
TSN Gatekeeper: Enforcing stream reservations
via P4-based in-network filtering

Nurefşan Sertbaş Bülbül, Joshua Jannis Krüger and Mathias Fischer
University of Hamburg, Germany

Email:{nurefsan.sertbas, joshua.krueger, mathias.fischer}@uni-hamburg.de

Abstract—Real-time communication is crucial for mission
critical scenarios, such as industrial automation and automotive
applications. To meet these applications’ strict quality of service
(QoS) requirements, a new set of specifications, known as time-
sensitive networking standards (TSN), has been proposed. TSN
requires pre-registration of data streams before actual communi-
cation to help guarantee bandwidth and ensure constrained end-
to-end latency. However, this mechanism is vulnerable to traffic
overload and denial of service (DoS) attacks. This paper proposes
a P4-based dynamic attack filtering as a link-layer network
function to defend TSN against malicious network elements, such
as faulty talkers or switches, directly on the data plane. Our
experiments indicate that our P4-based implementation can filter
malicious traffic with minimal overhead and minimize frame
losses for legitimate traffic.

Index Terms—time-sensitive networks, programmable data
planes, ingress filtering, per-stream policing, babbling idiots

I. INTRODUCTION

Ethernet is a family of standards that enables high-
throughput communication in diverse wired-networking en-
vironments. It has also been proposed for use in modern
embedded environments with real-time requirements, such
as industrial and in-car networks [2]. However, these new
application domains have introduced new requirements that
Ethernet was not initially prepared to satisfy. For instance,
self-driving cars with hundreds of time-sensitive sensors create
new challenges for the underlying Ethernet architecture, such
as timely delivery and bounded latency guarantees. To address
these challenges, the IEEE time-sensitive networking task
group has proposed a set of standards that can be used
when the application has no tolerance for frame loss due to
congestion and guaranteed upper bounds on end-to-end latency
[3]. These standards also allow the coexistence of traffic with
different priorities, such as high-priority time-critical and low-
priority best-effort traffic, to be sent over the same physical
infrastructure.

Time-sensitive networking relies on end hosts’ pre-
registration of traffic requirements to allocate the necessary
resources along the end-to-end path. With this, the end host
agrees with the network before the actual communication, and
thus the network can provide a certain level of QoS for the
requested end host, the talker in TSN. Every entity in TSN is
expected to obey its reserved resource limits, such as staying
within the allocated bandwidth. However, this mechanism
is vulnerable to malicious network elements, such as faulty

talkers or switches. A malicious talker may send more traffic
than it previously reserved, which may cause congestion at
the switches on the path and can violate bandwidth guarantees
on all streams, even the legitimate ones. This phenomenon is
called the babbling idiot, and whether it is intentional or not,
it must be avoided to maintain determinism in such a network.

To overcome this issue, the IEEE TSN Task group has
proposed the IEEE 802.1Q Qci Per-Stream Filtering and Polic-
ing (PSFP) standard [1]. The standard introduces a cascaded
filtering mechanism that blocks or limits excessive amounts of
data to protect queues from DoS attacks. Moreover, it enables
the application of fine-grained policing decisions. However,
the filtering approach has yet to be explicitly defined; it is
only conceptually defined.

In this paper, to dynamically enable such filtering func-
tionality within the network at line rate, we leverage network
programmability via P4 language, which has recently attracted
attention from both the research community and the industry
[4]. P4 enables the implementation of novel network functions
for various use cases, such as fine-grained packet handling
and advanced packet forwarding, even without a centralized
controller. It can also handle packets at line rate dynamically
and flexibly. This makes it possible for network designers to
create fine-grained networks aware of the applications and data
being delivered, allowing the network to meet mission-critical
requirements such as latency assurances [5]. Thus, due to such
benefits, P4 has a good potential to accelerate innovations
in time-sensitive networks [6]. Accordingly, our contributions
are:

• We present two ingress filtering mechanisms that comply
with the concepts introduced in the IEEE 802.1 Qci
standard to safeguard switch queues against DoS attacks.
We leverage P4 to implement the proposed filtering
functionality directly at the data plane, eliminating the
need for a centralized controller

• We evaluate the effectiveness of our approach by con-
ducting experiments using randomly generated network
topologies. We compared the performance of our pro-
posed filtering mechanisms with the scenario where no
filtering policy is deployed. Our evaluation results in-
dicate that our filtering approaches incur minimal over-
head, even with an increasing number of attackers, and
effectively mitigate the impact of DoS attacks on switch
queues and prevent the loss of legitimate traffic.

