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Abstract—Emerging programmable network interface cards
(a.k.a. SmartNICs) are a viable alternative to reduce the gap
between network bandwidths, currently at the scale of multi-
hundred Gbps, and the server CPU processing capacity. This has
rapidly led to many efforts exploring SmartNICs for offloading or
accelerating applications that traditionally run solely on servers
(e.g., key-value stores, data analytics). Despite the success of
this paradigm, the suitability of SmartNICs for running security
applications, specially those that heavily rely on cryptographic
operations, still remains largely unstudied. In this paper, we aim
at filling this gap and provide the first in-depth analysis of current
SmartNICs’ crypto capabilities. Our experiments with an ARM-
based multi-core SmartNIC show that the device depends heav-
ily on architecture enhancements (e.g., cryptographic instruc-
tions and hardware accelerators) to meet server performance
on crypto-workloads. Moreover, data movements between the
SmartNIC and crypto-hardware accelerator cores can introduce
significant overhead and make the latter ineffective, particularly
for short living tasks. From a service perspective, SmartNICs can
take advantage of their privileged position (i.e., closer to client
devices than server CPUs) to speed up crypto-based functions.
However, the SmartNIC benefits can be easily outweighed if the
application is too much data-intensive or includes several non-
crypto tasks.

Index Terms—SmartNIC, cryptography, measurements, net-
work security

I. INTRODUCTION

The gradual slowdown in CPU performance improvements
on recent years has transformed programmable accelerators
(e.g., GPUs, programmable SSDs, SmartNICs) into the fo-
cus for continued scaling of application performance [1].
In particular, emerging SmartNICs have demonstrated to be
very helpful to ease the host CPU from expensive computa-
tion tasks and thus are becoming commonplace specially in
cloud environments. Current SmartNICs from major vendors
(e.g., NVIDIA, Broadcom, Netronome) comprise powerful
computing resources, including multicore processors, onboard
SRAM/DRAM, customized hardware accelerators for com-
pression and crypto tasks, and programmable DMA engines.
This has led to multiple research efforts exploring SmartNICs
for (partially) offloading various applications such as load
balancing, key-value stores, distributed transactions, and more
[2].

Despite the success of this paradigm, little is known about
the capabilities of SmartNICs to run crypto-based applications.
On one hand, SmartNICs are usually equipped with crypto-
graphic hardware accelerators that can process data at high
rates. On the other hand, they have wimpy cores compared

to host CPUs, and the need to interleave computations on
different SmartNIC components (e.g., a processor core and
a hardware accelerator) requires data movements that can be
costly in practice.

High-level insights on offloading crypto tasks to SmartNICs
are often scattered across the literature. For example, Taranov
et al. [3] have found Broadcom Stingray SmartNICs can
sustain high processing rates when running message authenti-
cation ciphers (e.g, AES and SHA). Cui et al. [4], on their turn,
offload the handshake of TLS sessions to NVIDIA BlueField
NICs with high performance. Kim et al. [5] adopt a “flipped”
model and rather offload the TLS data encryption/decryption
to Marvell LiquidIO III boards. None of these efforts provide
a systematic analysis of the crypto capabilities from current
SmartNICs though, and the answers to questions like “when
one should offload a crypto task to a SmartNIC” and “which
kind of crypto tasks should be offloaded” remain to be
answered.

In this paper, we aim to start filling this gap and provide
the first in-depth analysis of current SmartNIC’s crypto ca-
pabilities. We start by characterizing the cryptographic func-
tionalities of six commodity SmartNICs based on vendor in-
formation and exploring the most common crypto-acceleration
approaches found on current designs (§III). Next, we exten-
sively benchmark the performance of a multicore system-on-
chip (SoC) SmartNIC for basic cryptographic primitives (e.g.,
symmetric and asymmetric ciphers). Based on our findings,
we discuss the most important factors that drive the adoption
of SmartNICs for accelerating crypto tasks (§IV). Finally,
we assess to which extent current SoC-based SmartNICs
can support offloading several crypto-intensive applications
including virtual private network (VPN) tunneling and secure
web serving (§V).

Our main findings are as follows:
• Current SoC-based SmartNICs depend heavily on ar-

chitecture enhancements (e.g., cryptographic instructions
and hardware accelerators) to meet server performance
while running crypto-workloads. In particular, our ARM-
based SoC NIC can offer up to 25% better throughput
than servers when computing cryptography hashes thanks
to dedicated instructions.

