
Dragonfly: In-Flight CCA Identification
Dean Carmel, Isaac Keslassy

Technion

Abstract—We introduce the Dragonfly system, which is de-
signed to classify on the fly the congestion control algorithm of
any flow that crosses a given router, starting at any time, and
quickly reach a reasonable accuracy. To do so, we discuss the
unique challenges of real-time congestion control classification.
We explain how the number of bytes of the flow within the shared
router queue contains an intrinsic memory that significantly
helps real-time classification. However, we show that this number
of bytes is not straightforward to compute in real time, and
introduce ways to do so. We further design an eBPF-based
scalable traffic-collection system that helps dynamically filter
specific flows at high rates. Finally, we evaluate our Dragonfly
system using a variety of platforms, and show that it clearly
outperforms state-of-the-art algorithms.

I. INTRODUCTION

Cloud providers and internet ISPs face two significant chal-
lenges when their routers experience congestion: Determining
why there is congestion, and finding how to handle this
congestion. These challenges are especially acute now for
cloud providers, who face a convergence of several trends.
First, cloud users pay for good network performance and
expect it, given the fierce competition between providers [1].
Second, several available VM (virtual machine) tools enable
users to quickly pinpoint network issues and blame their cloud
providers. Third, cloud users can relatively easily change the
CCA (congestion control algorithm) that runs in their VMs.
Therefore, they can implement aggressive CCAs that do not
provide fairness against competing vanilla TCP flows. For
example, Cubic can take up to 80% of link bandwidth when
competing with (New)Reno, and BBR can starve competing
Reno and CUBIC flows [2]–[9]. Fourth, cloud-based TCP-split
proxies can make these CCAs even more aggressive [10]–[12].
Finally, CCAs increasingly use a wide diversity of congestion-
detection mechanisms: from loss to delay, from ECN to INT
(in-band network telemetry), from destination-based credits to
switch feedback, as well as hybrid mechanisms that rely on a
subset of these [7]–[9], [13]–[21].

Why? Upon congestion, providers cannot tell why it happens.
In fact, they cannot even tell what CCAs are going through
their networks. For instance, when some flows take over the
buffers in their routers, providers can know their flow 5-tuples,
but no existing algorithm enables providers to easily zoom
in on these flows and determine in real time that these are
BBR flows that are overpowering their CUBIC traffic. One
approach for cloud providers would be to peek at the tenant
VMs that cause congestion. But providers do not have easy
access to their tenant VMs, not to mention many privacy,

security and encryption issues that force them to treat VMs
as black boxes [22]. Instead, in the paper, we focus on
the alternative goal of identifying the flow CCA on the fly
and locally within the congested router link. Existing CCA
classification algorithms fail at achieving such a goal because
they often assume that they can also monitor the reverse-
path packets, and later provide an offline identification that
leverages the packets from both paths [23]–[26]. In contrast,
DeePCCI [27] does not need to monitor the reverse path, but
due to its architecture, it is unclear whether it can easily start
monitoring a flow in the middle of transmission, and whether
it can scale to more than a handful of flows. Furthermore,
Seiðr [28] is designed to run at high line rates, but has trouble
handling more than two TCP flavours.

How? Providers also do not have simple tools for how to
handle congestion. A naive approach would be to apply one
of the many fair-queueing [29]–[31] and/or admission-control
related algorithms [1], [6], [32], [33]. However, as recently ex-
plained by Cebinae [16], fair-queueing algorithms cannot meet
the hardware requirements of routers in the internet and public
clouds, and admission-control algorithms that drop overflow
packets poorly affect non-loss-based CCAs. Instead of using
a full-fledged fair-queueing algorithm, Cebinae attempts to
achieve reasonable fairness by slightly reducing the rates of a
few heavy hitters. However, in practice, since Cebinae does not
know the CCA of the heavy hitters, it always knocks them with
a triple combination of losses, latency, and ECN bits. Heavy
hitting the heavy hitters in this CCA-oblivious way may yield
large oscillations and potential starvation, again hurting user-
perceived performance. Thus, we are back to the fundamental
problem of not knowing the CCA. If providers could identify
the CCA of these heavy hitters, they would fine-tune their
congestion signal to each heavy-hitter flow based on its CCA
mechanism. For instance, inspired by P4air [34], they could
group all flows with similar CCAs into distinct buffers. Thus,
a CCA-aware mechanism would enable providers to handle
the large CCA heterogeneity more efficiently. Even with a
few mis-classified CCAs, it would be better than the current
CCA-oblivious approach.

Contributions. We introduce Dragonfly, a generic CCA clas-
sification system that enables providers to focus at any time on
any flow that crosses their router, and obtain its CCA with a
reasonable accuracy. To do so, we introduce CBIQ (connection
bytes in queue), which measures the number of bytes used by
the monitored flow within the large router buffer shared by
all flows. We explain why CBIQ has unique intrinsic-memory
properties that enable it to outperform other measures. We
also develop an O(1) algorithm to efficiently compute CBIQ.ISBN 978-3-903176-57-7© 2023 IFIP



Finally, we develop Dragonfly around CBIQ, and implement
a Linux-based eBPF Dragonfly architecture to dynamically
select the monitored flows at high line-rates.

We evaluate the Dragonfly system using three platforms:
(1) a Mininet network emulation, (2) a physical-network
testbed, and (3) a testbed with remote cloud destinations. We
show that on all platforms, Dragonfly outperforms state-of-
the-art architectures. For instance, when flows are destined to
remote cloud servers, Dragonfly achieves an F1 accuracy score
of 0.58 when checking a random sub-interval of 100 ms, and
0.85 with a 1-minute interval. DeePCCI [27] achieves 0.2 and
0.62 accordingly. Finally, in an additional speed experiment,
we show how a bespoke sampling method enables eBPF to
collect and analyze 20-Gbps traffic.