The remainder of this paper is structured as follows: SectionISBN 978-3-903176-57-7 © 2023 IFIP



II describes basic TSN mechanisms and summarizes the state
of the art. In Section III, we introduce our overall architecture.
We evaluate our approach and describe our evaluation results
in Section IV. Finally, Section V concludes the paper and
summarizes future work.

II. BACKGROUND AND RELATED WORK

A. Time Sensitive Networking

In a typical time-sensitive network, the sender of the data, a
talker, announces the desire to send data by sending a talker-
advertise message that defines the traffic characteristics of the
stream. In this context, a stream refers to a data flow between
the sender and receiver, such as the talker and listener(s) in
TSN, and is identified by a unique stream identifier (StreamId).
The talker-advertise message is propagated over the network
depending on the configuration scheme, either centralized or
distributed. All listeners receive the message, and only the
listener(s) interested in receiving the related stream replies.
The reply message, listener-ready, is forwarded in the reverse
direction of the talker-advertise message back to the talker.
On a listener-ready message switches on the path, re-check
whether the resources to guarantee fault-free transmission are
available. If so, the resources are reserved, and the listener-
ready message is forwarded to the next switch. Eventually, the
listener-ready message reaches the talker, which initiates the
process, and the stream transmission can begin. If a stream
is no longer needed, the talker and listener can cancel the
associated resources by sending a cancel message [7].

With this pre-configuration, required resources, e.g., band-
width, are reserved before communication. So that network
can provide a specific latency guarantee for the related trans-
mission. Here it has been assumed that every TSN node
obeys its reserved resource limits, e.g., stays within allocated
bandwidth. However, when there is an unauthorized attempt
to use resources, e.g., DoS attacks by flooding, the network
may no longer provide the promised QoS. To deal with
traffic exceeding its pre-defined limits, a threshold-enforcing

can be applied, in which traffic up to the advertised limit is
forwarded, and any exceeding traffic is blocked. It does have
a clear benefit in certain situations where a temporarily faulty
end-host, which returns to normal operations after a period
of violation, could be kept in the network while effectively
containing its threats. Alternatively, the stream can be entirely
blocked when it exceeds the advertised limit. Unlike the first
one, all traffic is dropped at the ingress, even if the stream
would later returns to behave as advertised.

The IEEE task group has proposed IEEE 802.1 Qci standard
for ingress filtering traffic that exceeds its registered band-
width guarantees. This filtering standard helps maintain the
established service quality for specified traffic and streams,
protect queues from unwarranted traffic (e.g., deliberate DoS
attacks), and mitigate the effects of bandwidth violations
and malfunctioning. The standard proposes a cascaded layer
of filtering and policing as shown in Fig. 1. In the first
layer, stream filters decide which gates and meters will be
responsible for the arriving frame. In other words, when a
frame arrives at the switch’s ingress, the stream filter matches
the StreamId to a specific, though not necessarily dedicated,
stream gate and flow meter for policing and filtering. The
second layer, a stream gate, is a two-state filter. In the open
state, frames can pass to the responsible flow meter for further
filtering. In the closed state, frames will be dropped. The
state can change on a schedule which can be carried out by
defining the gate control list or based on interaction by the
control plane. Lastly, the flow meters enable the deployment
of more fine-grained algorithms and decide whether the frame
is allowed to pass. After the flow meter allows a frame, it
gets queued in the network node for remaining forwarding or
processing. This filtering mechanism supports the following
policing actions [8]:

• Time-based policing: This can be carried out using stream
gates as it has two states: open and closed. Frames
that arrive when the gate is closed are directly filtered
(discarded) so that this mechanism aims to support ap-

Fig. 1: IEEE 802.1Qci per-stream filtering and policing [1]



plications where the transmission and reception of frames
across the network are coordinated.

