
Privacy-Enhanced Content Discovery for Bitswap
Erik Daniel and Florian Tschorsch

Distributed Security Infrastructures, Technische Universität Berlin
{erik.daniel, florian.tschorsch}@tu-berlin.de

Abstract—IPFS is a content-addressed peer-to-peer data net-
work, which follows the paradigm of information centric net-
working. In IPFS, data is exchanged with the Bitswap protocol.
For content discovery, Bitswap queries all neighbors for the
content, leaking the interest to all neighbors. In our paper, we
develop three privacy-enhanced protocols for content discovery,
which reduce the interest leak from all neighbors to ideally one
content provider. Our protocols use probabilistic data structures
like Bloom filter and cryptographic approaches like Private Set
Intersection. We implement our protocols as proof of concept and
show how they can be integrated into go-bitswap. Furthermore,
we provide a performance, security, and privacy evaluation of
the three protocols, showing their feasibility trade-offs.

Index Terms—P2P Overlay Network, Information Centric
Networking, IPFS, Privacy

I. INTRODUCTION

Information Centric Networking (ICN) [1, 2] changes the
way content is retrieved. Instead of the traditional location
search for content retrieval, clients directly ask the network for
the content. While this approach can speed up content retrieval,
privacy concerns exist. The requests for content reveal the
client’s interest in a specific content to the whole network. This
privacy problem is also inherited by content-addressed peer-
to-peer (P2P) data networks [3], which basically construct an
ICN as P2P overlay. One of these P2P data networks is the
InterPlanetary Filesystem (IPFS) [4]. In IPFS, data is identified
via a Content Identifier (CID) and exchanged via the Bitswap
protocol. Bitswap requests all neighbors for the content via the
CID. If content cannot be retrieved from a neighbor, content
providers are searched in a Kademlia-based DHT.

In this paper, our primary goal is to reduce the information
leakage during content discovery. We explore the design space
of different approaches with a focus on protecting client
privacy. To this end, we trade off leaking more information
of content providers. Specifically, we propose to change the
request of specific items (the interest) to a request of an
inventory list of all stored items, which can be checked locally
by the client to identify suitable content providers. Since a
naive implementation of a content inventory would reveal a
lot of information and could be highly inefficient, we improve
the method by using Probabilistic Data Structures (PDS)
and Private Set Intersection (PSI) [5]. PDS can be used for
fast membership approximation in large data sets, which can
increase the efficiency and introduce plausible deniability for
content providers. PSI allows two parties to privately calculate
the intersection of two sets, i.e., the overlap of interest and
storage, further improving privacy of content providers.

As a result, we present different Bitswap alternatives:
Bloom-Swap, PSI-Swap, and BEPSI-Swap. Each protocol
provides different degrees of privacy. In Bloom-Swap, a Bloom
filter [6] is used to approximate server items during provider
discovery. PSI-Swap obfuscates the item using an elliptic curve
Diffie-Hellman PSI protocol (ECDH-PSI) [7, 8, 9]. We chose a
PSI protocol based on Diffie-Hellman, since they are easier to
implement and faster for low set sizes [10]. The Bloom-filter
Extended PSI-Swap (BEPSI-Swap) improves the efficiency
of PSI-Swap at the cost of making PSI probabilistic. While
our protocols cannot protect the data exchange, they increase
content discovery privacy by reducing the leak of interest.

We adapt and implement our protocols in Bitswap as a
Proof-of-Concept (PoC). To this end, our implementation
maintains most of the Bitswap protocol and strives to be
downwards compatible. Based on our PoC and our evalua-
tion, we show the efficiency of the protocols. Due to a low
communication overhead and a one-time overhead for content
providers, the protocols are provider friendly. Most of the
overhead is self-induced on the client side, which we deem
acceptable considering the additional privacy gains. While all
our protocols increase the privacy of clients, their feasibility
trade-off differs. In addition to the privacy gains for clients,
Bloom-Swap can reduce communication costs by trading in
server privacy. The PSI-based protocols increase the privacy
of all parties, including servers. The communication overhead,
however, makes them more suitable for limited request rates.