• Algorithmic optimizations to cryptographic primitives
(e.g., ECC-based digital signatures) combined with data
movement overheads between SmartNIC and accelerator
cores can make on-board crypto-hardware accelerators
ineffective. Specifically, we observed slow-downs of upISBN 978-3-903176-57-7 © 2023 IFIP



TABLE I: Architectural specifications of main commodity SmartNICs.

SmartNIC model Vendor SoC CPU FPGA NPU Processor On/Off path

LiquidIO III CN96XX Marvell OCTEON TX2 ✓ Arm v8.2, 36 cores, 2.4 GHz On
Agilio LX Netronome NFP-6000 ✓ Flow Processing Core (FPC), 120 cores, 1.2 GHz On
BlueField 1M332A NVIDIA BlueField-1 ✓ Arm Cortex-A72, 16 cores, 0.8 GHz Off
Stingray PS225 Broadcom BCM58802H ✓ Arm Cortex-A72, 8 cores, 3.0 GHz Off

DSC-100 Pensando Capri ✓ ✓
NPU: Match Processing Unit, 112 cores, 0.83 GHz
CPU: Arm Cortex-A72, 4 cores, 3.0 GHz

On: NPU
Off: CPU

Alveo SN1000 Xilinx Alveo ✓ ✓
FPGA: XCU26
CPU: NXP Layerscape LX2162A

On: FPGA
Off: CPU

to 91% for ECDSA when using an on-board accelerator
on our testing NIC.

• SoC-based SmartNICs can take advantage of their priv-
ileged position (i.e., closer to client devices than server
CPUs) to speed up crypto-intensive distributed applica-
tions. We found latency reductions of up to 50% for
short-living flows on a VPN setup, even though our
testing SmartNIC has no hardware support for IPSec
acceleration.

• The benefits of crypto-acceleration mechanisms on SoC-
based SmartNIC designs can be easily outweighed if a
crypto-application is too much data-intensive or includes
several non-crypto tasks. Throughput stress tests revealed
our testing SmartNIC is approximately 56% worse under
high loads than a server CPU for a client authentication
application, despite its high nominal traffic speeds (two
25 GbE ports).

We do not claim to be either exhaustive or generic in
our analyses and rather acknowledge performance may vary
greatly among SmartNICs depending on their architecture. Our
findings still have broad implications to SmartNIC design and
application offloading policies though. From a design perspec-
tive, SmartNIC vendors can use our findings to architect better
solutions to support crypto-based workloads. For offloading
policies, our results are particularly important to help offload-
ing engines make more informed decisions. Overall, we hope
our work can make the initial move towards a deeper exami-
nation of how to leverage SmartNICs for accelerating network
security services. We provide an online repository [6] along
with this paper containing all configurations we used in our
tests, running logs and automated scripts for reproducibility.
The repository also includes further benchmarks we did not
add to the paper due to space limitations.

II. BACKGROUND AND MOTIVATION

A. Overview on SmartNICs

SmartNICs are NICs that can perform custom processing
of network traffic. Ultimately, this programmability enables
them to offload tasks from the CPU and thus free the latter to
work on more important tasks. A typical SmartNIC is equipped
with on-board memory, DMA engines, accelerators (e.g., for
crypto, compression and regular expression matching) and
multiple processing cores. Table I summarizes the specifica-
tion of six commercial SmartNICs from major vendors. As
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Fig. 1: SmartNIC Architecture Comparison

we can observe, current SmartNICs reflect different design
trade-offs with respect to performance and programmability.
Some SmartNICs (e.g., Agilio, DSC and Alveo) are based
on domain-specific processors and can achieve extremely fast
processing speeds at the cost of requiring programmers to
use native hardware primitives (e.g., in Micro-C or VHDL) to
manipulate data. Others, such as BlueField and Stingray cards,
can run a Linux-like operating system on a general-purpose
CPU, which lowers the barrier for application development
but slows down data processing compared to their counterparts
(e.g., due to context switching).

SmartNICs can be further categorized based on how their
processing cores interact with traffic. On-path SmartNICs
have their processing cores on the data path between the
network port and the host processor (Figure 1(a)). As a
result, the SmartNIC processor interacts with every packet
received or transmitted by the host. Usually, on-path designs
require beefier processors to not harm the flow’s performance.
LiquidIO and Agilio are examples of on-path SmartNICs. Off-
path SmartNICs, on their turn, can let packets bypass the
SmartNIC processor based on forwarding rules installed on
a NIC-level switching fabric, usually a PCIe switch (Figure
1(b)). Mellanox BlueField and Broadcom Stingray are off-path
SmartNICs. Finally, it is also possible to find hybrid designs
(e.g., DSC, Alveo) in which the SmartNIC has both on-path
and off-path modules. In this case, users can choose the best
place to run each packet processing job based on its main
characteristics.



