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Abstract—Modern video streaming applications apply adaptive
bitrate (ABR) algorithms to enhance user quality of experi-
ence (QoE). The existing model-based ABR algorithms failed to
generalize to diverse network conditions and personalized QoE
objectives due to their fixed control rules. The learning-based
ABR algorithms required significant tuning to learn a well-
performed model which can cause a QoE degradation during
the model testing phase. In this paper, we propose FedABR, a
novel ABR algorithm based on personalized federated learning
to address the above challenges. To enable clients’ local model
dealing with network environment changes, we introduce a
federated learning approach to train a global model using all
the clients’ local model without gathering their data together to
protect clients’ privacy. We also introduced an adaptation phase
to train a personalized model for each client to maximize their
individual QoE. By jointly training multiple learning tasks with a
global model, it has the ability to provide transferable knowledge
to supervise bitrate selection, and can be efficiently adapted to a
new task in unseen environment with much fewer data samples
and training epochs. We implement the proposed FedABR based
on an emulation platform which connects to the Linux network
protocol stack through a virtual network interface to send real
data packets for evaluation. Extensive experiments based on real-
world traces show that FedABR achieves the best comprehensive
QoE compared with the state-of-the-art ABR algorithms in a
variety of network environments.

Index Terms—Federated learning, Adaptive video streaming

I. INTRODUCTION

With the development of global network infrastructure and
Internet devices, more and more video streaming applications
appeared in recent years. Internet users can watch whatever
they want anytime through these Video on demand (VoD)
services, which contributes to the rapid increasing of video
streaming traffic and the steady rise of user’s demands on
video quality. According to previous study [1], Internet users
have less and less patience with startup delay, rebuffering time
and low video quality when watching video. A small amount
of interruptions can decrease a great amount of average video
play time of a consumer, which is unacceptable for video
content providers. To win customers and make them watch
videos as much time as possible, content providers are making
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a great effort to provide high-quality video streaming services
to their users.

HTTP adaptive streaming (HAS) is the dominant approach
for video streaming. It chunks the media content into small
pieces and delivers them like regular web content over HTTP
protocal. There are a plenty of commercial solutions for
HAS such as Microsoft’s Smooth Streaming, Apple’s HTTP
Live Streaming (HLS), Adobe’s HTTP Dynamic Streaming
(HDS) and several open-source solutions. Dynamic Adaptive
Streaming over HTTP (DASH) [2] is the first adaptive
bitrate HTTP-based streaming solution that is an international
standard. In DASH system, a multimedia file is partitioned
into one or more segments and the segment information
are described in a media presentation description (MPD).
Each segment has one or more representations that represent
versions at different resolutions or bit rates. DASH leaves
implementation of Adaptive bitrate (ABR) algorithms to the
third parties. Adaptive bitrate (ABR) algorithm is the essential
components that content providers use to optimize users’
quality of experience (QoE). It dynamically selects a bitrate
for each multimedia segment on client-side video players
based on the network conditions, device capabilities, and
user preferences. However, selecting the appropriate bitrate
in dynamic network is challenging because of the limited
network bandwidth and trade-off of conflicting video QoE
requirements [3].

ABR algorithm has been studied for a long time and
many works have been proposed. Some works [4]–[6] builded
mathematical models for network conditions based on past
network bandwidth and made bitrate decisions based on the
estimated network throughput. Some works [7], [8] selected
bitrate only based on user playback buffer occupancy and
didn’t take network conditions into consideration. These
algorithms failed to achieve optimal performance for they
didn’t use all the useful information to make bitrate decisions.
MPC [9] developed a model predictive control algorithm
that combined both network throughput estimates and buffer
occupancy information to select bitrates to maximize QoE over
a horizon of several future chunks. However, the fixed control
rules makes MPC unable to adapt to a broad set of network
conditions that exist in real world.