Our contributions can be summarized as follows: (i) we
present three different protocols for content discovery with
enhanced privacy; (ii) we provide a PoC and show how it can
be integrated into Bitswap; (iii) we provide a performance,
security, and privacy evaluation revealing feasibility trade-offs.

The remainder of the paper is structured as follows: In Sec-
tion II, we present related work. We explain the functionality
of Bitswap in Section III and present our privacy-enhanced
versions in Section IV. The PoC is described in Section V
and evaluated in Section VI. Section VII concludes the paper.

II. RELATED WORK

Different security and privacy challenges for ICN exist,
which prevent a widespread adoption [11, 12]. Especially the
naming of content can result in a number of problems [13].
Most notably for us, a name can reveal the interest in content
and therefore violate privacy. Chaabane et al. [14] propose
to use multiple Bloom filters to protect the name. The client
calculates a hierarchical Bloom filter and sends it to the router.
The router checks its cache if the stored content is in theISBN 978-3-903176-57-7© 2023 IFIP

Bloom filter to answer the request. If there is no match, the
router checks in the hierarchical order for longest prefix match
in its routing table. While our protocols also use Bloom filter,
we request the Bloom filter from the server. Another direction
to address the problem is using cryptography. For example,
Bernardini et al. [15] propose to use proxy encryption to
prevent the interest leak in ICN. In [16], the authors propose
to use homomorphic encryption to increase lookup privacy in
a system, where a broker matches consumer and provider. In
some cases the content itself also needs to be protected, e.g.,
for access control, which can be realized by using attribute-
based encryption [17, 18].

Solutions for ICN also need to consider forwarding of
requests, since in ICN providers do not have to be direct
neighbors. In contrast to ICN, IPFS has a slightly different
approach for provider discovery. This is in part due to the
P2P nature of IPFS, where every peer can be a content
provider, requestor and router. However, IPFS has similar
privacy challenges to ICN, e.g., access control, provider, and
client privacy. Some research proposes to add access control
to IPFS mostly using encryption partly in combination with a
blockchain [19]. While research trying to improve the privacy
of ICN might be applicable to IPFS, research targeting directly
the privacy in IPFS is sparse. Balduf et al. [20] investigate the
privacy problem for Bitswap. The authors propose to use a
salted hash instead of the identifier for Bitswap before sending
a request. This can also be considered as an insecure version
of Private Set Intersection [21].

The most practical PSI protocols can be split into protocols
using Diffie-Hellman (DH) and Oblivious Transfer (OT) [10].
While protocols using OT are faster for large balanced set
sizes, for lower and unbalanced set sizes DH based protocols
are faster. Furthermore, the communication overhead of DH
protocols is lower compared to PSI protocols using OT. Prac-
tical applications for PSI include contact tracing [7], mobile
contact discovery [22], and discovery of leaked passwords [9].
A detailed comparison of PSI protocols can be found in [5].

Our approaches utilize PDS and ECDH-PSI [7, 23], which
is a hybrid of two other PSI protocol proposals [8, 9]. To the
best of our knowledge, this is the first work analyzing the trade
offs and the impact of PDS and PSI for provider discovery in
ICN or Bitswap.

III. THE BITSWAP PROTOCOL

In ICN, every piece of data has a specific identifier [2].
One of the existing naming schemes are self-certifying names.
Self-certifying names allow a receiver to check the integrity
of the data without additional information. The identifier is
used to request the data from the network. Requests are either
answered directly or forwarded to other peers.

Bitswap [24] is the default data exchange protocol for IPFS.
Blocks are the basic data unit and a file can consist of multiple
blocks. Blocks are identified by their Content Identifier (CID).
A CID is a self-certifying name and consists of multiple
components: a multi-base prefix, a version identifier, a multi-
codec identifier, and a multihash. The multihash contains a

code for the used hashing function, the length of the digest,
and the hash of the file. The multihash is used to identify
blocks in storage. Bitswap requests CIDs for specific blocks
from the network and also answers requests from other nodes.