TABLE II: Overview of crypto-acceleration features on commodity SmartNICs.  = Crypto-hardware acceleration, G# =
Processor acceleration, # = No acceleration.

Feature

SmartNIC/
Accelerator

LiquidIO III
NITROX V

Agilio LX
Custom

BlueField
Rambus EIP-154

Stingray PS225
FlexSPARX 4

DSC-100
PenTrust + PenAccel

Alveo SN1000
Custom

AES   G#    
ChaCha20/Poly1305 # # # # #  
RSA  #     
DSA # #     
ECDSA/ECDH # #     
SHA-256  # G#    
SHA-512 G# # # #   
TRNG # #     

B. Why offloading crypto operations?

Crypto operations (e.g., hashing, encryption, decryption)
are often costly to perform on server CPUs, to the point
various manufacturers (e.g., Intel, AMD) deploy dedicated
instructions for certain crypto primitives such as the AES
and SHA algorithms. Increasing computational demands from
other applications like deep learning and video processing have
put a tremendous pressure on the already scarce CPU resources
though, leading the community to look for alternative process-
ing means for additional workloads. SmartNICs have plenty
of mechanisms for crypto-related processing (as we discuss in
the next section), which come at a relatively affordable price.
Therefore, it is intuitive to consider them as a primary source
for running crypto tasks.

III. SMARTNIC CRYPTO CAPABILITIES

Current multicore SoC SmartNICs exhibit varying crypto-
acceleration capabilities (Table II). That includes support for
multiple types of symmetric and asymmetric ciphers, hash
functions and random number generators. We can further clas-
sify crypto-support from SmartNICs into three types: crypto-
hardware acceleration, processor acceleration and software
optimizations.

Crypto-hardware acceleration. Most of the SmartNICs
we surveyed support some form of crypto-hardware acceler-
ation. These are hardware implementations of cryptographic
algorithms that can offer significantly higher performance and
power-efficiency compared to their software counterparts [7].
Even though FPGA-based accelerators are widely discussed
in the literature [8], our survey revealed production SmartNIC
crypto-hardware accelerators rely predominantly on ASICs.
Moreover, these ASICs can be either designed by the Smart-
NIC manufacturer itself (e.g., NITROX V from Marvell or
FlexSPARX from Broadcom) or embedded into the SmartNIC
as a third-party module (e.g., Rambus1 modules in NVIDIA
BlueField). Communication between the SmartNIC CPU and
the crypto-hardware accelerator usually happens through the
PCIe bus.

Processor acceleration. SmartNIC CPUs can have em-
bedded support for cryptographic primitives in the form of

1https://www.rambus.com/security/protocol-engines/
high-speed-public-key-accelerator/

dedicated instructions (i.e., at the ISA level). For example,
production ARM cores have built-in instructions for comput-
ing heavy AES and SHA operations such as column mixes
and hash updates, respectively [9]. The presence of these in-
structions varies depending on the processor architecture (e.g.,
ARMv8.2 has support for SHA3 and SHA-512 instructions,
which are not present in the ARMv8 architecture). Moreover,
the performance of cryptography instructions is also dependent
on other processor aspects such as the level of data parallelism.

Software optimizations. Finally, current SmartNICs can
also benefit from deployment optimizations of cryptographic
software. These optimizations range from vectorized imple-
mentations [10] to optimized arithmetic operations (e.g., multi-
precision multiplication [11]). Even though software optimiza-
tions are not targeted to SmartNICs, they have the advantage
of lowering the cost for speeding up crypto applications on
the latter as they do not require any hardware modification.

IV. BASIC CRYPTO PERFORMANCE

We start by analyzing the performance of a commodity
SmartNIC when running basic crypto operations.

A. Measurement setup

We conduct our experiments on a single server containing a
10-core Intel Xeon Silver 4210R 2.40 GHz CPU with 32 GB
of DDR4 DRAM. The server runs Ubuntu 20.04.1 LTS with
kernel version 5.4.0 and has AES-NI instructions [12] enabled.
It is equipped with a two-port 25GbE Mellanox BlueField-1
SmartNIC containing a 16-core ARMv8 Cortex-A72 0.8 GHz
processor and 16 GB of DDR4 DRAM (same SmartNIC de-
scribed in Table I). The SmartNIC runs a custom Linux kernel
provided by Mellanox (version 5.4.44-mlnx.14.gd7fb187)2.