• Rate-based policing: This can be carried out using flow
meters by specifying frame rate parameters. Then, the
meters apply to stream(s) and allow policing of streams
that exceed the configured rate.

• Burst-based policing: This can be carried out using flow
meters so that the length of the supported burst is set,
and frames will be filtered accordingly.

• Frame length-based policing: This can be carried out
using flow meters to filter frames based on the maximum
frame lengths.

Authors in [9], propose an IEEE 802.1Qci-based attack
detection system that applies filtering based on bandwidth and
arrival time. For that, they propose a two-rate, three-color
marker-based mechanism that can successfully drop illegit-
imate traffic. However, the configuration parameters of the
presented approach are assumed to be set at the beginning and
remain the same during the network’s lifetime. Such a static
configuration could be a valid assumption for specific use
cases, e.g., in-vehicle networks. Still, such a solution would
only partially benefit from the protocol’s capabilities. Also,
only the periodic, time-triggered traffic has been taken into
account; but it needs to be clarified how to derive the filtering
rules for aperiodic traffic, e.g., burst traffic. In [10], a filtering
mechanism based on one of the existing traffic shapers in TSN,
Credit Based Shaper, is proposed, and its compatibility with
the 802.1Qci filtering is shown via OMNeT++ simulations.
However, feasibility analysis with other traffic shapers is left
as a future work.

B. P4 based Security

Several studies exist in the literature to add such attack
filtering functionality to the network, either using centralized
or distributed configuration options. Here, software-defined
networks (SDN) could be an option with the global network
view of the centralized SDN controller [11]. However, a
centralized control plane can easily be a bottleneck in many
scenarios, especially for recovery and connectivity protection
[12], [13]. Also, the communication delay between data and
the control plane may limit the reaction time of the controller
as well [14]. Thus, such an implementation suffers from cen-
tralized controller dependency and causes scalability problems.
Besides, standard SDN-based solutions are able to configure
only per-flow forwarding policies and do not allow per-packet
priority enforcement. Thus, these shortcomings of the SDN
further motivate researchers to use the P4-based data planes,
which enable processing packets at a line rate and remove the
need for a centralized controller. Moreover, unlike the Open-
Flow protocol, which is used as a standard protocol between
controller data plane communication in SDN, P4 enables the
definition of more fine-grained packet fields and, therefore,
deployment of more use case-specific security solutions.

P4 has been used frequently in the literature to bring security
functionality to the data plane and reduce the experienced
latency by removing the remote controller involvement [15].

Using P4-based data planes in blockchain architecture, authors
in [14] show that several attacks on the blockchain, including
DoS, can be discovered before transaction packets get to
the control plane. In [16], P4-based data paths are used to
minimize latency and add security monitoring functionality
for industrial 5G networks. Their results show that latency
can be decreased by around half. In [17], authors use P4 to
improve the routers to filter router spoofing and man-in-the-
middle attacks directly on the data plane. Authors in [18] use
P4 to detect spoof and volumetric attacks close to the source
in order to protect the network. Their approach is scalable and
controller-independent, thanks to the P4.

The flexible configuration options of the P4-based switches,
either centralized or distributed, make P4 a promising solution
for mission-critical networks. Thus, we believe that combining
the merits of IEEE 802.1Qci and P4 marks a significant step
in protecting future time-sensitive networks.

III. P4-BASED INGRESS FILTERING

This section introduces our P4-based ingress filtering ap-
proaches for TSNs and how we dynamically deploy that
strategy in time-sensitive networks. We first describe the
overall frame filtering procedure, and afterward, we explain
our filtering approaches in detail.

A. Overall System

In time-sensitive networks, as explained in Section II-A,
talkers must inform the network about the required resources
before initiating transmission. Once the reservation is made, it
is crucial to ensure that the talker complies with the declared
traffic requirements. To achieve this, we propose a P4-based
ingress filtering solution designed to run on the programmable
data plane of a P4-enabled TSN switch. The solution uses P4
to implement a lightweight firewall at the edge of the TSN,
which protects switches from being attacked or overloaded.

