. It uncovered that the standard
mitigation techniques often boil down to additional resources.
However, Akamai failed to mitigate the attack despite their
extensive resources. We are entering an era where volumetric
attacks challenge even the industry giants. Thus, we focus
on designing better DNS servers capable of handling more
load. Numerous works address hardening DNS servers about
specific attacks or inefficiencies [2]–[6]. However, these are
ad-hoc solutions, and we miss the wide perspective of how
design decisions impact performance.

Our Contribution: Our work suggests the Resolver Aware
Remaining Time (RART) design for DNS resolvers based
on the remaining time to serve queries. Rart is a complete
overhaul of the current designs, and it focuses on queue
management, caching, and high-load optimization. Through
an evaluation of real datasets, we demonstrate a 21% im-
provement in the goodput for handling high load scenarios (of
legitimate traffic) and 40% for handling NXDomain attacks
when compared against leading open source DNS resolvers.

Our approach is based on informed risk management, where
we see handling a query as a gambit where if we fail to finish
in time, we waste the resolver’s resources. As such, RART
would perform all queries like a normal resolver when the
load is below capacity. As the load intensifies, the queue length
increases and RART may selectively drop some of the queries
to maximize the number of completed queries.

Our work also provides insight into the delicate interplay
of the various design decisions in resolver design, including
queue management, cache management, and high-load man-
agement. We perform a step-by-step evaluation and explain
the tradeoffs encountered at each decision interval. Such a
systemic examination of the resolver’s design is novel as the
existing works each focus only on one of the aspects (e.g.,
queue management, cache policy, or attack mitigation).

Roadmap: Section II surveys the related work for each of
the design decisions we study within this work. Section III
gradually explains our solution, starting by surveying the
model and assumptions, followed by explaining the design of
popular DNS resolvers, and then presents our approach as a
series of answers to each design point. Section IV provides an
evaluation using real workloads that motivates our design and
positions it within the context of the existing DNS resolvers.
Finally, Section V summarizes our results and discusses their
impact, as well as future directions.

II. RELATED WORK AND MOTIVATION

Designing robust DNS resolvers is a multidisciplinary pro-
cess that revolves around queue management, cache policy,
and attack mitigation schemes. This section surveys important
works in each field and important DNS resolvers. Queue
Management: Queue management is crucial for effectively
handling high loads and avoiding timeouts. Most server op-
erating systems have a First in First Out (FIFO) queue. If
a query arrives and the queue is full, the server drops that
query (e.g., TailDrop policy). The operating system that runs
the DNS resolver directly affects the order in which queries
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are handled. Additionally, some DNS resolvers have a rate-
limiting mechanism to prevent excessive loads [7], [8]. For
instance, BIND serves the first query to arrive and has two
thresholds for the number of recursive queries [9].

Some resolvers even have more sophisticated queuing sys-
tems. Akamai DNS [10] has a query scoring and prioritization
mechanism as part of their nameservers. It prevents malicious
queries from exhausting server resources. A nameserver gives
a penalty score to each query. Low score queries receive
a higher execution priority as they are more likely to be
legitimate traffic. More so, queries with a penalty score above
a certain threshold are dropped.

Queue management is also very common in packet-switched
networks to avoid congestion. The queue management governs
which packets are buffered, transmitted, and discarded. It can
either be active or passive. Passive schemes take action only
when the queue is full. For example, TailDrop rejects an
incoming packet when the queue is full, while HeadDrop
drops the oldest packet in the queue. Active schemes try to
avoid problems rather than react to them. RED [11] randomly
discards packets with a probability that depends on the queue
length. While CoDel [12] drops packets based on the queue
delay (rather than the queue length) to avoid timeouts.

Cache Policy The research of cache policies advances
in two parallel tracks: Some works focus on DNS-specific
challenges to the cache performance, such as handling ”one-
time” legitimate queries called disposable domain names that
are not cachable. In comparison, other works focus on cache
policies in general. Hao et al. [13] and Yu et al. [14] provide a
fine example for DNS specific optimizations. Their works use
machine learning classifiers that train on syntactical features
extracted from the hostname string. The classifiers identify
disposable domain names and mark these to avoid the cache.
Yuchi et al. [15] suggest a segmented cache strategy to deal
with disposable domain names. Their caching strategy reduces
DNS traffic between the resolver and the authoritative servers.