Recent works [10]–[12] consider to apply machine-learning
algorithms to generate ABR policy. The machine-learning
based ABR algorithms use raw observations (e.g., throughput
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Fig. 1. The performance of Pensieve [11] DRL agents trained with different
datasets, where hybrid means the dataset combining 3G, WiFi and 4G traces
(details are found in Sec. 5).

samples, playback buffer occupancy, video chunk sizes)
as neural network inputs, and the output is the predicted
bandwidth or bitrate for the next video chunk. For example, the
works of [10], [11], [13] used Deep Reinforcement Learning
(DRL) that trains an agent by interacting with the environment
to select the right bitrate. Fugu [12] used a neural network to
train a network throughput predictor to make a more precised
bandwidth prediction.

Despite the flexibility and effectiveness of the DRL-based
ABR algorithms, there remain a variety of challenges to apply
them for real-world video streaming systems. On the one hand,
collecting training data in video streaming sessions is difficult
and privacy sensitive. It requires the users to upload their video
watching information from various network environments to
a central server for DRL model training, which will raise
users’ serious privacy concerns. On the other hand, due to
the complexity and diversity of network conditions, training
a uniform DRL model for heterogeneous clients is infeasible
and hard to deal with user behaviors heavy-tailed changing
with time.

We demonstrated the limitations of the DRL-based ABR
algorithm called Pensieve [11] through experiments. First,
we trained four Pensieve models using the 3G, 4G, WiFi,
and a hybrid dataset (which combines training samples
form 3G+4G+WiFi datasets), denoted by Pensieve(3G),
Pensieve(4G), Pensieve(WiFi), and Pensieve(hybrid)
respectively. The datasets are described in detail in Sec 5.
Figure1(a), Figure1(b), and Figure1(c) show the performance
of Pensieve and two model-based ABR algorithms called
BBA [8] and RobustMPC [9] testing in 3G, 4G and WiFi
network environments respectively. From Figure1(a), we can
see that Pensieve(3G) outperforms other ABR algorithms
in 3G environment, which means that the DRL-based
ABR algorithm is customized for a specific environment.
Pensieve(hybrid) performs worse than Pensieve(4G) and
Pensieve(WiFi) in 4G and WiFi environments, which
means mixing the training data samples cannot improve
performance or generality. Also, we tested the performance of
Pensieve(3G) in 4G and WiFi network environments. As can
be seen in Figure1(b), Pensieve(3G) performs worse than the
model-based algorithms if transferring to unseen environment.

In Figure1(c), Pensieve(3G) performs the worst. These
results show that a personalized Pensieve model can perform
better than a uniform model in the corresponding environment.
However, if the network environment changes to an unseen
scenario, the specialized model can lead to severe performance
degradation even worse than that of the simple heuristic.

In this paper, we propose FedABR, a novel ABR algorithm
based on personalized federated-learning to address the above
challenges. To enable model training without privacy leakage,
we introduced a federated-learning method to train a global
model across all participating clients without uploading the
personal data to the central server to protect users’ privacy.
To deal with the heavy-tail nature of network environments
and user behaviors, we propose to train a personalized
local model for individual client. Specifically, we treat the
participating clients as a number of learning tasks that learn
ABR policies on different network environments (e.g., WiFi,
4G and Ethernet). Unlike conventional DRL methods that train
the tasks separately, the proposed federated learning approach
trains all the tasks jointly to learn a global model, and adapt the
global policy to the local environment at the adaptation phase
with a few data to get a personalized model (local model in
FL). With the proposed personalized federated learning, the
heavy-tail nature of network environment and user behavior
can be addressed with local training, and the training of new
clients can be accelerated by downloading the global model
from the FL server and adapting it to the local environment
with a few data samples.

The contribution of our work are summarized as follows.
1) We proposed a novel federated reinforcement-learning

based adaptive bitrate selection algorithm. We discuss
the weakness of DRL-based ABR algorithms that makes
it challenging to deploy them in real-world video
streaming systems.

2) We proposed an adaptation phase to train a personalized
model for each client to maximize clients’ QoE. Our
study indicates that a personalized model can achieve
higher performances compared with global model in
different network environments.

3) We implement the proposed FedABR based on an
emulation platform which connects to the Linux network
protocol stack through a virtual network interface to send
real data packets for evaluation. Extensive experiments
based on real-world traces show that FedABR achieves
the best comprehensive QoE compared with the state-
of-the-art ABR algorithms in a variety of network
environments.