We envision the proposed P4-based filtering solution as a
link-layer network function, as there could be other functions
for different purposes, such as intrusion detection, load bal-
ancing, etc. (represented by X and Y in Fig. 2). The P4-based
filtering solution can work independently at the edge switch
without a centralized controller. However, it is still possible
to configure P4-enabled TSN switches with different policies
using a centralized network controller. We illustrate the overall
architecture in Fig. 2 for both distributed and centralized
configuration architectures, as our P4-based filtering approach
works in both cases.

In the distributed architecture, a talker communicates with
the edge switch to declare its traffic requirements (i), and the
switch forwards the requirements to the other core switches
in the network (ii). Here, switches are not configured by a
central entity but in a distributed manner with their local
knowledge. Our P4-based ingress filtering approach can also
be configured as it derives filtering rules from the stream
reservation messages. Then, interested listeners will subscribe
to that stream (iii), and the talker will be informed to start
transmission (iv). In the centralized architecture, the talker



(a) Distributed configuration architecture

(b) Centralized configuration architecture

Fig. 2: P4-based ingress filtering as a link-layer network function for TSNs

and listener communicate directly with the centralized user
and network controller (i, ii). Then, the central controller sends
switch configurations to the switches (iii). Here, the centralized
controller can specify filtering rules and configure the ingress
filtering module accordingly. Lastly, the talker is informed of
the transmission, and then it starts stream transmission (v).

The presented filtering approach has two main blocks
static and dynamic. We present a static mechanism as a first
checkpoint, including maximum frame size and ingress port
verification. Here, frames exceeding the maximum size are
dropped to avoid possible switch congestion. Since attackers
can still flood frames with the spoofed StreamIds to block
or harm the transmission of other (legitimate) talkers, it is
also necessary to verify the ingress port. After the initial
verifications as a second checkpoint, we deployed our dynamic
filtering solutions, namely metered ingress filtering and gated
ingress filtering, as we describe in the following sections.

B. Metered Ingress Filtering
In the deployment of metered ingress filtering, we benefit

from the portable switch architecture (PSA), which is a target
architecture that defines standard data types, counters, meters,
and other externs that P4 programmers can use as required.
The P4 language design aims to maintain minimal consensus
between switch vendors, excluding extended features. How-
ever, switch vendors can utilize architecture definitions to

support more features and enable rapid innovation and proof of
concepts before all parties accept them. Here, the PSA makes
such P4 programs portable across different targets.

Based on the PSA primitive, we use direct meters derived
from the RFC 2698 [19]. Conceptually, they are similar to the
buckets and are defined by the initial burst size (BS). Then,
the bucket size is increased by the pre-configured information
rate (IR) times per second and decreased on the arrival of a
packet. Here, the IR parameter can be computed based on the
talker-advertise message as it represents the number of frames
per measurement interval. The burst size can be interpreted
as the number of frames by which a stream is allowed to
exceed the advertised rate. Such a parameter would be helpful
in case of frame delays that may normally require the frame,
even the legitimate streams. If the bucket size falls below zero,
packets are marked red, while otherwise, they are green. We
use this mechanism for filtering by attaching a direct meter
to the forwarding table, which is automatically executed in
case a matching entry exists. The burst size and information
rate parameters can be configured per table entry via the
P4Runtime API, which conceptually stands as a control plane.
Note that that is the control plane of the P4, not a centralized
controller.

After applying the meter and marking the frame as red or
green, frames are handled differently depending on the filtering



(a) Flowchart of the metered ingress filtering (b) Flowchart of the gated ingress filtering

Fig. 3: Flowcharts of the proposed filtering approaches

strategy, either threshold-enforcing or blocking, as shown in
Fig. 3a. In the threshold-enforcing strategy, a frame is directly
dropped if marked as red. Otherwise, if the frame is marked
as green, we forward them to the egress to be forwarded to
the next hop. In the blocking strategy, red-marked frames are
cloned to the CPU port, and the control plane is notified.
Then, the control plane removes the registration of this stream,
and the frame will be dropped. The green marked frames are
handled similarly as in threshold-enforcing.