Within a wider scope, caching is a common optimization
shared by many systems. Thus, designing cache policies for
general use attracts a lot of research. In a gist, cache policies
decide (a) if to admit a new item to the cache and (b) which
item to evict if the cache is full. The hit ratio measures how
many queries are satisfied by the cache (at a reduced cost). The
simplest cache policy is FIFO (First in first out), the policy
always admits new items to the cache and evicts the item that
entered the cache first. FIFO is considered a bit simplistic as it
also evicts items that are accessed a lot. The most well-known
cache policy is arguably the Least Recently Used (LRU) policy.
LRU always admits new items and evicts the least recently
accessed items. LRU can be implemented by keeping the items
ordered by their last access time. The TinyLFU [16] policy
records the number of access to items across some time period.
It admits a new item to the cache if it is more frequent than the
cache victim. Any cache eviction policy can select the cache
victim (e.g., by LRU). Hyperbolic caching [17] assigns a score
to each item based on frequency and recency. Since keeping all
items ordered by arbitrary scoring is impractical, Hyperbolic

caching randomly samples a small number of entries. It admits
a new entry if its score is higher than that of the lowest score
item in the sample and evicts the lowest score item.

Interestingly, the general community noticed a similar prob-
lem to the DNS disposable domain problem. In many work-
loads, some items are only accessed once in a long while,
which makes them undesirable to cache in most cases. The
most common pattern is a database or memory scan. Cache
algorithms are called scanning resilient if the performance
impact of large one-time scans on the algorithm is small. LRU
and FIFO are not scanning resilient. For reference, LRU is
usually the cache management policy in DNS systems. This
weakness explains the need for work on better handling dis-
posable domains. On the other hand, TinyLFU and Hyperbolic
caching are scan resilient, which means that adapting them to
DNS resolvers also addresses the disposable domain problem
and mitigates simple attacks to pollute the cache with single-
use nonexistent queries (such as the NXDomain attack).

Attack and high-load mitigation Previous works suggest
different approaches to mitigate and cope with volumetric
attacks. Some studies focus on changing a particular behavior
or property of the DNS infrastructure, while others detect
malicious traffic. Ballani et al. [3] suggests storing expired
records in a separate ”stale cache” for use in case there is no
response from the nameservers. Massey et al. [4] propose to
set longer time-to-live values for nameserver (NS) resource
records since they change infrequently. Other studies built
an external system or component to detect malicious traffic.
Feibish et al. [2] identify a rise in the number of distinct
subdomains of targeted domains and extract attack signatures
for mitigation. Kostopoulos et al. [5] proposes a privacy-
preserving schema to protect authoritative DNS servers from
a flavor of distributed denial of service attacks. Their schema
uses probabilistic data structures and related algorithms to
classify DNS queries as legitimate or suspicious. Hasegawa
et al. [6] present a whitelist filter based on fully qualified
domain names for recursive DNS servers.

III. RESOLVER AWARE REMAINING TIME (RART)

In this section, we gradually design the Resolver Aware
Remaining Time (RART) resolver. RART’s design goal is to
maximize the goodput in high-load situations.

System model & Preliminaries: We model DNS resolvers
in the following manner: Each query has a timeout (known
to the resolver), defining a deadline for handling the query.
Queries may arrive at any time, according to the trace. Upon
arrival, we enqueue queries in a queue, and multiple workers
periodically dequeue queries. The resolver has a fixed-sized
cache with some management policy (e.g., LRU), and the
worker first checks that cache. If the query response is cached,
we have a cache hit; otherwise, it is a cache miss. In DNS
resolvers, cache misses result in recursive lookups, which are
more time-consuming than cache hits. Our model has some
(unknown to the resolver) hit time and recursive time for each
query. Such a time may vary between the different domains
and subsequent queries for the same domain. The worker then



waits either hit time (for cache hits) or recursive time (for
cache misses) and then completes handling the query. The
query is successful if a worker finished handling it before the
deadline and is unsuccessful otherwise.

The arrival rate is a Poisson process, and we can vary the
number of queries entering the resolver on average per time
unit. In addition, some of our evaluations simulate NXDo-
main attacks. In these, we differentiate between legitimate
queries from the original workload and attack queries from
the simulated attack. The resolver does not know which query
is legitimate, but attack queries are never issued twice, and
thus the resolver can never benefit from caching them.