II. RELATED WORK

We summarize the related works in the aspects of ABR
algorithms for video streaming and personalized federated
learning.

A. ABR Algorithms for Video Streaming

There has been a lot of recent work on ABR algorithms
that use bandwidth estimation or playback buffer occupancy



or both of them to make ABR decisions. The model-based
methods builded mathematical models to describe network
conditions to make ABR decisions. FESTIVE [6] used the
harmonic mean of download speed over recent chunks to
predict the throughput and proposed a stateful bitrate selection
to compensate for the biased interaction between bitrate and
estimated bandwidth, and tried to find a tradeoff between
efficiency and fairness when there is competition between
clients. BBA [8] was a buffer-based approach. It simply picked
a bitrate based on playback buffer occupation, which causes
the bitrate to change frequently during long-term bandwidth
fluctuations resulting in QoE degradation. Buffer Occupancy
based Lyapunov Algorithm (BOLA) [7] used an online control
algorithm to maximize users’ QoE adapting to network
changes. It considered average bitrate and rebuffering time as a
measure of QoE. MPC [9] proposed a model predictive control
algorithm that can optimally combine throughput and buffer
occupancy information to outperform traditional approaches,
and provided a flexible QoE model which is widely used in
subsequent studies. Oboe [14] pre-computes a config map
that maps different network conditions to different ABR
algorithms, then dynamically adapts ABR algorithms at run-
time for the current network conditions.

Though model-based algorithms improved users’ QoE,
they failed to achieve optimal performance across a broad
set of network conditions and QoE objectives because of
their fixed control rules. The learning-based methods [11]–
[13], [15], [16] were proposed to learn personalized ABR
strategies for various conditions. Pensieve [11] generated an
ABR algorithm using Deep Reinforcement Learning (DRL). It
does not rely on pre-programmed models but learns to make
ABR decisions solely through observations (i.e., throughput
estimation and buffer occupancy) of the resulting performance
of past decisions. DRL algorithms trains agent through trial-
and-error, resulting in low sample efficiency. Comyco [13]
trained an ABR policy via imitating expert trajectories to
avoid redundant exploration. Stick [10] used DRL to adjust the
hyperparameters of the traditional buffer-based method BBA
[8] to maximize users’ QoE. Fugu [12] argued that in the real
world, it was difficult for complex or machine learning control
schemes to outperform simple schemes (i.e., BBA [8]). It used
supervised learning in situ to train a probabilistic predictor
of upcoming chunk transmission times, then informed the
predicting time to improve MPC [9] with a harmonic mean
based throughput prediction scheme.

B. Personalized Federated Learning

Federated learning is a distributed machine learning
architecture, in which data is stored on distributed local
devices instead of central servers [17]. Generally, federated
learning aims to aggregate multiple users’ experiences
while preserving privacy, and also to reduce communication
overhead [18], [19].

For devices whose data is non-IID distribution, global model
may not perform better than the local models that trained
with their local private data. To improve the performance

for individual clients, several personalized federated learning
(PFL) techniques has been proposed. The PFL approaches are
basically divided into two types: data-based and model-based
approaches. Data-based approaches include data augmentation
and client selection. The idea is to smooth the statistical
heterogeneity through sampling techniques to either data or
client [20], [21]. Model-based personalized approaches aim
to enable FL models to adapt to the diverse data distributions
among clients [22]. In federated learning, model regularization
can be applied to achieve convergence stability and improve
model generalization. FedProx [23] not only averages the
parameters of each local model, but also adds a penalty
term to reduce the impact of the data distribution difference
of local training samples. One personalization method is
meta-learning. Inspired by Model-Agnostic Meta-Learning
(MAML) [24], Per-FedAVG [25] learns an initial meta-
model that can perform well after one more gradient update.
Other personalization methods include multi-task learning and
transfer learning. There are also some works [26], [27] use
transfer learning to train personalized model by integrating
global model and local models.