The full Dragonfly code is available online [35].

II. DESIGN GOALS

We consider a FIFO router buffer that is shared by many
flows. We focus on an arbitrary flow, starting at an arbitrary
time, and try to determine its CCA.
Minimal router monitor. Our goal is to design a passive CCA
classifier that relies on a minimal amount of non-intrusive
information from the router. Specifically, we only intend to
monitor the ingress and egress lines. We are allowed to know
when packets of a given flow arrive at the router or depart
from it, and use their header information. We should not use
information from the ACKs (since they may be in another
linecard, if not in another router). For a scalable approach,
we should not monitor nor look inside the shared queues, and
neither should we use dropping information from the queues.
Real-time. The Dragonfly system should be able to classify
any flow on the fly, i.e., starting from any point in time. Unlike
offline systems that need to collect full information about a
flow from start to finish before running a classification process,
we want to be able to classify a flow even through we are
missing both past and future information.
Scalable traffic collection. The Dragonfly system should be
able to scale its traffic collection to high line rates. Ideally, its
amount of collected data and its input computation complexity
should be in O(1) for each slot, and not scale with the flow
rate. It should also be able to scale to a large number of flows,
and to dynamically change the list of monitored flows.
Scalable classification. The Dragonfly classifier part should
be able to scale to high line rates. To do so, it should rely
on a simple neural-network architecture, avoiding expensive
components that take significant processing power.
Reliable classification. The Dragonfly system should be able
to classify any in-flight flow, starting at any time, and reach a
reasonable accuracy in a short time. It should be resilient to
the influence of topology settings, of the classification starting
time, of additional flows in the shared router queue, and
of sampling only some of the packets. Moreover, it should
be generic and dynamically adapt to the properties of each
congestion control, without requiring bespoke modifications
or any detailed domain knowledge of each congestion control.

TCP. In this paper, we focus on TCP CCA variants with
available sequence numbers, since they are the most common.

III. DRAGONFLY ALGORITHM

Overview. We use a standard classification framework: given
an arbitrary in-flight flow, we start to collect at an arbitrary
time a sequence of measures for this flow. This sequence of
measures then forms an input array for a neural network,
which outputs a guess for the flow CCA. Below, we start
by discussing the input measures that should be used for
our classification (§III-A, §III-B), then tackle problem-specific
traffic-collection (§III-C) and input-computation challenges
(§III-D), before describing the neural network (§III-E).

A. Input Aggregation

Per-packet raw inputs. We want Dragonfly to classify the
CCA of a monitored flow based on information that we only
collect from a given router. Therefore, as a first step, we collect
per-packet raw inputs provided by the router: for instance,
for each packet, both at the ingress and at the egress, we
can record the packet’s (1) flow 5-tuple (source IP address &
port, destination IP address & port, and protocol), (2) captured
arrival time, (3) packet length, (4) TCP timestamp TSVal set
by the flow source (when available), and (5) packet sequence
number from the TCP header.

Per-slot inputs. Directly feeding the above per-packet raw
inputs into the Dragonfly system raises several issues. In
particular, a sudden large burst of packets from a monitored
flow could temporarily require a classification processing rate
that is above the Dragonfly capacity, and therefore jam the
system and degrade its real-time properties. Instead, we choose
to aggregate the per-packet raw inputs into per-slot inputs,
e.g., to obtain one input per monitored flow every 1 ms.
This design choice clearly loses some information in the
aggregation process, to the benefit of an increased reliability
in the processing speed, which increases Dragonfly’s readiness
for real-life implementation.

In the Dragonfly system, we implement the following ap-
proximate per-slot inputs for each monitored flow, based on
the above per-packet raw inputs: (1) ingress throughput, i.e.,
number of packets or number of bytes arrived for this flow in
this slot, (2) similarly, egress throughput, (3) estimated number
of packet drops in this slot because of a full buffer (this is
only an estimate based on the sequence numbers, not a direct
measure), (4) estimated CBIQ (Connection Bytes in Queue),
which we define as the number of bytes in the shared queue
that belong to this flow at the end of the slot, (5) maximal
source time gap: for each incoming packet, we compute the
TSVal difference with the previous packet from the same flow
(i.e., for the nth packet of a flow, we compute TSVal(n)-
TSVal(n−1)), and later take the maximum among all packets
in this period, and (6) maximal arrival time gap, computed
in the same manner but based on the capture timestamp upon
arrival at the router rather than on the source timestamp. Note
that aggregating raw data is not novel. DeePCCI [27] relies



(a) Reno (b) CUBIC (c) BBR

Fig. 1. CBIQ vs. throughput: Experiments illustrating the CBIQ (in red, left axis) and ingress throughput (in blue, right axis) measures for a given flow of
three CCA types: (a) Reno, (b) CUBIC and (c) BBR. All experiments run on a physical network with 15 additional background flows (5 Reno, 5 CUBIC
and 5 BBR) and measures are collected every 1 ms.

on a measure similar to the per-slot ingress throughput, and
Seiðr [28] relies on an input akin to the histogram of the
capture arrival time gap.

B. CBIQ

Need for Built-in Memory. As detailed below, a key insight
regarding the above design goals of the Dragonfly algorithm
is that they favor the use of an input measure that can
“remember” the past. In other words, the input measure at
some time t should also provide us some indication on what
happened before t. This is a key reason behind our use of
CBIQ: the queue size devoted to a given flow reflects its
cumulative arrival process (cf. Lemma 1.1 [36]), i.e. an integral
of part of its past throughput. Therefore, even though we
measure it at a single point of time, it implicitly tells us
something on its past throughput.