We use the OpenSSL Speed benchmarking tool (version
1.1.1f) [13] in our experiments and test the performance of
different cryptographic algorithms on both the server and the
SmartNIC. More specifically, our study analyzes three classes
of algorithms: symmetric and asymmetric ciphers as well as
hash functions. For each class, we select a set of represen-
tative algorithms to compare and measure different resources
according to the main algorithm’s objective. In particular, we
evaluate encryption and decryption performance for symmetric

2https://github.com/Mellanox/bfb-build
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Fig. 2: Throughput comparison for the a) AES-GCM; b) SHA-256; and c) SHA-512 cryptographic algorithms.

ciphers, sign and verify performance for asymmetric ones, and
hashing speed for cryptographic hash functions. We consider
throughput as the main metric in all cases. Each algorithm
runs on a single thread and the results report an average of 10
repetitions.

B. Results

1) Symmetric ciphers: We first study the performance of
the devices under test for different symmetric ciphers. In
particular, we consider three ciphers: AES-256-GCM, AES-
256-CBC and Chacha20-poly1305. Due to space constraints,
we only report the results for AES-GCM in the paper. AES-
CBC and Chacha-poly follow similar trends, and we refer
the interested reader to our public repo [6] for more details.
AES-GCM is currently the most common cipher in the TLS
suite [14]. It provides authenticated encryption and can handle
inputs (i.e., messages) of arbitrary length.

Figure 2(a) shows the encryption throughput (in GB/s) for
AES-GCM as we vary the message size. The server throughput
is consistently higher than the SmartNIC, which is expected as
the SmartNIC does not support hardware acceleration for sym-
metric ciphers and the server has a beefier processor compared
to it. That may not be the case when the SmartNIC supports
hardware acceleration though, as Cui et. al [4] observe in a
LiquidIO device. In this case, the SmartNIC can be up to
2x faster than the server thanks to its hardware accelerator,
as the authors report for 1024-byte messages encrypted using
the AES algorithm. Data decryption results follow a similar
pattern.

Takeaways. Multicore SoC SmartNICs can perform com-
parably to servers when running encryption/decryption al-
gorithms (e.g., AES-GCM encryption) thanks to hardware
acceleration. Otherwise, the higher parallelism of server
CPUs can easily lead to better performance and therefore
task offloading is not recommended.

2) Hash functions: Cryptographic hash functions are a
basic tool of modern cryptography with applications ranging
from message integrity verification to Proof-of-Work in digital
currencies (e.g., Bitcoin) [15]. In this work, we compare
the performance of both the server and the SmartNIC when
running two widely used cryptographic hash functions: SHA-
256 and SHA-512 [14]. Figure 2(b) shows the throughput

results for the former (in GB/s). As expected, the throughput
increases with the message size since larger messages require
less interactions with the system (e.g., less memory alloca-
tions). Interestingly, the SmartNIC outperforms the server for
messages bigger than 1KB. The main reason stems from the
fact ARMv8 processors can rely on cryptographic instructions
to accelerate hash computations [16] which is not the case for
Intel Cascade Lake ones (i.e., the server CPU architecture).
Later versions of Intel Xeon processors such as the ones
based on the Ice Lake and Rocket Lake architectures have
incorporated support for SHA instructions though [17].

Figure 2(c) shows the throughput of both testing devices
for SHA-512. Unlike SHA-256, the server significantly out-
performs the SmartNIC for all message sizes. That is primarily
due to the lack of support from ARMv8 processors to dedi-
cated instructions for computing SHA-512, which were added
later as part of the ARMv8.2 instruction set [16]. Moreover, as
widely noticed [18], SHA-512 shows better performance than
SHA-256 on 64-bit x86 machines (up to 49% better for 16KB
messages on our tests). The main reason is the lower amount of
round operations per byte required by the SHA-512 algorithm
on 64-bit arithmetic units. For instance, SHA-512 requires
80 rounds over 128-byte blocks against 64 rounds over 64-
byte blocks from SHA-256 when adopting 64-bit arithmetic.
Ultimately, that translates into less instructions to be executed
for the same amount of input data.

Takeaways. Modern SmartNICs depend heavily on architec-
ture enhancements (e.g., cryptography instructions) to meet
server performance on crypto-hashing workloads. Therefore
task offloading engines should be aware of the underlying
SmartNIC CPU architecture in addition to its running state
and the characteristics of the workload.