III. PROBLEM FORMULATION

Reinforcement learning is a process in which an agent learns
to make decisions through trial and error. This problem is often
modeled mathematically as a Markov decision process (MDP),
where an agent at every timestep is in a state s, takes action a,
receives a scalar reward r and transitions to the next state s′

according to environment dynamics p(s′|s, a). In this work, we
consider ABR algorithm as a Markov decision process (MDP),
which can be solved using deep reinforcement learning (DRL).

A. ABR as a DRL Problem

We use the A3C [28] method, an actor-critic method as the
basic DRL algorithm in our system. The actor-critic algorithm
involves training two deep neural networks (DNN), namely
the actor-network and the critic-network, which refer to the
policy function and the value function respectively. The policy
function π(a|s) generates the expected candidate action a for
the current state s, and the value function V (s) approximates
the expected reward of the current state s. We use πθ(st, at)
to represent the policy function with parameters θ, which is
refer to as policy parameters. We represent the critic network
with parameters θv , and denote the value function by Vθv (st).

For ABR algorithm, the state is the observations of
the network environment and video playback status. The
observations include: the network throughput measurements
for the past k video chunks ~xt; the download time of the
past k video chunks ~τt, which also represents the time
interval of the throughput measurements; the available sizes
for the next video chunk ~nt; the current buffer level bt; the
number of chunks remaining in the video ct; the bitrate at
which the last chunk was downloaded lt. Thus state st =
(~xt; ~τt; ~nt; bt; ct; lt).

The agent determine the bitrate for the next video chunk
from a set of candidate bitrates through policy function



πθ(a|s). πθ(a|s) is defined as a probability distribution over
actions πθ : πθ(st, at) → [0, 1], where πθ(st, at) is the
probability that action at is taken in state st. Usually, we
choose the action a with largest probability. After applying
the action, the environment provides the learning agent with
a reward rt for that chunk. Here rt is calculated using a
comprehensive QoE metric introduced in section 5.

B. Policy Gradient Training

The policy network is trained using a policy gradient
method [29], which optimizes a performance objective by
finding a good policy to variants of stochastic gradient ascent
with respect to the policy parameters [30]. The update rule
[31] of the policy network is as follows:

θ ← θ + α(Rt − V (st))∇θ log πθ(at|st)+
β∇θH(πθ(·|st)),

(1)

where Rt =
∑T
t′=t γ

t′−trt′ is the expected discounted reward
at time t and α is the learning rate; γ is a factor discounting
future rewards; H(·) is an entropy term that encourages
diversity. The parameter β is set to a large value at the start
of training to encourage exploration and decreases over time
to emphasize improving rewards [28].

The aim of the critic network is to minimize the Bellman
error:

θv ← θv − α′∇θv (rt + γV (st+1; θv)− V (st; θv))
2, (2)

where α′ is the learning rate.

IV. FEDERATED REINFORCEMENT LEARNING BASED ABR
METHOD

A. FedABR Framework

The overall framework of FedABR is illustrated in Figure 2.
The central server first initialises the model and distributes it
to the clients. The clients train their local model with their own
local data for several epochs and send the trained model back
to central server. The central server then aggregates the model
to get a global model. The central server then send the global
model to each clients for next round’s local training. When
the global model is trained to convergence, it can perform
well on each type of network environment. If a new user
starts to watch the video, it can download the well-trained
global model first, and won’t encounter the QoE degradation
at the bootstrapping phase. By utilizing federated learning,
we can average the parameter of the models trained in each
user’s device to get a global model without gathering the data
together to protect users’ privacy, while the global model is
equivalent to the model trained with data gathered from all the
users’ devices [17].

B. Federated Reinforcement Learning for Model Aggregation

Since the Internet is complex and diverse, individual client
only observes a noisy piece of the system dynamics, and
its behavior is often heavy-tailed and changed with time.
Different clients exhibit different levels of network dynamics,
and different network dynamics are possible to happen to
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Fig. 2. The framework of FedABR.

the same client when it moves and changes from different
network connections. To make use of all the available data
and build an efficient model so that to have good performance
in all kinds of network environments, we introduce a federated
learning approach in our system. We use the classical federated
learning method FedAvg [17] to conduct model aggregation.
Specifically, suppose we have a total number of K users, and
each user has its neural network model denoted with ωk. The
aggregate phase of FedAvg algorithm is as follow:

ω = 1
K

K∑
k=1

nk

n ω
k, (3)

where nk is the number of local data for user k and n =∑K
k=1 nk.