We are interested in “remembering” the past for two rea-
sons: First and foremost, since we intend to catch a flow in-
flight, i.e., analyze it starting from an arbitrary point in time
and provide real-time online classification, we cannot rely on
using measures of its past. We can only measure from the
point we focus on it. As a result, we do not have direct
access to such measures as its past throughput. Similarly,
any memory scheme that we could add to a neural network
(e.g., LSTM) cannot tell us about what happened before it
starts computations. On the other hand, by relying on an
implicit memory-based measure, CBIQ provides us from the
start with some limited information about the past, going back
several RTTs. For instance, assume that we start measuring an
arbitrary flow at an arbitrary time t, and that the CBIQ value
at t is high. Then this immediately tells us that there is a
good chance that the considered flow was more aggressive in
the recent past, since it takes a large portion of the shared
buffer. This immediately strengthens the probability that the
flow uses for example BBR rather than CUBIC or Reno. As
a result, CBIQ can provide us useful information even if we
only measure it for a short time.

In addition, the built-in memory in CBIQ helps us because
it can reduce the volatility of the input. Fig. 1 illustrates the

Fig. 2. Classification performance in a physical-network router, based on
different inputs, using a random 100 ms sub-interval.

evolution of CBIQ vs. that of the ingress throughput. We can
see that CBIQ is less volatile (noisy). This helps us in two
ways. First, we can see for instance how CBIQ exhibits a
near-linear increase with Reno vs. a cubic shape with CUBIC.
On the other hand, the large noise in the throughput measure
makes it difficult to distinguish the two algorithms. Second, if
we are to use random sampling of packets in order to increase
the throughput of the system, then a less volatile sampled
measure is expected to be more resilient to the sampling noise
as the sampling rate increases.

Experiments. Fig. 2 illustrates the typical classification per-
formance of the Dragonfly neural network when it is forced
to rely on each of the above per-slot inputs. We first select
the four inputs that perform best in Mininet simulations. We
then keep these four inputs and run experiments in a physical
network. We train and test the classifier using hundreds of
one-minute runs that implement a wide variety of settings. In
each run, we send three special flows, implementing Reno,
CUBIC and BBR. We vary the number of competing flows
and the buffer size of the bottleneck-link router (as detailed
in §IV-B). We then choose to classify each special flow based
on a random sub-interval of 100 ms.

The experiments confirm our intuition. We can see that
CBIQ is the best performing input, while ingress throughput
and egress throughput are second and third, respectively. Fur-
thermore, adding more inputs to CBIQ only yields a marginal



Fig. 3. eBPF-based Dragonfly architecture in a Linux router.

benefit. Since we want a generic and reliable solution, we
decide to employ the top two inputs in the Dragonfly system,
i.e., CBIQ and ingress throughput. However, in the results
below, we also compare against a Dragonfly solution that
only employs CBIQ. Note that in all these experiments, all
packets have the same size and TSO is disabled, so byte-
based and packet-based throughput measures obtain identical
performance.

TSO. As in the literature, we start by implementing the
ingress throughput by using the number of incoming packets
per time-slot [27]. However, we find that the performance of
ingress throughput drops drastically when used in a software
router that relies on TSO (TCP Segmentation Offload). This is
because the packets are aggregated, and therefore the internal
number of aggregated ingress packets does not reflect the real
number of incoming packets. As a result, we turn to using
byte-based counts of ingress throughput per time-slot. We find
that it solves the TSO issue.

C. Scalable Traffic Collection

tcpdump challenges. We start by collecting the inputs using
the common tcpdump [37]. However, we face two major
challenges in light of our above design goals. First, tcpdump
is too slow in processing traffic. We find that a 1-minute traffic
at 1 Gbps takes 4 min just to extract the headers, even with a
strong Core i7 10th-gen. processor. Second, we want the traffic
collection filter to help the system analyze only selected flows,
and ignore the remaining traffic. Third, we want to be able to
quickly and dynamically change the list of flows to analyze.
Unfortunately, tcpdump relies on the libpcap library [37],
and traditional traffic analysis libraries such as libpcap and
Scapy [38] use BPF (Berkeley packet filter) as a filtering
method. BPF filtering is static, and therefore inappropriate.

eBPF. As a result, we select eBPF (extended BPF) as our
filtering solution. eBPF can extract protocol header fields faster

than libpcap, and can use lookup tables and C code to make
a dynamic filtering decision.

Fig. 3 shows the eBPF architecture in a Linux router. We
start by defining a slot time of 1 ms and a packet capture time
of N ms (e.g., N = 100). Every N ms, we update a list of
flows to monitor, and apply the following steps.
Phase 1. We start the packet capture for N ms. For every
ingress and egress packet: (1) In kernel space, extract the
flow’s 5-tuple values from the IP and TCP headers. (2) Lookup
in the first eBPF map whether the packet belongs to a
monitored flow. (3) Decide accordingly whether the packet
should be monitored. (4) If so, extract some more values from
protocol headers, such as packet size and capture timestamp,
and store them in a second, packet-capture eBPF map.
Phase 2. After N ms, conceptually stop the capture for this
period, then: (5) Convert the format of the packet-capture
eBPF map to a userspace raw-data Python dictionary. (6) Use
the Python dictionary to create a Python DataFrame of per-slot
inputs (cf §III-A and §III-D). (7) Use the DataFrame as input
for the learning system, and classify the flows. (8) Update the
list of classified flows in the first eBPF map. (9) Empty the
packet capture eBPF map and start over.
Sampling. We find that in practice, the bottleneck to scaling
the Dragonfly system to higher line rates is not in the clas-
sification speed, but in the quantity of traffic handled by the
eBPF traffic collection. To further scale the Dragonfly system
and be able to classify more in-flight flows at extremely high
rates, we add two sampling modules:
First-packet sampling. We implement in eBPF the option to
only keep the first packet for each time slot, and drop the other
ones. This reduces both the raw-input dictionary size and the
computation complexity (as detailed in §III-D). To do so, for
each incoming packet, we get the current time, round it to
time-slot resolution, and look up the map. If there is a value
for this flow in this slot, ignore the packet, else process it.
Random sampling. Sampling the first packet of each slot makes
it easier for Dragonfly, because it does not alter the CBIQ
estimation. To make things harder, we add a random-sampling
module before our eBPF implementation. This module simply
keeps a given percentage of the packets by selecting them
uniformly at random, and drops the other packets of the
flow. The traffic-collection code then needs to proceed using
these packets only. Our goal is to check whether by sampling
for example 10% of the packets, we are able to achieve a
reasonable decrease in classification performance, in exchange
for the 10× decrease in the packet rate.