C. Gated Ingress Filtering

Another data type that the P4 language supports are registers
which serve a general purpose and ease the implementation
of fully customized algorithms. However, unlike the meters,
it is not possible to use registers as per-table-entry or per-
stream. Thus, we use a concept called gates, which works like
a per-class filtering approach in the IEEE 802.1Qci standard.
A gate merges the traffic characteristics of multiple streams
and handles them as a single stream. Using more gates will
allow more fine-grained filtering while increasing the memory
requirements. Another critical point here is since it does not
enforce per-stream policies, as long as the sum of the traffic at
that gate is not exceeded, it does not limit the transmission of
any stream. In other words, the allowed transmission capacity
for that gate may not be shared equally along the streams
assigned to the same gate. However, that is still reasonable as
we deal with class-based queuing delays in the TSN.

The basic flowchart of the gated ingress filtering approach is
shown in Fig. 3b. When a frame arrives at the switch, a static
check is performed as described previously. Then, it looks
for a predetermined gate for the stream. If there is no such
configuration, the frame will be dropped directly. Otherwise,
it fetches the other gate configuration parameters using its gate
identifier, GateId.

A core pillar of the gate mechanism is the gate selection
function, as it decides which stream is handled by which gate
and directly affects filtering. In order to design a good gate

selection function, there are some issues to be addressed. For
instance, deterministic algorithms ease the prediction of the
GateId; an attacker with sufficient knowledge can abuse this
mechanism to target specific streams by injecting traffic to that
gate. Thus, a hash function like a gate selection function would
not be appropriate. Another problem can be using large frames
as the frame size is checked independently from the gate so
that an attacker sending a low number of frames with large
frame sizes can inject his/her frames in a gate with streams
that have the opposite characteristic and exceed bandwidth
by a high degree. Forcing all streams to adhere to the same
maximum frame size is a solution but one unsuitable for
practical use. A non-deterministic gate selection algorithm is
expected to sufficiently mitigate this attack angle, as it does
not allow the specific targeting of a gate with a large number
of allowed frames.

An important design principle is finding a proper gate
selection function to address all mentioned drawbacks. For
simplicity, we left the gate selection function selection out
of this paper’s scope and used a simple strategy: fill empty
first (FEF). Thus, it fills empty gates first so that any stream
violation will have a limited effect on others as it is also limited
to a particular gate. Such an approach may suffer if many
streams exist on the gate or the attacker advertises early.

After executing the related gate, a frame counter which
is increased for every frame arrival is checked. Here the
Max value needs to be calculated and configured by the
controller. Since different traffic classes in TSN send traffic
at varying intervals and a varying number of frames, we used
a common observation interval and recalculated the number
of frames for that common observation interval. Therefore,
this counter checkpoint behaves as a bandwidth check for
the gate, which rejects and drops the frame if it exceeds the
predefined bandwidth. Unlike metered ingress filtering, the
blocking mechanism involves no control plane; gates can be
closed at a line rate. This also means less memory as it does
not require CPU cloning.



D. Compatibility with the IEEE 802.1Qci Standard

The filtering mechanisms presented in this paper align with
the IEEE 802.1Qci standard. In the metered ingress filtering
with thresholding, all three steps of the PSFP pipeline are
handled by a single table. The forwarding table has an attached
colored meter. Therefore, it is both a stream filter and a flow
meter. In this case, the relationship between stream filters and
flow meters is one-to-one, which is not required, but explicitly
allowed in PSFP. The stream gate does not have a technical
expression, but conceptually it can be interpreted as always in
the open state. The metered ingress filtering with a blocking
mechanism sends a notification message to the controller once
the colored meter is triggered. Then, the associated table entry
from the forwarding table is deleted. The PSFP pipeline can
conceptualize this by the control plane setting the stream gate
to the closed state.

In the gated ingress filtering approach, the stream gates
are always in the open state. Otherwise, the approach is
aligned with the PSFP structure. As described in Section
III-C, there are two functions, find-gate and execute-gate,
which are implemented as tables and are precisely aligned
in both the conceptual and the technical sense to the stream
filter and the flow meter, respectively. The arbitrary algorithm
the flow meter executes is based on a counter reset with
each measurement interval and differs between the threshold-
enforcing and blocking variants.