C. Personalized Federated RL Algorithm

As mentioned above, each client in federated learning can
be viewed as a task to learn ABR policy in a particular
network environment. Experiment results in Fig. 1 showed
that a uniform Pensieve model trained in a combined dataset
including 3G, 4G and WiFi network traces failed to perform
better than a personalized Pensieve model. The goal of
federated learning is to learn a global model that can perform
well on all kinds of network environments. Thus, to better
improve the performance of the global model, a personalize
phase is needed.

A common personalization method is local finetune. After
learning a converged global model, the client can perform
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several rounds of local SGD on top of the global model using
its local data. In addition to local finetune, we added a context
network to the conventional actor-critic networks [32], [33]
that only train an actor neural network and a critic neural
network. The input of the context network is an episode

τt = (si,t−k, ai,t−k, ri,t−k, ..., si,t, ai,t, ri,t)

that is collected in the past k trials when actor interacts
with the environment at time t. The output of the context
network is a low-dimensional embedding vector zt. The τ
records the state transitions of the past k trials and the rewards
under different states and actions. Through τ , we can infer
the dynamics and reward function of the current environment
and abstract some specific characterization about it. Thus zt
is a latent representation of the current network environment
and can capture the characteristics of different learning tasks.
Since τ is a sequence of triplets (st, at, rt), we design the
context network as RNN and implement it with Long-Short
Term Memory (LSTM), whch is denoted as θc.

The proposed neural network architecture of FedABR
is illustrated in Fig. 3. FedABR passes the past chunk
throughput, next chunk sizes and past chunk donwload time
to three 1D convolution layer (CNN) respectively. Results
from these layers are then concatenated with other inputs
as a tensor st. The policy network then takes the state st
as input into a hidden layer, while the value network takes
the concatenation of st and zt as input. The context network
takes the concatenation of the state st and reward rt as input
into a recurrent neural network (RNN) layer to produce an
embedding zt.

We train the context networks to learn a latent representation
of the task. All value functions θv(st, at) are conditioned on
the context and implemented as θv(st, at, zt). The update rules
for the policy network and the critic network with context
network are as follows:

θ ← θ + α(Rt − V (st, zt))∇θ log πθ(at|st, zt)
+β∇θH(πθ(·|st, zt)),

(4)

Algorithm 1 Federated-learning based ABR algorithm
1: {// Run on the server}
2: ServerUpdate:
3: Initialize global model ω0

4: for each round t = 1, 2, . . . do
5: Distribute ωt to the sampled clients.
6: for each client c ∈ C in parallel do
7: ωct ← ClientUpdate(ωt)
8: end for
9: Update algorithm parameters ωt+1 ← 1

|C|
∑
c∈C

nc

n ω
c
t

10: end for

11: {// Run on client c}
12: ClientUpdate(c, ω):
13: for each local epoch from 1 to E do
14: Sample an episode τ using ω
15: Update ω using Eqn. 4 and Eqn. 5
16: end for
17: Return ω to server

θv, θc ← argminθv,θc(rt + γV (st+1, zt+1; θv, θc)

−V (st, zt; θv, θc))
2.

(5)

When a new client joins or when the client’s network
environment changes, the context network can detect the
change from the latest episode τ and thus output a new
embedding vector z, which affects the critic’s output of
expected reward of the current state on the current task and
thus guides the update of the actor. The pseudo-code of the
FedABR algorithm is described in Algorithm 1. The local
finetune process is the same as ClientUpdate in Algorithm 1.

V. EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of the proposed FedABR method.

A. Experiment Setup

Evaluation Platform. We conduct the experiments on a
PC (CPU: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz;
Memory: 32GB DDR4 2400Mhz*4; OS: 64-bit Ubuntu
16.04). We use Google Chrome and chrome driver as client
video player and deployed a video server using Apache. We
use Mahimahi [34] to emulate network environments from the
network traces between the client and the server with 80ms
RTT. We play the video on dash.js and the player is configured
to have a playback buffer capacity of 60 seconds. We train
FedABR use the “Envivio-Dash3” video of the DASH-246
JavaScript reference client. The video has a total length of 193
seconds and is divided into 48 chunks, each chunk represents
approximately 4 seconds of video playback. In addition, the
video is encoded by the H.264 codec at bitrates in the range
of 300,750,1200,1850,2850,4300kbps respectively.