D. Dragonfly Input Computation

Challenges. One of the challenges for the Dragonfly classifica-
tion system is to compute the per-slot inputs based on the raw
per-packet inputs. In an online real-time classification, unique
challenges arise: (1) we wish to classify a flow based on an
arbitrary period of time that does not necessarily contain the
flow start period, and therefore we lack an initialization value,
(2) we wish a fast O(1) computation for the input values at



TABLE I
EXAMPLE OF ONLINE DRAGONFLY INPUT COMPUTATION, WITH AND WITHOUT RANDOM SAMPLING. (A) ILLUSTRATES THE PER-PACKET RAW INPUTS,

WITH THE SAMPLED PACKETS SHOWN IN BOLD. (B) ILLUSTRATES THE RESULTING CBIQ AND INGRESS THROUGHPUT COMPUTATIONS, WITHOUT
SAMPLING (LEFT) AND WITH SAMPLING (RIGHT). WITH SAMPLING, COMPUTATIONS THAT RELY ON INTERPOLATION ARE UNDERLINED.

Ingress Egress

Time Sequence Length Time Sequence Length

101 1600 100 102 1300 100
101 1700 200 102 1400 200
102 1900 100 103 1600 100
102 2000 100 103 1700 200
102 2100 100 104 1900 100
103 2200 100 106 2000 100
103 2300 100 106 2100 100
105 2400 100
106 2500 100
106 2600 100

(a) Per-packet raw inputs

Without Sampling With Sampling

CBIQ Thr. CBIQ Thr.

Time t InSeq(t+1) OutSeq(t+1) CBIQ In Thr. InSeq(t+1) OutSeq(t+1) CBIQ In Thr.

101 1900 1300 600 300 2000 1300 700 300
102 2200 1600 600 200 2300 1700 600 100
103 2400 1900 500 0 2400 1833 567 100
104 2400 2000 400 100 2500 1967 533 100
105 2500 2000 500 ? 2600 2100 500 ?

(b) Per-slot computed inputs

each slot, independently of the flow rate, and (3) in case of
random sampling, we may lack many of the packets.

Online computation without random sampling. Table I
illustrates an online real-time computation of CBIQ and of
the ingress throughput. We assume that it starts at time 101
(ms), i.e., 100 ms after the flow start. We want to provide a
fast O(1) computation at each slot.

CBIQ. At each slot t, we compute CBIQ(t), the number of
bytes of the monitored flow that have entered the shared buffer
and not yet departed by the end of the slot. Unfortunately,
since we do not have the raw input for the start of the flow,
we do not even know the initial CBIQ at the start of the
sub-interval, and cannot assume that CBIQ(t) = 0 at the
start. Furthermore, we could somehow approximate CBIQ at
the start of the sub-interval, then compute at each slot the
total number of incoming and outgoing bytes to estimate the
evolution of CBIQ. However, this can be an issue at high flow
rates: the computation time and needed raw-input dictionary
size increase with the number of packets in the slot (§IV-D).

Instead, we adopt an alternative approach. For each slot
t + 1, at the ingress (resp. egress), we record the sequence
number of the first byte of the first arrived (resp. departed)
packet, and denote it as InSeq(t + 1) (resp. OutSeq(t + 1)).
We then approximate the last byte arrived (resp. departed)
by the end of the previous slot t using InSeq(t + 1) − 1
(resp. OutSeq(t + 1)). Then, we approximate CBIQ as their
difference: CBIQ(t) ≃ max([InSeq(t+1)−1]−[OutSeq(t+
1) − 1], 0) = max(InSeq(t + 1) − OutSeq(t + 1), 0).
Intuitively, the bytes represented in this difference are the
bytes that have entered the queue and not departed, thus
representing the queue size. Of course, we neglect losses and
retransmissions, and assume in-order transmission, so this is
only an approximation.

As Table II(a) illustrates, there is an additional challenge:
the next slot may not have an arrival (resp., departure). There-
fore, we would need to use the first arrived (resp., departed)
packet of the next non-empty slot. For instance, in the left-
side, unsampled part of Table II(b), since there is no arrival in
slot 104, we use InSeq(103 + 1) = InSeq(104 + 1) = 2400.

However, spending time to look for this next non-empty slot
would lose the O(1) property. Instead, we proceed as follows,
relying on our eBPF implementation of a sampling module
that provides a raw-input dictionary that only keeps the first
packet of each slot (§III-C). Such a raw-input dictionary of
N slots would have at most N packets. For instance, when
using 1-ms slots, a 100 ms dictionary would contain at most
100 packets. Then we can update InSeq(t) and OutSeq(t)
going backwards from the last slot to the first, simply filling
in empty values with the last seen value. This is an O(1) task
per slot.

Note that we do not seek to rely on drop information
because of our design goal of minimal information (§II), and
therefore we have to neglect the impact of losses.

Throughput. To compute the ingress throughput at time t, we
implement two approaches. One is to simply add the bytes
of all packets arrived at time t at the ingress. The second
approach, whose per-slot complexity is O(1) as for CBIQ, is to
compute the ingress throughput InThr(t) using InThr(t) =
max(InSeq(t + 1) − InSeq(t), 0). Of course, while faster,
the second approach is more error-prone when there are many
retransmissions.