IV. EVALUATION

In this section, we measure the performance of presented
filtering approaches for time-sensitive networks and compare
them against the normal case when no filtering solution is
applied. For that, we briefly explain the evaluation setup and
then evaluate the performance of filtering approaches regarding
frame loss and end-to-end latency of frames.

A. Setup

We have implemented the presented dynamic filtering ap-
proaches on the P4 behavioral model version (bmv2) and emu-
lated the attacks on Mininet. Note that the employed software
switch bmv2 was not designed for performance evaluations
and is not necessarily representative of the performance of the
mechanisms on a different target. For example, table access
could take significantly longer (or shorter) time in a hardware
switch. This could significantly influence the results; however,
the relative results will remain the same. Apart from emulating
the packet processing logic of a P4-Switch on bmv2, we
have implemented the control plane in Python 3.6.9. It further
interacts with the data plane using the P4Runtime API. All
experiments were run on a dual-core Intel(R) Core(TM) i5-
7200U CPU with 2.50GHz and 8GB of DDR4 RAM. The
machine runs Ubuntu 18.04.6.

As topology, we use a ring topology containing four
switches as ring topologies are commonly used in embedded
networks, such as cars and factories; it is also common in TSN
[20]. As attack traffic, we use a simple attack model known
as a babbling idiot in the literature [21], [22]. In the TSN

context, a babbling idiot is a talker who correctly advertises
traffic and receives a corresponding listener-ready message
but then sends more traffic than advertised and exceeds the
allocated bandwidth. We randomly placed talkers, listeners,
and babblers in the network. As a TSN traffic, we generated 20
random traffic scenarios, including isochronous, cyclic, event-
triggered, and best-effort traffic, which are typical TSN traffic
classes as described in [8] as follows:

• Isochronous Traffic: It is a periodic traffic that requires
reserving resources before its period ends. Thus, it can
be characterized by an interval and a number of frames
per interval. An example of isochronous traffic could be
a distance sensor in a car, whose values are constantly
required by the emergency brake assistant.

• Cyclic Traffic: It is also as periodic as isochronous traffic
but contains a fixed length of idle times in between. It
sends n frames in every x seconds at an isochronous rate
r. An example of cyclic traffic could be a timed sensor
or device measurement report.

• Event Traffic: It generates single frames sporadically
at non-predictable and non-uniform intervals. Network
control messages or user input can be an example of such
traffic.

• Best-Effort Traffic: Most time-sensitive networks also
allow a portion of best-effort traffic, i.e., traffic for
which the network makes no guarantees regarding arrival
or maximum latency. It is sporadic traffic that can be
modeled as a random burst.

B. Results

This section evaluates the performance of the presented
filtering approaches, Meter, and Gate configured with either
Thresholding or Blocking. Then, these approaches are
compared with the case there is no filtering applied in terms
of their frame loss rate and end-to-end frame latency.

Filtering performance on the delivery of TSN traffic: In
order to compare the filtering performance of the presented
strategies, we measure the frame loss rate and end-to-end
frame latency, which we aim to minimize for legitimate
traffic with ingress filtering. Since the results would be highly
affected by the type of traffic, we generate 20 scenarios to
make a fair comparison between approaches. For that, we
generate 60% isochronous traffic with a period of 10 ms, 20%
cyclic traffic with a 1-5 s period, 15% event-traffic with a
period between 200 ms-1 s, and finally, 5% best-effort-traffic.
Results are shown in Fig. 4.

As shown in Fig. 4a, even though the average latencies do
not differ significantly between the tested approaches, meter-
based filtering, thresholding, or blocking has lower and more
bounded end-to-end latencies, which has essential significance
in TSN. Also, it might not be sufficient to look only at the
latency values as it shows only the end-to-end latency of
successfully transmitted frames. Due to the babblers, we see a
high number of frame losses in Fig. 4b. It would be misleading
to look only at the averages as the TSN promises a certain



(a) End-to-end latency for mixed traffic scenarios (b) Frame loss for mixed traffic scenarios

Fig. 4: Filtering performance on the delivery of TSN traffic

QoS; the worst-case frame loss rate must also be considered.
When No Filter is applied, the babblers will significantly affect
legitimate streams, and they may experience frame losses up to
68%. It is important to note that the maximum frame loss rate
in any filtering approach is well below this value. Here, even
in the worst case, we could still say that filtering approaches
decrease the frame loss rate of the legitimate streams to
≈24%(as in the upper bound of meter-blocking) and ≈48%
(as in the upper bound of gate-thresholding). Thus, it is clear
that for some scenarios, they have a huge benefit.