Network Traces. We generated a set of network traces
in different network environments to train and test the ABR
algorithms. The traces are generated from real-world network
environment datasets: HSDPA [35] is a 3G network trace



TABLE I
DATASETS STATISTICS.

Dataset Time Granularity Average
Bitrate (Mbps) Scenario

3G 10s 0.93 ± 0.18 Video streams on
public transportation.

WiFi 5s 1.51 ± 0.53 Web browsing
with WiFi

4G 10s 8.77 ± 0.66 Speed test APP

dataset with a throughput scope of 0.1 ∼ 1Mbps; FCC [36] is
a WiFi network trace dataset with a throughput scope of 0.5 ∼
6Mbps; Sydney [37] is a 4G network trace with a throughput
scope of 5 ∼ 10Mbps. For each network environment dataset
listed above, we generated 1000 traces. Each trace has a
duration of 320 seconds. Each type of traces are partitioned
into training set and testing set, where 800 traces form the
training set and 200 traces form the testing set. We use
3G, WiFi and 4G traces to indicate each type of traces for
convenience. Moreover, we combined the training set of 3G,
WiFi and 4G traces as a hybird dataset to simulate real
world scenario where users dynamically change their network
environments.

The basic information of the datasets are listed in Table I.
QoE Metrics. Video consumers have different preferences

for video streaming QoE. Some may want better video quality,
while others want less rebuffering time or better video quality
smoothness. However, these preferences are conflicting from
each other. ABR algorithms need to find the best trade-off for
different user preferences. We use the widely used QoE metric
introduced in [9] to evaluate ABR algorithms:

QoE =

N∑
n=1

q(Rn)− µ
N∑
n=1

Tn − τ
N∑
n=1

|q(Rn+1)− q(Rn)|

(6)
where N is the total number of chunks of current video; Rn
represents the video bitrate of each chunk n; Tn represents the
rebuffering time for each chunk n; q(Rn,v) is a function that
maps the bitrate Rn to the video quality perceived by the user;
µ, τ are non-negative weighting parameters corresponding to
rebuffering time and video quality smoothness respectively. A
relatively small µ indicates that the user is not particularly
concerned about rebuffering time.

To evaluate ABR algorithms for different user preferences,
we considered three different QoE metrics, each of them has
different choices of the combination of q(Rn), µ and τ .
• QoEstd : q(Rn) = Rn, µ = 4.3, τ = 1. This is the

standard QoE metric used in MPC [9] and Pensieve [11].
• QoEfluent : q(Rn) = Rn, µ = 8, τ = 1. This metric

favors fluent video where longer rebuffering time will
result in lower video QoE.

• QoEhd : µ = 4.3, τ = 1. This metric favors
high-definition (HD) video where HD bitrates have
significantly higher quality scores than non-HD bitrates.
It maps video bitrate to q(Rn) where 0.3 → 1, 0.75 →
2, 1.2→ 3, 1.85→ 12, 2.85→ 15, 4.3→ 20.

Baseline Algorithms. We compare FedABR with three
state-of-the-art ABR algorithms:
• BBA [8]: a buffer-based ABR algorithm that selects

bitrates based on playback buffer occupation. In this
paper, we set the buffer bound B = 5, 10 as suggested
by the authors.

• RobustMPC [9]: a model predictive control ABR
algorithm that combines both throughput estimates and
buffers occupancy information to select bitrates.

• Pensieve [11]: a DRL-based ABR algorithm. Pensieve
trains a neural network model that selects bitrates for
future video chunks based on observations collected by
client video players.