3) Asymmetric ciphers: Next, we compare the performance
of the server and SmartNIC while running different asymmet-
ric ciphers, a.k.a. public-key primitives. Asymmetric ciphers
are mostly used on message authentication (or digital signa-
ture) and key exchange tasks. Due to space constraints, we
only report results for message authentication in this paper,
and refer the interested reader to our public repo for more
details on the SmartNIC performance for key exchange tasks.

To authenticate a message, a sender combines it with a
private key to create a digital signature, which is then verified
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by the receiver using the sender’s public key. Currently, the
most popular digital signature algorithms are RSA, prime field
DSA, and elliptic-curve DSA (ECDSA), all widely adopted in
Internet protocols such as TLS and SSH [19]. RSA relies on
integer factorizarion (i.e., finding the prime factors of a num-
ber) to provide the desired security strength while (EC)DSA
is based on the discrete logarithm problem. We test key sizes
above 2048 bits for RSA and DSA in our experiments as those
are the minimum sizes currently recommended by NIST3.
Note that ECC ciphers require smaller key sizes to provide the
same security strength as RSA, so we test the former using
256-bit keys for a fair comparison.

Figure 3 shows the signing throughput for the three authen-
tication algorithms under analysis on both the server and the
SmartNIC. PKA (Public Key Acceleration engine) depicts the
SmartNIC performance when its crypto-hardware accelerator
is turned on. Unlike previous work, e.g. [5], in which the
authors considered a less capable server, our server showed
better performance for all scenarios we tested (more than
10x better depending on the scenario). Therefore, we find the
server set up (e.g., CPU and memory architecture) plays an
important role to determining whether offloading public-key
operations to SmartNICs or not, even in the presence of crypto-
hardware accelerators.

Interestingly, the SmartNIC performs worse when using its
crypto-hardware accelerator compared to CPU-based process-
ing for ECDSA. We believe that is due to two reasons: i)
dispatching tasks to the crypto-hardware accelerator demands
transferring data to (and synchronizing with) the latter, which
introduces overhead; and ii) recent optimizations for support-
ing elliptic curves (particularly NIST P-256 curves) on ARM
processors have made their cores significantly faster [20]. We
observe similar trends for the signature verification throughput.

3https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-57Pt3r1.pdf

Takeaways. Algorithmic (i.e., software) optimizations of
cryptographic primitives can make SmartNIC crypto-
hardware accelerators outdated. Further, data movements
between SmartNIC and accelerator cores introduce non-
negligible overhead, particularly for short-living tasks.

V. CASE STUDIES

In this section, we analyze the benefits of offloading major
security applications onto SmartNICs. More specifically, we
study three applications: VPN tunneling, user authentication,
and secure web serving. We chose these particular applications
for several important reasons: (i) they represent cases from
distinct domains where SmartNICs are widely adopted (e.g.,
public cloud data centers, university campuses, enterprise
networks), (ii) they use different combinations of the security
primitives we studied in Section IV, and (iii) they are available
under an open-source license, enabling the community to
easily reproduce the results from this work.

A. VPN tunneling

Internet users rely widely on virtual private network (VPN)
services to preserve their privacy, circumvent censorship, and
access geo-filtered content. While multiple VPN tunneling pro-
tocols exist (e.g., PPTP, SSTP, SSL, WireGuard), OpenVPN
and IPSec still account for a significant portion of the available
VPN services [21]. In this paper, we focus on the latter. IPSec
is a policy-based VPN suite4 that uses the Internet Key Ex-
change version 2 (IKEv2) protocol for traffic tunneling. IKEv2
works in two phases: first, the protocol establishes a security
association (SA), i.e., a set of cryptographic attributes such
as a shared secret and an encryption/decryption algorithm to
securely carry IKE messages between the two communicating
parties. After that, it creates an additional SA (or “child SA”)
for the two parties to authenticate and start exchanging data
[23]. IPSec relies heavily on symmetric encryption for its
private data exchange.

Figure 4(a) shows our experimental setup. The VPN client
is equipped with an Intel Core i7-9700 @ 3.0 GHz CPU with
8 cores and 16 GB of DDR4 DRAM. It runs Ubuntu 18.04.6
LTS (kernel 5.4.0-90-generic). The server and SmartNIC are
the same as described in Section IV-A. We compare two
VPN tunneling scenarios: client-CPU (named “server”) and
client-SmartNIC. In both cases, we use StrongSwan (version
U5.8.2/K5.4.0-74-generic) to deploy the VPN tunnels [24].
Both server and SmartNIC tunnels use a pre-shared key (PSK)
and SHA1 for IKEv2 authentication. Moreover, we run two
sets of experiments: i) the client sends 100 pings and measures
the average round-trip latency; and ii) the same client generates
a 1-minute long TCP flow using iperf3 (version 3.1.3) and
measures the average throughput. We repeat each experiment
10 times and report the results for AES-256-GCM and AES-
256-CBC as data encryption/decryption algorithms5.