Filtering performance regarding an increasing number
of babblers: To analyze the filtering performance in case of an
increasing number of bubblers, we simulate single and multi-
babblers scenarios and measure how it affects the end-to-end

latency of the TSN traffic. For the metered filtering, we set the
burst size to 100. In gated filtering, we set the number of gates
to 64, and we assumed that if the frame is delayed, we can
still tolerate that, and we do not block that stream completely.
For that, we set the number of tolerated exceeding frames to
half the number of streams currently in the gate. Results are
shown in Fig. 5.

Filtering adds additional latency to the frame processing;
thus, results in Fig. 5a may be interpreted as the difference
between No Filter and filtering solutions due to the filtering
overhead. However, it should be noted that there is also a
babbler in the given test scenario, which further delays the
frames of the legitimate stream. To clarify, we repeat the
experiment by increasing the number of babblers to three, as

(a) End-to-end latency with a babbler. (b) End-to-end latency with 3 babblers.

Fig. 5: Effect of babblers on the end-to-end latency



shown in Fig.5b. The additional latency the multiple babblers
caused is minor, around 0.5 milliseconds for the No Filter case.
For the filtering approaches, the effect of babblers is noticeable
but very minor, as we expected. Another result that can be
derived from here is the overhead of blocking mechanisms
due to cloning to CPU, which also increases as the number of
babblers increases. Therefore, they are no longer better than
the thresholding mechanisms, as in Fig 5a.

V. CONCLUSION AND FUTURE WORK

This paper proposes P4-based dynamic ingress filtering
approaches for securing time-sensitive networks from denial-
of-service attacks. We proposed a metered filtering mechanism
that operates per stream and achieves low latency results,
even for high traffic demands. Alternatively, we also proposed
a gated filtering mechanism that fits the per-class filtering
concept and enables the deployment of more customizable
algorithms. We tested the presented approaches in an emulated
mininet environment, and the results show that our filtering
approaches can limit frame loss rates of legitimate traffic
significantly with only a minimal filtering overhead. Thus,
the proposed approaches have the potential to meet strict
performance requirements in time-sensitive environments.

As part of our future work, we plan to expand our imple-
mentation by incorporating intrusion detection and incident
reporting functionality. This enhancement would enable the
controller to receive notifications of detected violations, trig-
gering related mitigation mechanisms. Additionally, the PSFP
is a proactive approach typically deployed in fixed network
positions with a fixed capacity. A promising research direction
would be to investigate filtering the attacks that exceed the
switch’s capacity, for which SDN/NFV-based reactive solu-
tions [23] seem promising as they can flexibly position security
functionalities in the network. Moreover, the autonomous
configuration of PSFP is another future research direction
that aligns perfectly with the concept of self-configured TSN
[24]. By adapting related parameters based on changing net-
work conditions, the PSFP’s effectiveness could be further
enhanced.

REFERENCES

[1] T. Jeffree, P802.1Qci – Per-Stream Filtering and Policing, Sep 2017.
[Online]. Available: https://1.ieee802.org/tsn/802-1qci/

[2] S. A. Nsaif and J. M. Rhee, “Seamless ethernet approach,” in 2016
IEEE International Conference on Consumer Electronics (ICCE), 2016,
pp. 385–388.

[3] N. Finn, “Introduction to time-sensitive networking,” in IEEE Commu-
nications Standards Magazine, vol. 2.2, 2018, p. 22–28.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[5] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions, architectures, and open problems,” in 2018 IEEE 19th
International Conference on High Performance Switching and Routing
(HPSR), 2018, pp. 1–7.