Implementation We setup 3 clients that play video and
train local model in 3G, 4G and WiFi network environment
respectively. Within a communication round, each client first
downloads the parameters of the global model from the central
server as the initial parameters of the local reinforcement
learning model, and then updates the local model for 10
times with a batch size of 48, which means the length of
an episode is 48. Then the client uploads the current local
model to the central server for global aggregation to obtain a
new global model. For adaptation phase, we train the global
model with local data for 100 times to get a personalized local
model. The network architecture is as Fig 3. Following the
parameter settings of Pensieve [11], FedABR adopts k = 8
past bandwidth measurements, and passes the measurements
and next chunk size to a 1D convolution layer (CNN) with
128 filters, each of size 4 with stride 1. Then, aggregates the
results from these layers with other inputs in a hidden layer
that uses 128 neurons to apply the softmax function. The critic
network uses the same neural network structure, but its final
output is a linear neuron (with no activation function). The
output of context network is a vector with a length of 128.
During training, we use a discount factor γ = 0.99, learning
rates for the actor, critic and context network are configured
to be 5 ∗ 10−5, 5 ∗ 10−4 and 5 ∗ 10−3, respectively. We keep
all these hyper-parameters fixed throughout our experiments.
We implemented this architecture using TensorFlow [38].

B. Comparison with Baseline Algorithms

In this section, we compare the performance of the proposed
FedABR with the baseline algorithms on different networks.
Fig. 4, Fig. 5, and Fig. 6 provide results of each ABR
algorithms in the form of Cumulative Distribution Functions
(CDFs) for each QoE metric and network environments. The
detailed results are shown in Table II. There are two key
takeaways from these results.

First, it is shown that our algorithm either matches or
exceeds the performance of the best existing ABR algorithm
on each QoE metric and network environments. The closest
competing scheme is Pensieve; this proves that our method
can have superior performance compared to the other learning-
based ABR methods. For QoEstd, a widely considered metric
in [9], [11], the average QoE for our system is 5% higher than
that of Pensieve on the WiFi traces, and 3% ∼ 15% higher



TABLE II
COMPARISON OF AVERAGE BITRATE (MBPS), REBUFFERING TIME (SECOND), BITRATE VARIATION, AND THEIR CORRESPONDING QOE METRICS ON

DIFFERENT NETWORK ENVIRONMENTS.

Trace Method Bitrate Reb. Var. QoEstd Bitrate Reb. Var. QoEfluent Bitrate Reb. Var. QoEhd

3G

FedABR 0.823 0.002 0.067 0.731 0.781 0.002 0.041 0.724 0.78 0.001 0.041 3.278
Pensieve 0.841 0.012 0.071 0.695 0.749 0.003 0.064 0.66 0.787 0.002 0.086 3.187

BBA 0.826 0.01 0.275 0.508 0.825 0.01 0.275 0.471 0.826 0.01 0.275 1.409
RobustMPC 0.849 0.02 0.084 0.68 0.846 0.019 0.086 0.613 0.848 0.019 0.085 2.035

WiFi

FedABR 1.076 0.002 0.076 0.992 1.076 0.002 0.076 0.985 1.123 0.0009 0.054 4.096
Pensieve 1.132 0.014 0.095 0.979 1.132 0.014 0.095 0.928 1.091 0.0073 0.085 3.70

BBA 1.153 0.008 0.334 0.787 1.153 0.008 0.334 0.759 1.153 0.0076 0.334 3.217
RobustMPC 1.184 0.026 0.104 0.968 1.182 0.027 0.105 0.864 1.184 0.0267 0.105 3.923

4G

FedABR 4.21 0.0009 0.074 4.096 4.21 0.0009 0.073 4.129 4.143 0 0.074 18.972
Pensieve 4.007 0 0.088 3.70 4.143 0 0.074 4.069 4.21 0.0009 0.073 19.201

BBA 3.97 0 0.093 3.217 3.969 0 0.093 3.877 3.97 0 0.093 18.111
RobustMPC 4.168 0 0.078 3.922 4.141 0 0.079 4.063 4.116 0 0.079 19.018

(a) QoEstd (b) QoEfluent (c) QoEhd

Fig. 4. QoE Comparison with existing ABR algorithms in 3G network environment.

(a) QoEstd (b) QoEfluent (c) QoEhd

Fig. 5. QoE Comparison with existing ABR algorithms in 4G network environment.

on other network traces. The gaps between FedABR and other
methods are also found in QoEfluent and QoEhd.