4Policy-based VPNs adopt firewall rules rather than virtual network inter-
faces to determine which traffic belongs to the VPN [22].

5We omit results for Chacha20/Poly1305 as we could not run the associated
StrongSwan plugin on the SmartNIC.
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Fig. 4: a) VPN tunneling setup; b) Average round-trip latency in a VPN tunnel; c) Average TCP throughput in a VPN tunnel.

Latency. Figure 4(b) shows the average round-trip latency
for the different VPN encryption/decryption algorithms. The
“baseline” scenario depicts plaintext (ping) latency. We ob-
serve the SmartNIC can provide substantially lower latency
(up to 52% lower in the GCM mode) compared to the server.
This difference stems from the fact that the SmartNIC is “one
hop” closer to the VPN client, i.e. packets do not need to
cross the PCIe channel to reach out the NIC cores, which
becomes more prominent in short-path scenarios (e.g., an edge
data center) [25]. Moreover, the overhead compared to the
baseline solution is relatively low (less than 35%), mainly due
to the small amounts of data, i.e., a single ping packet, to be
encrypted/decrypted by the VPN endpoints.

Throughput. Although the SmartNIC can perform well
in low crypto load scenarios, its performance degrades sig-
nificantly under high loads. Figure 4(c) shows the results
of our throughput stress test. As expected, the SmartNIC
exhibits markedly better performance compared to the server
for plaintext TCP (i.e., non-VPN traffic), as it is a high-speed
network device and no further processing is required from its
CPU cores. However, we found an inverted trend when crypto-
processing is in place. For instance, the SmartNIC and server
throughput were around 739 and 1300 Mbps, respectively, for
an AES-GCM-based VPN tunnel.

Takeaways. Current SoC-based SmartNICs can take advan-
tage of their privileged position (i.e., closer to client devices)
to speed up crypto-based network services. However, offload-
ing crypto-tasks is only indicated for low load scenarios if
the SmartNIC does not have a crypto-hardware accelerator.
In particular, latency-critical applications can benefit more
than bandwidth-intensive ones.

B. User authentication

Several enterprises, ISPs and educational institutions de-
ploy user authentication systems to control access to their
IT resources. As such, it makes sense to consider taking
advantage of recent SmartNICs to help alleviate the burden
on server CPUs when running authentication servers. In a
typical authentication system, a user (e.g., a VPN client or IoT
device) issues an access request to a network access server.
The access server then queries an authentication server to
confirm the user credentials and grant/deny the user access
to a particular network resource [26]. In order to process a

query, the authentication server hashes the user credentials and
checks them on either a local or remote data base.

Figure 5(a) depicts our evaluation setup. We compare two
authentication scenarios: sending the user credentials to be
authenticated on either the server CPU (scenario A-B, which
we name “server”) or the SmartNIC (scenario A-C). The
network access server runs on the same machine described in
Section V-A while the authentication server and SmartNIC are
as presented in Section IV-A. We use radperf (version 2.0.1)6

to simulate both the client device and access server, and make
it issue requests to the authentication server following a desired
rate. The authentication server, on its turn, processes requests
using FreeRADIUS (version 3.0.20)7. We adopt the default
FreeRADIUS configurations, which includes UDP as transport
protocol and SHA-256 as the password hashing function.
Moreover, the authentication server runs in a single core and
in single-thread mode to enable a fair comparison between the
SmartNIC and host CPU, as they have different numbers of
cores and clock speeds. Our results show the average of 100
runs.

Latency. Table III compares each device’s latency for
processing a batch of 1K authentication requests issued at
an unlimited rate. We find that the SmartNIC is significantly
faster (up to 50% in the average) compared to the server.
This is a combination of two factors: first, similar to the VPN
scenario the SmartNIC is “closer” to the client device, i.e., the
network access server, which reduces the overall communica-
tion latency. Second, the SmartNIC cores rely on specialized
cryptographic instructions for accelerating hash computations
and therefore can hash user credentials more efficiently as
we saw in Section IV-B2. Interestingly, the SmartNIC also
presents significantly shorter tail latencies (around 52% lower
at the 99th percentile), which can be important if a workload
is deadline-oriented.