Online computation with random sampling. The right side
of Table II(b) illustrates the online computation of CBIQ
and of the ingress throughput when only the bold packets in
Table II(a) are sampled (using the random sampling presented
in §III-C). We compute CBIQ and throughput based on
InSeq(t + 1) and OutSeq(t + 1) as previously, but now need
to take into account that we are missing many packets that
introduce a larger error in these values.

Interpolation. To reduce the error, when there is no incoming
(resp. departing) packet in slot t + 1, we linearly interpolate
the value of InSeq(t+1) (resp. OutSeq(t+1)) from the non-
empy slots that occurred last and will occur next. For instance,
in Table II(b), InSeq(102) = 2300 and InSeq(105) =
2600, so we estimate that InSeq(103) − 1 = 2400 and
InSeq(104) = 2500 (shown underlined). In practice, to keep
an O(1) computation, we start again from the final slot and
go backwards. Each time we encounter a sequence of x empty



slots, we go through it once to find the next non-empty slot
and compute the interpolation slope, then a second time to
fill the slot values, thus keeping an amortized O(1) per-slot
complexity over the raw-input dictionary.

E. Dragonfly Learning System

Overview. We are now ready to describe the Dragonfly
learning system. After collecting per-packet traffic information
using eBPF (§III-C), we provide the resulting dataframes
to the learning system (Figure 3), and use these dataframes
to compute the per-slot learning inputs (§III-A): CBIQ and
ingress throughput (§III-B). To do so, we apply the algorithms
described in §III-D. Once we collect these inputs, we feed
them into the Dragonfly neural network described below, and
finally obtain the classification result.

Input dataframe. Fig. 3 shows how a dataframe forms the
input to the learning network. Assuming for instance that we
use two per-slot inputs (CBIQ and ingress throughput) for each
1 ms slot, and that we want to classify a flow based on an
arbitrary flow sub-interval of 100 ms, then the input dataframe
size is 100 (slots per sub-interval) × 2 (input features). We
normalize each dataframe by dividing each input value by its
maximum value in the dataframe, thus obtaining a normalized
value between 0 and 1.

CNN. Using the pytorch library, we have implemented a
CNN (convolutional neural network) module for automatic
CCA classification given the above inputs. We choose the
CNN architecture rather than (1) a more complex RNN
(recurrent neural network) with an LSTM (long-short term
memory) or GRU (gated recurrent unit) [39], since we want
a simple approach that is easily implementable in routers;
and (2) a basic fully-connected neural network, in order
to exploit the temporal locality in the dataframes, i.e., the
correlation between close time-slots, which are expected to
be relatively similar, while keeping a lightweight architecture.
Specifically, to build the CNN, we choose a kernel of size
3 × 2, 50 convolutional filters, and 5 subsequent modules,
each consisting of the following: a 2D convolution layer, a 2D
batch normalization, a ReLU activation, and a 2D MaxPool
layer. The CNN outputs an array of numbers that indicate
the classification score of each potential CCA. The maximum
number corresponds to the predicted CCA.

Training. We train the model once offline, then reuse it online
without retraining it. To train the Dragonfly CNN, we first run
1,500 experiments, either for 10 seconds (Mininet emulation)
or for a minute (physical network). These experiments have
variable settings to make the training more robust, as detailed
in §IV. Assume that we intend to learn to classify flows based
on a 100-ms sub-interval. Then we pick a random sub-interval
of 100 ms from each of these experiments, thus collecting
1,500 samples, and build their corresponding 1,500 input
dataframes. We group those dataframes into batches of size 32
(thus obtaining some 47 batches). We then use some random
70% of the total input for training and the rest (30%) to testing.
Training lasts up to 100 epochs, where at each epoch we check

once each of the assigned batches, and can stop earlier in case
of early convergence of the accuracy measure. We rely on
typical optimization tools: an Adam optimization algorithm for
stochastic gradient descent, a cross-entropy stopping criterion,
and a StepLR learning rate schedule.

Training speed. In order to train the model, it takes roughly
a second per epoch (during the backpropagation technique),
assuming a 100-ms sub-interval and a 1-ms sampling time.
Thus, training 100 epochs lasts some 100 seconds.

IV. EXPERIMENTS

In this section, we run four types of evaluations. First, we
start by implementing Dragonfly in a Mininet network emula-
tor (§IV-A). Second, we implement Dragonfly on a physical-
network testbed (§IV-B). We show that it presents similar
results to Mininet, and study the impact of the classification
time, amount of noise and sampling rate on classification
performance. Third, we evaluate the performance of Dragonfly
when communicating with remote destinations in the cloud,
using high RTTs and conflicting with unknown flows (§IV-C).
Finally, we evaluate the speed of the Dragonfly eBPF traffic
collection using an incoming rate of 20 Gbps (§IV-D).

A. Mininet

CCAs. For a fair comparison, we follow the DeePCCI
paper [27] in choosing the CCAs we try to classify: Reno, CU-
BIC and BBR. We consider 3(n + 1) = 3n + 3 source nodes:
three special sources, each generating either a Reno, CUBIC
or BBR flow, together with 3n background flows comprised of
n Reno flows, n CUBIC and n BBR. The background flows
compete for the shared buffer utilization in the first bottleneck
link and therefore can make the classification task harder. We
vary the 3n within the set {0, 15, 30, 60, 75}. We use the iperf3
traffic generator to generate all the flows.

Run time. Each run lasts x + 60 seconds, where x is some
initialization length that is drawn u.a.r. (uniformly at random)
between 0 and 10 seconds. The starting time of each flow is
then drawn u.a.r. between 0 and x.