We evaluate our resolvers using the Response Rate which
is the portion of (legitimate) queries that were successfully
handled by the resolver. A high response rate is desired. Our
work aims to maximize the response rate in situations of high
(legitimate) load and NXDomain attacks.

Decision points in DNS design: Our work identifies the fol-
lowing fundamental design decisions that distinguish resolvers.

• Queue management - controls how the queue is main-
tained. E.g., long queues can handle sudden bursts of
traffic, but when they are too long, queries may wait too
much time in the queue and fail due to a timeout.

• Cache policy - in DNS resolver, cache hits do not require
a recursive lookup, and we get shorter times to handle
cached queries. Thus, a better cache policy would attain
more cache hits and increase the response ratio under a
heavy load of queries.

• High load mitigation - the system may choose to revise
its behavior when faced with high loads. For example,
we suggest prioritizing popular queries over unpopular
queries when the queue gets out of hand. The motivation
is to allow the cache to function better in high-load cases.

Design Decisions of open source resolvers:
BIND has a soft and hard limit on the number of concurrent

queries it performs [9]. The motivation behind the soft limit
is to allow the resolver to handle legitimate queries that can
complete quickly. When the number of concurrent queries
reaches the soft limit, BIND drops the oldest query and begins
executing the new query. Coming to the hard limit, it drops
both the pending and new queries. Ideally, the soft limit is the
preferred operation mode. BIND’s approach is equivalent to
HeadDrop queue policy. The default value of the soft limit is
90% of the defined resolver capacity.

PowerDNS can be configured to strip the Recursion Desired
(RD) bit from any traffic that exceeds a specific rate or to drop
it [8]. We focused on the latter option, similar in behavior to
TailDrop. PowerDNS uses the LRU cache management policy
but prioritizes evicting expired records (according to TTL).

Unbound limits the number of queries sent to nameservers.
More queries are turned away with an error (SERVFAIL) [7].
Unbound uses the TailDrop queue policy but allows queries
to check the cache before queuing them (CacheFirst). To
maximize cache performance, Unbound keeps expired entries
until the cache runs out of memory; it then uses the LRU
policy when it has to evict queries.

In the following subsections, we gradually explain our
approach by expanding its answer to each of the above-
mentioned design points. For ease of reference, Table I sum-
marizes key details on the modeling of DNS servers.

DNS Resolver Queue Management Cache Policy
BIND HeadDrop

Unbound CacheFirst + TailDrop LRU
PowerDNS TailDrop

TABLE I: Design choices in DNS resolvers

A. Queue Aware Remaining Time (QART)
During the dequeue operation, we decide what to do with

the query according to its remaining time (rt) which is the
time the query has until it experiences a timeout. 1 Our strategy
depends on rt in the following manner:

• rt < Cacheth - When we have less than Cacheth
remaining time, we drop the query with a rationale that
there is no time to even look in the cache.

• Cacheth < rt < Attackth - The remaining time is
between Cacheth and below Attackth. We perform a
cache lookup and return a response in case of a cache
hit but drop the query upon a cache miss as there is
insufficient time to perform a recursive lookup.

• Attackth < rt < Recursiveth - There is enough time to
try a recursive lookup with a low success ratio, we will
only try a recursive lookup in specific conditions, which
we later detail.

• Recursiveth < rt - There is enough time to perform a
recursive lookup; we handle the query normally. E.g., we
perform a cache lookup, and upon a miss, we perform a
recursive lookup. This state is the desired situation when
the resolver is not overly stressed and resolves all queries.

We determine these thresholds by measuring our system’s
average performance, as we explain in the following section.

1) Measurement based Threshold Tuning: We adapt the
threshold according to the last M measurements of the pro-
cessing time of queries that returned cached responses and
of the M last queries that performed a recursive lookup.
Let TC and TR denote the last M measurements of queries
resolved by cache and recursively, respectively. Upon dequeue,
we set the remaining time of a query (rt) as Timeout -
qt. Here, qt is the time spent in the resolver’s queue, and
Timeout is two seconds (common DNS Timeout value [18]).
Cacheth = Avg(TC), which implies that the probability
of completing a cache lookup (and returning the result) in
time is at least 50% providing the distribution is symmet-
ric. Recursiveth = Avg(TR) following a similar logic as
Cacheth, while Attackth is Min(TR). E.g., we use the high
load algorithm when recursive queries can be successful, but
not with a very high probability.