Throughput. In addition to the bursty workload from the
above setup, we also evaluated the authentication server in a
sustained load scenario. In this case, Figure 5(b) shows how
the request rate affects each device’s throughput ratio, i.e., the
proportion of the input load that can be served. The higher the
ratio the better. We observe the SmartNIC hits its bottleneck

6https://networkradius.com/radius-performance-testing/
7https://freeradius.org/
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Fig. 5: a) User authentication setup; b) Throughput ratio (i.e., the ratio of served
requests) as a function of the authentication request rate.

TABLE III: Average, 95th and 99th per-
centile of the round trip latency (in milisec-
onds) for processing a batch of 1K authen-
tication requests.

Device Average(ms) 95th 99th

SmartNIC 0.36 0.46 0.47
Server 0.71 0.90 0.91

faster (at around 3.5K requests per second - RPS). The server,
on the other hand, can sustain a relatively high performance
(beyond 70% of the input rate) up to 9.5K RPS, though its
throughput ratio gradually decreases. We attribute this decrease
mainly to the background processes (e.g., garbage collection)
run by FreeRADIUS.

Takeaways. The speed-ups from specialized cryptography
instructions (e.g., for computing SHA-256 hashes) on Smart-
NIC cores can be easily outweighed if the workload includes
additional tasks. Therefore, it is important for offloading en-
gines to assess the whole workload structure when offloading
crypto applications.

C. Secure web serving

HTTPS adoption has grown substantially over the last few
years [27]. This trend has sparked preliminary investigations
(e.g., [5], [28]) on offloading TLS operations into the Smart-
NIC as an alternative to speed up secure web serving. Despite
the existing efforts, a few important questions still remain
open. We explore two of them in this paper: i) how would
a web server perform considering a full (rather than partial)
application offload; and ii) how would a fully offloaded server
perform when using the newer TLS 1.3 version rather than the
standard TLS 1.2.

Figure 6(a) shows our experimental setup. The web server
and the client run on the same machines as described in
Sections IV-A and V-A, respectively. Our tests compare two
scenarios, namely using either the server or the SmartNIC to
handle HTTPS requests. We use NGINX (version 1.18.0) [29]
for request serving and set it to run on a single worker8 over
a self-signed certificate. The certificate has a 4096-bit key and
uses SHA-256 as its hash function. We use standard X.509
v3 extensions to specify the certificate security properties
(e.g., key usage) and keep the remaining NGINX parameters
as default. The web client runs the wrk benchmarking tool
(version 4.2.0)9. We fix the number of parallel connections to
50 (i.e., the client will maintain 50 open connections at any

8One NGINX worker can process multiple requests in parallel, not neces-
sarily as part of the same process.

9ttps://github.com/wg/wrk/releases/tag/4.2.0

given time throughout the experiment) and set wrk to run on a
single-thread. Each TCP connection serves a single web page
request and we run each experiment for three minutes. Our
results report the average of 10 runs.

Latency. Figure 6(b) shows the average request latency
for different web page sizes. Despite closer to the client,
the SmartNIC performs worse than the server CPU for small
requests (up to 10 KB). We believe that stems from the
fact the SmartNIC uses its crypto-hardware accelerator for
the connection setup (i.e., TLS handshake), which incurs in
latency overhead as we saw in Section IV-B3. As the request
size increases, however, server and SmartNIC latencies tend to
become more similar. Interestingly, the SmartNIC significantly
outperformed the server for 1 MB requests. Since NGINX
fragments large web pages before sending them to the client
[30], there is a trade-off between the number/size of segments
and the overall request latency. More specifically, a larger
number of smaller segments can benefit the SmartNIC, which
has a wimpy processor but is closer to the user compared to the
server CPU. We leave further investigation about the latency
versus fragment size trade-off as future work. As expected,
TLS 1.2 is slightly worse than its successor, specially for
small pages, where the connection handshake cost is more
prominent.

Throughput. Figure 6(c) illustrates how the throughput
(in requests per second) evolves on both the server and the
SmartNIC as we increase the web page size. As expected, the
performance degrades on both devices for larger web pages be-
cause there is more data to encrypt and transmit. Additionally,
the server consistently outperforms the SmartNIC. In particu-
lar, it shows higher throughput on scenarios involving either
extensive connection setups or heavy data encryption (1 KB
and 10 MB in our experiments, respectively). That is likely the
result of a more diverse set of crypto-acceleration mechanisms
(e.g., dedicated instructions, extensive data parallelism) on the
server, which can efficiently address the needs of different
security primitives. Current SmartNICs, on the other hand,
usually excel on a restricted set of crypto algorithms that not
always fit the requirements of heterogeneous workloads.
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Fig. 6: a) HTTPS server setup; b) Average web server latency; c) Average web server throughput.