Topology. We deploy a network topology that connects the
3n+3 sources to a common destination by going through two
successive routers. The 3n + 3 sources are implemented as
3n + 3 separate hosts. The first router is a bottleneck, and we
use its local information to classify flows. The second router
is a non-bottleneck pass-through router with essentially empty
queues. Both for training and testing, we run each evaluation
hundreds of times by varying the topology settings (§III-E).
The 3n + 3 sources are connected to the first bottleneck link
using links of a variable rate between 100 Mbps and 1 Gbps,
with propagation time in both ways. The two routers are
connected using a 100-Mbps link with a 10-ms propagation
time, thus creating a bottleneck at the first router. The second
router connects to the shared destination using a link with
a variable rate between 100 Mbps and 1 Gbps with 25-ms
propagation time. The bottleneck link’s shared buffer size is
500 packets.



Fig. 4. Mininet: F1 score performance as a function of the duration of the
random flow sub-interval.

Metrics. As usually done in the literature, we measure clas-
sification performance by using F1, the harmonic mean of
precision and recall. It is between 0 and 1, where 1 is best.

Algorithms. We implement (1) Dragonfly, (2) Dragonfly with
only CBIQ as input and not the ingress throughput, to de-
termine the part that CBIQ plays in the classification, and
(3) DeePCCI [27] as a comparison baseline (DeePCCI has no
open implementation). Except for the random-sampling exper-
iment, we always run first-packet sampling for Dragonfly but
no sampling for DeePCCI, even if it puts Dragonfly at a slight
disadvantage. Unless mentioned, each algorithm is trained for
each interval duration using the testing environment.

Impact of sub-interval duration. Fig. 4 illustrates the F1
testing score as a function of the duration of the sub-interval
randomly chosen to classify the flow. We examine a random
interval of a varying size out of each 1-minute run, using
hundreds of runs (§III-E). Dragonfly achieves an F1 score of
0.97 for 1-minute intervals, while DeePCCI only reaches 0.75.

B. Physical-Network Experiments

Methodology. We now consider a physical-network testbed.
We keep the methodology adopted within the Mininet emu-
lation, with the following changes. First, unlike in Mininet,
the link rates and propagation times cannot be arbitrarily
changed, and we cannot arbitrarily add dozens of hosts. As a
result, the 3n+3 sources are implemented using two different
hosts with two network cards each. All the link rates in the
physical network are 1 Gbps. All propagation times follow the
physical layout of the setup and are under 1 ms. To change the
training (and later testing) topology, we vary (1) the number
3n of background flows within the set {0, 15, 30, 60, 75}, as
previously described, and (2) the buffer size of the Linux-
based bottleneck link between 2K packets and 16K packets,
causing a significant queueing delay of 25 ms to 200 ms. For
each sub-interval duration, we train each algorithm once and
use the same policy in all tests below without retraining.

Impact of sub-interval duration. Fig. 5 illustrates the F1
score performance as a function of the sub-interval duration.
We test a random interval of a varying duration out of
each 1-minute run, using hundreds of runs. DeePCCI takes
significantly longer to converge to a reasonable performance

Fig. 5. Physical-network experiment: F1 score performance as a function of
the duration of the random flow sub-interval.

Fig. 6. Physical-network experiment: F1 score as a function of the number
of background flows.

than Dragonfly. For instance, to reach an F1 score of 0.7, it
needs 18 seconds rather than 10 ms.
Impact of background traffic. Fig. 6 illustrates the F1 score
performance as a function of the number of background flows
that compete with the three special flows. We use 10-second
flow sub-intervals. As expected, the classification performance
gradually decreases with the number of background flows. For
instance, when going from 0 to 75 background flows, the F1
score decreases from 0.9 to 0.74 for Dragonfly and from 0.77
to 0.56 for DeePCCI.
Impact of random sampling. Fig. 7 shows the F1 score
as a function of the percentage of packets dropped using
random sampling. We use 10-second flow sub-intervals and
no background flows. We consider random sampling as it
is harder for Dragonfly: for instance, a first-packet-per-slot
sampling that keeps the first packet of each slot and drops
the others would not affect the performance of Dragonfly
(§III-C). As expected, the classification performance gradually
decreases as the sampling module drops more and more
packets. Still, Dragonfly is relatively resilient to dropping
about half the packets, and its F1 score only decreases by
about 0.1 even when randomly dropping 99% of the packets.

C. Cloud Experiments

We now start from the above physical-network testbed but
upgrade the line rates and select flow destinations in the
cloud. Since the destinations are remote, propagation times are



Fig. 7. Physical-network experiment: F1 score as a function of the percentage
of packets dropped using random sampling.

Fig. 8. Cloud experiment: F1 score as a function of the duration of the
random flow sub-interval, for flows sent to a cloud destination.

longer. Furthermore, there are background flows over which
we have no control, competing in routers over which we also
have no control.

Methodology. The methodology is similar to that of the
physical network, with the following changes. We first install
three AWS servers in Tokyo, N. California and Frankfurt. We
measure a throughput of about 750 Mbps with an RTT of
300 ms to two of them, and a throughput of 850 Mbps with an
RTT of 40 ms to a third. To do so, we dramatically increase
the allowed TCP sending and receiving windows in all the
source and destination machines. We use three servers as three
flow sources. Each of the three servers independently picks
any of the three CCAs in {Reno, CUBIC, BBR}, yielding 33

combinations, and chooses a distinct AWS server destination
for its flow. Each server uses a distinct 10-Gbps line to connect
to a shared router, which uses a 1-Gbps line to get to the
Internet. In addition, we vary the local router buffer length
from 1,000 to 6,000 packets, yielding 6 settings, and run
Dragonfly at the local router in real time. We run a total of
33 · 6 = 162 experiments, reflecting the 162 possible settings.
We keep the same Dragonfly as trained on the physical
network without retraining it.

Impact of sub-interval duration. Figure 8 plots the F1 score
performance as a function of the random-interval duration.
As expected, Dragonfly outperforms DeePCCI. The outper-
formance is larger for very short intervals, where the built-in
memory of CBIQ plays a large role. Specifically, the F1 score
of Dragonfly is 0.58 for 100 ms, 0.75 for 6 s, and 0.85 for a
minute, while DeePCCI achieves 0.2, 0.5 and 0.62 accordingly.