1Notice that the DNS resolver does not know the exact remaining time as
it depends on the RTT between the client and the resolver. However, as most
resolvers are close to their clients, and such RTT is likely very short, (e.g.,
30 ms) compared to the timeout (e.g., 2 seconds). Thus, we neglect the RTT
between the client and resolver.



2) Cache Policy Optimization: A higher chance of hit-
ratio translates to faster query handling, positively affecting
the resolver’s performance. Thus, our work deviates from
most existing works that use LRU as their cache management
scheme. We choose to use Hyperbolic caching [17] which
attained the best performance out of all the cache management
policies we checked and better performance than the standard
LRU.

In a gist, upon eviction, Hyperbolic caching selects a
random subset of the cached items as potential victims. It
assigns each of these items a score according to some cost
function and evicts the lowest score item. We use the standard
priority function, which is the ratio of the number of access
and the lifetime of an item.

3) Selective Drop Optimization: When the remaining time
is above the attack, but below the recursive threshold
(Attackth < rt < Recursiveth), we have time to look at the
cache but not necessarily to perform recursive lookups. Notice
that we do not know exactly how much time each recursive
lookup would take, but we expect to fail more than 50% of the
time. In such conditions, it makes sense to drop some queries
to increase our chances of successfully handling other queries.
We define two mechanisms to decide which query to perform,
and which one to drop.

Delay filter - drop a query with a probability proportional
to its remaining time, similar to RED, which drops with a
probability proportional to the queue length. Specifically, we
use a drop probability of: Recursiveth−rt

Recursiveth−Attackth
.

Sketch filter - the delay filter drops packets indistinguish-
ably regardless of their benefit to the resolver. We want to
prioritize performing recursive queries for popular domains
and drop queries to unpopular domains. Doing so makes sense
in high-load situations, as popular queries would benefit the
cache. It makes sense under a family of attacks, including the
NXDomain attack, as queries to nonexistent subdomains are
only issued once (and are thus unpopular).

Ideally, we would like to know exactly how many times each
query was issued before. However, keeping exact statistics
may be costly to maintain, take a long time to analyze, and
take a lot of storage. Instead, we suggest using a (fixed size)
Count-Min Sketch [19]. Count-Min-Sketches are probabilistic
data structures that approximate frequency estimation using a
compact space. They use multiple hash functions and shared
counter arrays. Upon each query arrival, we increment the
Count-Min Sketch [19] to keep an estimation of the query
repetition. Each such increment increases the value of several
random counters received from applying a hash function to the
item. Thus, if the same item appears again, it increments the
same set of counters. When we want to estimate the frequency
of a domain, we read its counters and use the minimal value
as our estimation.

When using the sketch, we do not need to remove old entries
from the sketch (as long as the counters do not overflow).
Instead, we periodically calculate the statistical mode of a
random row in the Count-Min sketch. In a gist, the statistical
mode is the most common value in the row. The statistical

Queue Parameters
FIFO / TD Qs = W · (T imeout−Rmiss)/Rmiss

RED

maxth = W · (T imeout−Rhit)/Rmiss

minth = W · (T imeout−Rmiss)/Rmiss

maxp = 0.5

wq = 1− e−1/W

CoDel interval = 10ms
target = T imeout−Rmiss

QART

Cacheth = Avg(TC)
Attackth = Min(TR)

Recursiveth = Avg(TR)
M = 100

TABLE II: Queue parameters used in our evaluation

mode provides us with a measure to estimate the noise in
the sketch, and when an item appears above the noise, it is
likely popular. When the Sketch filter is active, we perform
recursive queries for domains whose frequency is above the
statistical mode of the sketch and drop queries to domains
whose frequency is below the statistical mode.

IV. EVALUATION

Our evaluation motivates our design when constructing
RART. We begin by explaining the different decisions one at
a time and comparing them to the existing alternatives. Then,
we position RART with other popular DNS resolvers.

Our evaluation includes the following datasets:

• SURFnet’s Authoritative Servers: The trace contains
circa 3.5 billion DNS queries received at one of
SURFnet’s authoritative DNS servers from Google’s Pub-
lic DNS Resolver [20]. We used several day traces.