Second, it is observed that the existing model-based
ABR algorithms struggle to optimize the performance on
different QoE objectives. The reason is that these algorithms
employ fixed control laws, even though optimizing for
different QoE objectives requires different ABR policies. Even
Pensieve trains different models for each QoE objective.
Our proposed FedABR can automatically learn these policies
with personalized federated learning to adapt different QoE
objectives, thus the performance of our system maintains
consistently high in all conditions.

Model transfer to unseen scenario. We then compare
the performance of the FedABR model with a local Pensieve
model trained on the 3G training data to imitate a scenario
that a client has only been watching videos in a 3G network
and have no experience of streaming videos in Wifi and 4G
networks. We apply the pretrained models to the WiFi and 4G
test data. Figure 7(a) shows the results of the FedABR model
and the Pensieve model. According to the figure, both our
system and Pensieve perform well in the 3G network. After
applying to other unseen networks, Pensieve performs even
worse than the model-based approaches BBA and RobustMPC,
while our system still achieves the best performance among



(a) QoEstd (b) QoEfluent (c) QoEhd

Fig. 6. QoE Comparison with existing ABR algorithms in WiFi network environment.
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Fig. 7. (a) Testing FedABR on unseen scenarios. (b) Comparison of different
QoE metrics for different ABR algorithms.

Fig. 8. Comparing FedABR with
the centrally-traied model with insuf-
ficient training data.

Fig. 9. Comparison of context and
non-context models.

all the scenarios.
Trade off between QoE metrics. We study the trade-off

between different conflicting QoE metrics, and the normalized
results are shown in Fig. 7(b). It is shown that RobustMPC
achieves the highest bitrate and the largest rebuffering time.
BBA has the second high bitrate and has the largest smooth
penalty. Pensieve has a modest bitrate, rebuffering time, and
variation. Compared to other algorithms, our system achieves
the lowest rebuffering time and smooth penalty by sacrificing
the bitrate.

Local training model vs. federated model. We demon-
strate the gain of federated learning by comparing the
performance of the federated model against a model centrally-
trained using 10% of 3G training data from scratch. We limit
the number of training data to imitate a real scenario when
clients don’t have enough data. We test the models with the
3G test data. The results are in Fig 8. The results show that
with limited training data, the QoE of the local model is 10%

lower than that of the federated model. And the local model
can’t perform well in a specific network condition, for the
federated model achieves higher QoE than the local model
when QoE is between 0.25 and 1.00.

C. Ablation Study
We conduct two ablation studies to analyze the impact of

each design module in the proposed framework separately.
Context variable. We evaluate the effect of context

variables on the performance of FedABR. Context is a
powerful structure [39]. We trained the FedABR model
without the context network (non-context model) under the
condition of keeping other factors unchanged, and tested the
context model and non-context model on the 3G test data. The
results in Fig 9 show that the QoE of the non-context model
is 9.5% lower than that of the context model.

Adaptation phase. We also compared the performance
improvements in adaptation phase. The results are shown in
Fig 7(a). The personalized model performs 1.5% better than
the global model on the 4G network. While on Wifi and 3G
networks, the performance gap is minor.

VI. CONCLUSION

We proposed FedABR, a novel ABR algorithm based on
personalized federated learning to address the challenges of
adaptive video streaming applications. To protect clients’
data privacy and enable local model dealing with network
environment changes, we introduced a federated learning
approach to train a global model without gathering their
data together. We also applied an adaptation phase to train a
personalized model for each client to maximize their individual
QoEs. By jointly training multiple learning tasks with a
global model, the proposed method had the ability to provide
transferable knowledge to supervise bitrate selection, which
could be efficiently adapted to learn a new task in unseen
environment with much fewer data samples and training
epochs. We implemented the proposed FedABR based on an
emulation platform which connected to the Linux network
protocol stack through a virtual network interface to send
real data packets for evaluation. Extensive experiments based
on real-world traces showed that FedABR achieved the best
comprehensive QoE compared with the state-of-the-art ABR
algorithms in a variety of network environments.
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