TABLE II
SPEED EXPERIMENT: ONE-MINUTE EXPERIMENT TO CHECK THE EBPF

TRAFFIC-COLLECTION RATE WITH EITHER 10-GBPS OR 20-GBPS TRAFFIC,
USING AN EBPF CAPTURED-TRAFFIC TABLE SIZE OF 5M ENTRIES.

Settings No first-packet sampling First-packet sampling

Rate Flows Packets Capture duration Build time Capture duration Build time

10 Gbps 2 24 M 13 sec (54%) 140 sec (0.09×) 60 sec (100%) 2 sec (30×)
20 Gbps 4 42 M 7 sec (12%) 140 sec (0.05×) 60 sec (100%) 6 sec (10×)

D. Speed Experiments

We find that the main bottleneck in our system is its traffic-
collection component, even after replacing tcpdump with eBPF
(§III-C). Therefore, we want to evaluate whether our pro-
posed eBPF first-packet-per-slot sampling module (described
in §III-C) helps alleviate this bottleneck.

Table II details our experimental settings and results. We
upgrade all of our physical-network testbed links to 10 Gbps.
We assume four server sources, each sending one flow to one
of two possible destination nodes through a unique shared
router. Since all lines run at 10 Gbps and each router egress
line is shared by two flows, each flow runs at about 5 Gbps. (In
the 10-Gbps experiment, only two source servers are used with
a shared destination.) A single eBPF router module collects all
ingress and egress traffic at both router outputs. We run each
experiment for a minute, with an eBPF captured-traffic table
size limited to 5M entries, due to server memory limitations.
We find that if eBPF simply collects traffic and does not
apply first-packet sampling at each 1-ms slot, the table fills
up quickly and we cannot capture more traffic. For instance,
at 20 Gbps, it fills up after we collect 5M packets out of 42M,
i.e., after 5/42 ·60 s ≈ 7 s. Furthermore, it takes 140 s to later
convert it to a userspace dataframe. However, using eBPF first-
packet sampling, we can capture all traffic, and then build the
dataframe 10× faster, even though we rely on an unoptimized
Python code. Note that this build time implicitly limits the
number of monitored flows. To scale, we may want to use
an optimized C implementation rather than a naive Python
one. Moreover, note that the number of packets does not scale
linearly with the line rate in the table, because TSO creates
bigger packets more often at 20 Gbps.

V. RELATED WORK

Host classification. Several works [40], [41] attempt to iden-
tify the CCA used by a given end-host, such as a web server,
often by actively influencing its traffic and monitoring the
host’s reaction. In this paper, we are interested in a passive
method that may lie in a far-removed network router.

Offline classification. Several works [24]–[26] assume that
they can monitor in an offline manner all of the packets on
both the forward packet path and the reverse ACK path. This
paper does not assume access to the reverse path. In contrast,
DeePCCI [27] does not need to monitor the reverse path. It
relies on a novel and fully generic classification approach that
can handle any CCA. DeePCCI appears to be the state of the
art in the literature, and we compare against it.



Online classification. In [28], the authors introduce an original
way of leveraging programmable dataplanes. To our knowl-
edge, it is the only paper in the literature that focuses on
practical online classification at high line rates. However, it
assumes additional hardware, and the accuracy of its CNN-
based algorithm drops significantly when it needs to handle
more than two CCAs, as would be expected in practice.
Enforcing fairness. In [34], the authors use programmable
switches to classify flows into CCA families, e.g., modeling
whether they are loss-based, delay-based, or both. Then, they
group flows in buffers accordingly. They show a significant
gain in fairness. However, they do not try to provide an exact
CCA classification, and can classify in the same family two
loss-based CCAs with significantly different aggressiveness.

VI. CONCLUSION

In this paper, we introduced the Dragonfly system, which is
designed to classify on the fly the congestion control algorithm
of any flow that crosses a given router, starting at any time,
and quickly provide a classification result with a reasonable
accuracy. To do so, we introduced CBIQ, and explained
how to compute it in O(1). We further designed an eBPF-
based implementation. Finally, we evaluated our Dragonfly
system using a variety of platforms, showed how its accuracy
clearly outperformed that of DeePCCI, and analyzed its traffic-
collection speed using 20-Gbps traffic.

ACKNOWLEDGMENT

The authors would like to thank Roy Mitrany for his
crucial help with the implementation. This work was partly
supported by the Louis and Miriam Benjamin Chair in
Computer-Communication Networks, the Israel Science Foun-
dation (grant No. 1119/19), Toga Networks, and the Hasso
Plattner Institute Research School.

REFERENCES

[1] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “FairCloud: Sharing the network in cloud computing,” in
ACM SIGCOMM, 2012, pp. 187–198.

[2] R. Ware, M. K. Mukerjee, S. Seshan, and J. Sherry, “Modeling BBR’s
interactions with loss-based congestion control,” in ACM IMC, 2019.

[3] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of TCP BBR congestion
control,” in IFIP Networking, 2018, pp. 1–9.

[4] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly
congestion control,” IEEE Network, vol. 15, no. 3, pp. 28–37, 2001.

[5] S. Utsumi and G. Hasegawa, “Improving inter-protocol fairness based
on estimated behavior of competing flows,” in IFIP Networking, 2022.

[6] L. Brown, G. Ananthanarayanan, E. Katz-Bassett, A. Krishnamurthy,
S. Ratnasamy, M. Schapira, and S. Shenker, “On the future of congestion
control for the public internet,” in ACM HotNets, 2020, pp. 30–37.