• Campus DNS network traffic: A dataset containing DNS
queries from over four thousand users was taken on ten
random days between April and May 2016 at Thapar
University [21].

• Case Connection Zone DNS Transaction: DNS lookups
by client devices on an experimental Fiber-To-The-
Home network in Cleveland [22]. This trace contains
anonymized domain names to preserves users’ privacy.

Determining hit and recursive times: Notice that the
workloads we use only contain the DNS queries and do
not contain the time it takes to retrieve these queries either
from cache or recursively. Thus, using the BIND resolver, we
measure access times to each query in case of a cache hit and
miss. We repeat these measurements multiple times and assign
the average access times to each query. In workloads where the
queries are anonymized, we randomly select one of Alexa’s
Top 1 Million websites [23] to replace each anonymized query
and then similarly assign the access times.

Attack trace generation: We also generate NXDomain
attack traces for our evaluation by injecting NXDomain traffic
randomly into the traces. We do that according to a certain
percentage, e.g., when the NXDomain traffic is 80%, then
80% of the generated trace contains injected packets, and 20%
contains the original packets. Notice that even the legitimate
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Fig. 1: Response rate for different query rates of resolvers with different queue management. DNS workloads properties: 100K
DNS transactions and 15% NXDomain queries.
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Fig. 2: Response rate for different NXDomain traffic volumes of resolvers with different queue management. DNS workloads
properties: 100K DNS transactions with fixed rate of 1000Qps.

DNS workload contains 85% of NOERROR traffic and 15%
of NXDomain traffic [24].

High level simulation description: In our simulations, we
enqueue queries from a trace to a queue at a given rate. The
DNS resolver uses W workers to dequeue queries from the
queue and simulate resolving these queries. When handing a
query, a worker first performs a cache lookup, and in the case
of a cache hit, it waits the hit time (provided by the trace)
and dequeues the next query. Otherwise, the worker waits for
a recursive completion time which is included in the trace for
that query. Once that time passes, it dequeues another query
from the queue.

Queues configuration: Table II shows the full configura-
tion of each queue management scheme. Below we explain
the configuration we chose which set the queue parameters
conservatively as the cache hit ratio varies. We denote the
averages of resolution time by Rhit and Rmiss, calculated by
averaging Alexa’s resolution times from cache and recursively.

A query that has experienced a queue delay greater than
Timeout−Rmiss has a reasonable chance for a timeout. The

queue delay that a query experience in case the resolver has
W workers and queue length of Ql is Qd = Rmiss · Ql

W .
Considering that the waiting queries require recursive lookup.
The queue length equivalent to a queue delay of Timeout−
Rmiss: Timeout−Rmiss = Rmiss · Ql

W

Ql = W · Timeout−Rmiss

Rmiss

1) RED [11]: RED’s maxth parameter controls the maxi-
mal queue size before RED drops excess queries and we set it
to: W ·(Timeout−Rhit)/Rmiss assuring that only few queued
queries experience timeouts. We set the minth parameter to
W · (Timeout−Rmiss)/Rmiss, if the queue length is below
minth, RED never drops a query as there is a good chance it
has time for all the queries. When the queue size is between
minth and maxth, RED randomly drops queries according
to the wq and maxp parameters; these values were selected
according to the authors’ recommendations.

2) CoDel [12]: In CoDel, we need to select target and
interval parameters. For the interval we use the authors’ rec-
ommendation, and for the target, we used Timeout−Rmiss,
which assures that CoDel has time to resolve a non-cached
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Fig. 3: Response rate broken to recursive (R) and cached (C) when varying the cache policy and cache size. Simulation
properties: fixed rate of 1000Qps, 2M DNS transactions, 15% NXDomain traffic and QART.
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Fig. 4: Response rate broken to recursive (R) and cached (C) for different NXDomain traffic volumes when varying the cache
policy. Simulation properties: 2M DNS transactions, fixed rate of 1000Qps and QART.

query. Thus, timeouts are still possible, but since they are very
rare, there is no need for a more conservative configuration as
it forces CoDel to drop more queries and hurt its performance.

3) HeadDrop / TailDrop: We set the queue size so the
chance of timeouts will be negligible and therefore the queue
size is W · (Timeout−Rmiss)/Rmiss.