[6] N. Nayak, U. Ambalavanan, J. M. Thampan, D. Grewe, M. Wagner,
S. Schildt, and J. Ott, “Reimagining automotive service-oriented com-
munication: A case study on programmable data planes,” IEEE Vehicular
Technology Magazine, pp. 2–12, 2023.

[7] Standard for Local and Metropolitan Area Networks - Virtual Bridged
Local Area Networks - Amendment: 9: Stream Reservation Protocol
(SRP), 2010. [Online]. Available: https://www.ieee802.org/1/pages/802.
1at.html

[8] “Time sensitive networks for flexible manufacturing testbed
characterization and mapping of converged traffic types,” Mar 2019.
[Online]. Available: https://hub.iiconsortium.org/portal/Whitepapers/
5eb04d87d2df3f001102b6fe

[9] F. Luo, B. Wang, Z. Fang, Z. Yang, and Y. Jiang, “Security Analysis of
the TSN Backbone Architecture and Anomaly Detection System Design
Based on IEEE 802.1 Qci,” Security and Communication Networks,
2021.

[10] P. Meyer, T. Häckel, F. Korf, and T. C. Schmidt, “Dos protection through
credit based metering - simulation-based evaluation for time-sensitive
networking in cars,” Proceedings of the 6th International OMNeT++
Community Summit, 2019.

[11] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[12] R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow
sdn networks,” in 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), 2015, pp. 1322–1326.

[13] D. Merling, W. Braun, and M. Menth, “Efficient data plane protection
for sdn,” in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft). IEEE, 2018, pp. 10–18.

[14] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, and K.-K. R. Choo, “P4-
to-blockchain: A secure blockchain-enabled packet parser for software-
defined networking,” Computers & Security, vol. 88, p. 101629, 2020.

[15] Y. Gao and Z. Wang, “A review of p4 programmable data planes for
network security,” Mobile Information Systems, vol. 2021, pp. 1–24,
2021.

[16] K. Gökarslan, Y. S. Sandal, and T. Tugcu, “Towards a URLLC-Aware
Programmable Data Path with P4 for Industrial 5G Networks,” in 2021
IEEE International Conference on Communications Workshops (ICC
Workshops), 2021, pp. 1–6.

[17] M. Mönnich, N. S. Bülbül, D. Ergenç, and M. Fischer, “Mitigation of
IPv6 Router Spoofing Attacks with P4,” in Proceedings of the Sym-
posium on Architectures for Networking and Communications Systems,
ser. ANCS ’21. New York, NY, USA: Association for Computing
Machinery, 2022, p. 144–150.

[18] G. Simsek, H. Bostan, A. K. Sarica, E. Sarikaya, A. Keles, P. Angin,
H. Alemdar, and E. Onur, “DroPPPP: A P4 Approach to Mitigating
DoS Attacks in SDN,” in Information Security Applications, I. You, Ed.
Cham: Springer International Publishing, 2020, pp. 55–66.

[19] D. J. Heinanen and D. R. Guerin, “A Two Rate Three Color Marker,”
RFC 2698, Sep. 1999. [Online]. Available: https://rfc-editor.org/rfc/
rfc2698.txt

[20] D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer, and
F. Dürr, “Scaling tsn scheduling for factory automation networks,” in
2020 16th IEEE International Conference on Factory Communication
Systems (WFCS), 2020, pp. 1–8.

[21] G. Buja, A. Zuccollo, and J. Pimentel, “Overcoming babbling-idiot
failures in the FlexCAN architecture: a simple bus-guardian,” in 2005
IEEE Conference on Emerging Technologies and Factory Automation,
vol. 2, 2005, pp. 8 pp.–468.

[22] O. Daniel and O. Roman, “Fault injection framework for assessing
fault containment of ttethernet against babbling idiot failures,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), 2018, pp. 1–6.

[23] N. S. Bülbül and M. Fischer, “SDN/NFV-based DDoS Mitigation via
Pushback,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020, pp. 1–6.

[24] N. S. Bülbül, D. Ergenç, and M. Fischer, “SDN-based Self-Configuration
for Time-Sensitive IoT Networks,” in 2021 IEEE 46th Conference on
Local Computer Networks (LCN), 2021, pp. 73–80.