[7] A. Philip, R. Ware, R. Athapathu, J. Sherry, and V. Sekar, “Revisiting
TCP congestion control throughput models & fairness properties at
scale,” in ACM IMC, 2021, pp. 96–103.

[8] P. Goyal, A. Narayan, F. Cangialosi, S. Narayana, M. Alizadeh, and
H. Balakrishnan, “Elasticity detection: A building block for internet
congestion control,” in ACM SIGCOMM, 2022, p. 158–176.

[9] V. Arun, M. Alizadeh, and H. Balakrishnan, “Starvation in end-to-end
congestion control,” in ACM SIGCOMM, 2022, p. 177–192.

[10] K. Toledo, D. Breitgand, D. Lorenz, and I. Keslassy, “CloudPilot: Flow
acceleration in the cloud,” Computer Networks, 2023.

[11] C. X. Cai, F. Le, X. Sun, G. G. Xie, H. Jamjoom, and R. H. Campbell,
“CRONets: Cloud-routed overlay networks,” in IEEE ICDCS, 2016.

[12] A. Markuze, A. Bergman, C. Dar, I. Keslassy, and I. Cidon, “Kernels
of splitting TCP in the clouds,” Netdev 0×14, 2020.

[13] G. Zeng, J. Qiu, Y. Yuan, H. Liu, and K. Chen, “FlashPass: Proactive
congestion control for shallow-buffered WAN,” in IEEE ICNP, 2021.

[14] A. Saeed, V. Gupta, P. Goyal, M. Sharif, R. Pan, M. Ammar, E. Zegura,
K. Jang, M. Alizadeh, A. Kabbani et al., “Annulus: A dual congestion
control loop for datacenter and wan traffic aggregates,” in ACM SIG-
COMM, 2020, pp. 735–749.

[15] Y.-J. Song, G.-H. Kim, I. Mahmud, W.-K. Seo, and Y.-Z. Cho, “Under-
standing of BBRv2: Evaluation and comparison with BBRv1 congestion
control algorithm,” IEEE Access, vol. 9, pp. 37 131–37 145, 2021.

[16] L. Yu, J. Sonchack, and V. Liu, “Cebinae: scalable in-network fairness
augmentation,” in ACM SIGCOMM, 2022, pp. 219–232.

[17] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC vivace: Online-learning congestion control,” in
Usenix NSDI, 2018, pp. 343–356.

[18] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A
pragmatic learning-based congestion control for the internet,” in ACM
SIGCOMM, 2020, pp. 632–647.

[19] F. Yang, Q. Wu, Z. Li, Y. Liu, G. Pau, and G. Xie, “BBRv2+: Towards
balancing aggressiveness and fairness with delay-based bandwidth prob-
ing,” Computer Networks, 2022.

[20] H. Tian, X. Liao, C. Zeng, J. Zhang, and K. Chen, “Spine: an effi-
cient DRL-based congestion control with ultra-low overhead,” in ACM
CoNEXT, 2022, pp. 261–275.

[21] Y. Ma, H. Tian, X. Liao, J. Zhang, W. Wang, K. Chen, and X. Jin,
“Multi-objective congestion control,” in ACM EuroSys, 2022.

[22] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy, “Virtualized congestion control,” in ACM
SIGCOMM, 2016.

[23] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteristics
and origins of internet flow rates,” in ACM SIGCOMM, 2002.

[24] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring
TCP connection characteristics through passive measurements,” in IEEE
Infocom, vol. 3, 2004, pp. 1582–1592.

[25] J. Oshio, S. Ata, and I. Oka, “Identification of different TCP versions
based on cluster analysis,” in IEEE ICCCN, 2009, pp. 1–6.

[26] D. H. Hagos, P. E. Engelstad, and A. Yazidi, “Classification of delay-
based TCP algorithms from passive traffic measurements,” IEEE NCA,
2019.

[27] C. Sander, J. Rüth, O. Hohlfeld, and K. Wehrle, “DeePCCI: Deep
learning-based passive congestion control identification,” in Workshop
on Network Meets AI & ML, 2019, pp. 37–43.

[28] K. A. Simpson, R. Cziva, and D. P. Pezaros, “Seiðr: Dataplane assisted
flow classification using ML,” in IEEE Globecom, 2020, pp. 1–6.

[29] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” ACM SIGCOMM CCR, 1989.

[30] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
Achieving approximately fair bandwidth allocations in high speed net-
works,” in ACM SIGCOMM, 1998, pp. 118–130.

[31] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approximat-
ing fair queueing on reconfigurable switches,” in Usenix NSDI, 2018.

[32] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling high-bandwidth
flows at the congested router,” in IEEE ICNP, 2001, pp. 192–201.

[33] E. Zahavi, A. Shpiner, O. Rottenstreich, A. Kolodny, and I. Keslassy,
“Links as a Service (LaaS): guaranteed tenant isolation in the shared
cloud,” in IEEE JSAC, 2019.

[34] B. Turkovic and F. Kuipers, “P4air: Increasing fairness among competing
congestion control algorithms,” in IEEE ICNP, 2020, pp. 1–12.

[35] (2023) Dragonfly code. [Online]. Available: https://github.com/
DeanCarmel/Dragonfly

[36] A. J. Ganesh, Big queues. Springer, 2004.
[37] The Tcpdump Group. (2023) tcpdump & libpcap. [Online]. Available:

https://www.tcpdump.org/
[38] P. Biondi and the Scapy community. (2023) Scapy documentation:

performance of scapy. [Online]. Available: https://scapy.readthedocs.io/
en/latest/usage.html#performance-of-scapy

[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[40] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP
congestion avoidance algorithm identification,” IEEE/ACM Transactions
on Networking, vol. 22, no. 4, pp. 1311–1324, 2013.

[41] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong, “The
great internet TCP congestion control census,” ACM Measurement and
Analysis of Computing Systems, vol. 3, no. 3, pp. 1–24, 2019.