A. Queue Management

This section compares QART to CoDel, RED, HeadDrop
and TailDrop under identical settings. That is standard LRU
caches of the same size and the same workload.

In the first experiment, we vary the queries per second
and show the effect on the Response Rate, which is the
percentage of (legitimate) queries being answered. Our results
are in Figure 1. As can be observed, in the Campus and Case
Connection Zone traces, all queue managements can answer
over 90% of the queries at 1,000 queries per second. Thus, the
DNS is at the edge of its capacity. In the SURFNet trace, we
can see that the servers are already struggling at 1,000 queries
per second. As we increase the number of queries per second,

we observe that all the schemes drop in the response rate. Yet,
HeadDrop and QART behave better than the alternatives, and
when the queries per second are above 1,500, QART is strictly
better than HeadDrop.

Interestingly, QART maintains a queue delay that allows
performing at least a cache lookup. TailDrop and RED reach
a certain queue length and drop new queries without even
enqueuing them. CoDel preserves a queue delay, but its queue
delay is overly conservative because it is not aware of the
cache. HeadDrop drops the oldest query when the queue is
full, thus avoiding timeouts. However, when the rate is higher
HeadDrop fails in all its recursive lookups (e.g., see SURFNet
at 2500 queries per second). The reason for such failure is that
HeadDrop drops the old queries before they finish. QART, on
the other hand, would only stop a recursive lookup in case of a
timeout. Instead of dropping recursive lookups, QART would
avoid starting them in the first place under certain conditions.
Thus, it retains the highest response rate under heavy loads.

In Figure 2, we present the effect of NXDomain traffic on
the (legitimate) response rate. We set a fixed rate of 1000Qps
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Fig. 5: Response rate for different query rates of resolvers with different filter approaches. Simulation properties: 500K DNS
transactions, 15% NXDomain traffic, Hyperbolic caching and QART.
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Fig. 6: Response rate for different NXDomain traffic volumes of resolvers with different filter approaches. Simulation properties:
500K DNS transactions, fixed rate of 3000Qps, Hyperbolic caching and QART.

since we noticed in Figure 1 that the different schemes are
stressed at that rate. Here, QART is better than the other
queues for all workloads, starting at 40% of NXDomain
traffic. As the percentage of NXDomain traffic increases,
fewer queries can be satisfied from the cache, and the queue
delay and length increase. Consequently, RED, TailDrop, and
CoDel experience the same problem when increasing the
query intensity, but this time it happens at a lower load since
NXDomain traffic is not cacheable. HeadDrop handles fewer
queries by cache lookups, so its benefit over other schemes
decreases as the portion of NXDomain queries. The difference
between it and the other queues is smaller compared the
experiment with legitimate DNS traffic.

B. Cache Policy Optimization

Notice that from now on, all our evaluations use QART as
queue management. This section shows the effect of modern
cache policies on the effectiveness of DNS resolution. We
consider five algorithms: LRU, LFU [25], Hyperbolic Caching
with default score function (HYPER), and with the LFU score

function(HyperLFU) [17], and the TLRU algorithm containing
LRU eviction + TinyLFU admission (TinyLFU) [16].

Figure 3 demonstrates the effect of varying the cache size
on the performance of the DNS. First, observe that we see an
increase in all policies with the percentage of cached responses
as the cache size increases. Such an increase is translated
directly to the percentage of NOERROR responses as our
experiment uses 1000 queries per second, which places the
DNS close to its capacity.

It is evident that LRU is a reasonable policy and the dif-
ferences with the best policy are small. However, Hyperbolic
is slightly better than the alternatives, resulting in at most a
7% increase in cached responses, which directly translates to
a similar rise in successfully handled queries.

Figure 4 shows how different caches behave under an NX-
Domain attack. Here, we set the cache size to 1000 and vary
the attack traffic percentage. First, observe that LRU behaves
poorly under high NXDomain load. Such a result explains
the variety of works on disposable domains which indirectly
targets a weakness in LRU. Hyperbolic and TinyLFU behave
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Fig. 7: Response rate for different query rates of different DNS resolvers. Simulation properties: 1M DNS transactions and
15% NXDomain traffic.
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Fig. 8: Response rate for different NXDomain traffic volumes of different DNS resolvers. Simulation properties: 1M DNS
transactions and fixed rate of 3000Qps.

much better under high NXDomain load, and Hyperbolic
seems to be the best policy overall.