Takeaways. Limited support of crypto-acceleration features
on current SmartNICs are particularly harmful for applica-
tions deploying multiple cryptographic algorithms (e.g., both
symmetric and asymmetric ciphers). For a secure web server,
that meant up to 73% throughput drop in our case.

VI. DISCUSSION

Modern ciphers. This study covers a broad range of crypto
primitives that are widely supported on current (co)processors.
However, novel and updated applications are increasingly
making use of “modern” cryptographic algorithms (e.g., post-
quantum and fully homomorphic ciphers), which do not find
the same support on current hardware. Future work could
explore to which extent commodity multi-core SmartNICs
could be used for offloading post-quantum and FHE-based
tasks.

Other security features. While this study is a first step
towards understanding the design and capabilities of crypto-
graphic modules on current SmartNICs, we believe the meth-
ods in this paper could be extended to assess other security
features available on the same devices. For instance, future
research could explore the raw performance of hardware-based
random number generators present on SmartNICs and their im-
pact on related applications (e.g., crypto key generation, smart
contracts). Trusted execution environments (TEEs) such as
ARM TrustZone [31] are another intriguing feature commonly
supported on SmartNICs and that deserve further analysis. In
particular, different SoCs support different TEE architectures,
which can impact the performance of applications offloaded
to these environments.

VII. RELATED WORK

Offloading applications to SmartNICs. There is a growing
body of research on offloading applications to SmartNICs.
As we mentioned in the introduction, some of these works
provide ad hoc conclusions on the challenges and opportu-
nities of offloading certain crypto operations to SmartNICs.
However, none of them performs a systematic and in-depth
analysis of the crypto-offloading space. iPipe [32] and E3
[2] propose frameworks for accelerating generic applications
using SmartNICs. These frameworks are orthogonal to our
work and can take advantage from our insights to make more
informed decisions.

SmartNIC performance evaluation. A few recent efforts
have studied the performance of commodity SmartNICs while
running different network functions. Katsikas et al. [33] an-
alyze the performance of basic packet classification tasks
(e.g., header matching and state updates) on four SmartNICs
from a major vendor. Liu et al. [34] test the capabilities of
a BlueField-2 SmartNIC for different computational tasks,
including memory and a few basic crypto operations (e.g.,
SHA-256, AES-XTS). Qiu et al. [35] and Krude et al. [36]
propose automated frameworks to predict the performance of a
network function when the latter runs on a SmartNIC. Xing et
al. [37] characterize the performance of serverless applications
on two SmartNICs from different vendors. Unlike these efforts,
our paper concentrates on the crypto capabilities of current
SmartNICs and for the first time provides detailed insights on
this matter.

In-network cryptography. Efficient techniques have been
proposed to speed up certain crypto tasks by offloading them to
network devices. P4-IPsec [38] uses P4 switches to run specific
IPSec components (e.g., ESP header manipulation) directly
in the network data plane. The author in [39], on its turn,
deploys AES encryption on P4-enabled devices while SipID
[40] implements a keyed hash function (HalfSipHash) on
programmable switches. Despite their high processing speeds,
network switches have limited support for crypto operations,
which hinders their adoption as crypto-accelerators. Smart-
NICs offer better support for crypto offloads compared to
network switches and therefore have also been explored as
target devices. SmartTLS [5] offloads the handshake of TLS
connections to SmartNICs, which reduces the burden on server
CPUs when dealing with high-amounts of short-living flows.
sRDMA [3] uses a SmartNIC to perform authentication and
encryption of RDMA packets. Even though these proposals
provide relevant insights about the SmartNIC performance
when running crypto workloads, their results are restricted to
particular use cases. Scholz et al. [41] evaluate the perfor-
mance of NPU and FPGA-based NICs while running various
cryptographic hash functions. Our study complements their
work by considering multiple cryptographic operations and
applications.



VIII. CONCLUSION

This paper provides the first in-depth analysis of current
SmartNIC support for crypto-based workloads. We character-
ize the cryptographic functionalities of six commodity Smart-
NICs and extensively assess the performance of an ARM-
based device for both basic crypto operations and higher-level
security applications. Our results show that current SoC-based
SmartNIC designs can be beneficial for latency-sensitive tasks,
but requires caution with computationally heavy ones.
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