To sum up, from now on, we always use the Hyperbolic
(with the original scoring metric) policy as it is competitive
with the best approach in all cases and is slightly better than
the best alternative under an NXDomain attack in the Campus
DNS network (a margin of 2%-7% from the best alternative).

C. High Load Mitigation
Finally, we now evaluate our high load mitigation mecha-

nisms. We compare having no mechanism (No filter) to our
Delay and Sketch filter. Figure 5 shows result for increasing
(legitimate) load. As can be observed, the Sketch filter is better
than the alternatives across the board, even when there is no
attack. Specifically, observe that a slightly higher portion of the
queries is handled by the cache when using the Sketch filter.
This increase is expected as the Sketch filter prioritizes com-
pleting popular queries that may benefit the cache. Figure 6
evaluates the mechanisms under an NXDomain attack. Here,
the Sketch filter is dramatically better than the alternatives.
Intuitively, all the attack packets are unpopular, and the Sketch
filter ignores most of them when the load is too high. Thus,
we use the Sketch filter in all subsequent measurements.

D. RART and Other DNS Resolvers

This section compares RART, which uses QART for queue
management, hyperbolic caching, and the Sketch filter with
popular open source resolvers. Details about these resolvers
appear in Table I. Figure 7 presents the response rate of the
resolvers under loads of legitimate DNS traffic. PowerDNS
does not try to perform a cache lookup and suffers from the
lowest response rate. Unbound has an LRU cache policy, while
RART has Hyperbolic caching, which results in a higher cache
hit ratio. BIND cannot perform a recursive lookup starting
from a specific rate due to its queue management, while our
resolver does not drop queries in handling. RART has a better
response rate than BIND, Unbound, and PowerDNS by 17.8%,
13.2%, and 44.7% on average under legitimate DNS traffic.

In Figure 8 we evaluate the resolvers under varying NX-
Domain traffic rate. RART resolver is less vulnerable to
NXDomain attack since it has the Sketch filter protection layer.
The other resolvers’ queues fill up quickly, directly translating
to an increase in drop rate. Consequentially, our resolver has
a greater response rate than BIND, Unbound, and PowerDNS
by 28.4%, 19.2%, and 57.3%, respectively.



V. DISCUSSION

The capacity of DNS resolvers to handle high loads and
volumetric attacks is instrumental to the stability of our Inter-
net infrastructure. We focused on three crucial design decisions
and created the RART resolver by carefully optimizing each of
these decisions. We showed through an extensive evaluation
that RART processes on average 21% more queries for the
same load, 41% more queries in an NXDomain attack.

RART performs risk management based on the remaining
time to complete a query. In a gist, it only performs a
resolution step (such as checking the cache or performing
a recursive resolution) if we have enough time to do so.
Our approach uses multiple thresholds, which we measure
by measuring the current performance. Thus, the thresholds
would automatically update after scale-up operations.

In addition, RART includes an adaptation of the state-of-the-
art Hyperbolic cache policy into DNS resolvers and shows that
the new policy behaves better under attacks when compared
with the standard LRU policy (that currently appears in all
open source DNS projects). We show that the performance of
the cache policy is crucial in handling high loads and attacks,
and thus we also suggest using the novel Sketch filter approach
to maximize the cache hit rate under heavy loads.

Intuitively, when RART cannot handle all the queries, it
prioritizes queries to popular domains. These allow the cache
to function better under heavy load, and as a side effect, attack
packets (e.g., for an NXDomain attack) tend to be unpopular
and are more likely to be dropped. However, such an approach
may lead to fairness issues under high legitimate loads where
the high goodput might hide lower availability for unpopular
domains. However, the alternative is to fail on more queries.

Looking into the future, we plan to pursue the adaptation of
our approach to existing DNS resolvers. Such a deployment
may require better access to managing the query queue.
However, the existing resolvers seem to move in a similar
direction. For example, BIND 9.18 already supports editing
the queue size of the operating system [26], which removes
an obstacle to realizing our work on BIND.

For reproducibility, we plan to release our code as an open
source once anonymity restrictions are lifted. In the meantime,
our code can be found in this anonymous repository [27].
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