The following message exchange for block retrieval refers
to Bitswap v1.2.0, which we also denote as Vanilla-Swap. We
will denote the requester as client and all other peers in the
network as server. First, a client sends a WANT-HAVE, con-
taining the client’s interest as a list of CIDs, to all neighbors.
Neighboring servers receiving the request answer with a HAVE
or DontHAVE depending on the presence or absence of the
block. In case the block was not received after a certain delay,
the client searches for more servers using the Kademlia-based
DHT. When peers storing the content are discovered, one
selected peer receives a WANT-BLOCK, requesting the block.
The server answers with a BLOCK containing the block. For
simplicity, Fig. 1 shows this exchange for two peers; additional
peers would be treated as server, receiving a WANT-BLOCK
in case the block retrieval fails. After Bitswap received and
verified the block all neighbors receive a CANCEL.

While there are different message types, all messages are
embedded in and sent as Bitswap messages. The WANT-HAVE,
WANT-BLOCK, and CANCEL requests are classified as a
WantList. HAVE and DontHAVE are BlockPresences. BLOCK
and data of the block are also parts of the Bitswap message.
As a consequence, the different request can be combined and
do not necessarily require additional round trip times.

The CANCEL indicates that Bitswap is no longer interested
in the CID. This is important for another behavior of Bitswap.
Peers store received WANT-HAVE requests in a peer specific
ledger. In case Bitswap receives a block, it checks the peers’
ledger if another peer is also interested in the block. If other
peers are interested in the block, Bitswap sends a HAVE to the
interested peers. The CANCEL removes this interest.

There exists an exception to this exchange. Blocks below
a certain threshold (default: 1024 Bytes) are sent immediately
even if the request is a WANT-HAVE.

A block might reference followup blocks, e.g., in case of
files. For the followup requests, Bitswap sends an opportunistic
WANT-BLOCK to one peer and a WANT-HAVE to the other
peers that previously announced possession of the block.

At the moment, Vanilla-Swap does not forward requests,
however, it is under investigation [25].

IV. PRIVACY-ENHANCED BITSWAP

The aim of Bitswap is a fast and efficient exchange of
data. Preferably, Bitswap should take advantage of the self-
scalability of a P2P data exchange, e.g., caching. However,
this reveals information to servers. As an example Balduf
et al. [20] showed the possibility to track clients’ behavior
by passively monitoring the data request. The problem is
to find a server possessing the block, without revealing the
interest to other peers. It would be sufficient, if only one
server possessing the block is informed about the interest.
Nonetheless, the content discovery process of Bitswap leaks
the interest to many additional peers.

Client Server

WANT-HAVE CID1

HAVE CID1

WANT-BLOCK CID1

BLOCK CID1

CANCEL CID1

WANT-HAVE CID2

HAVE CID2

WANT-BLOCK CID2
...

Fig. 1: Vanilla-Swap.

Client Server

WANT-HAVE BF

HAVE BFS

WANT-BLOCK BFS ∩ C

BLOCK BFS ∩ S

DontHave BFS \ S

WANT-BLOCK S ∩ C‘

BLOCK S ∩ C‘
...

Fig. 2: Bloom-Swap.

Client Server

WANT-HAVE CID∗
1 , U

HAVE U

DontHAVE CID∗∗
1

WANT-BLOCK CID1

BLOCK CID1

WANT-HAVE CID∗
2

DontHAVE CID∗∗
2

...

Fig. 3: PSI-Swap/BEPSI-Swap.

Our proposed solutions change the block discovery process
to improve client privacy. To this end, we focus on reducing the
number of servers which receive the interest and assume semi-
honest adversaries. Our protocols are therefore primarily not
designed to protect server information. In fact, the protocols
can reveal information which is otherwise hidden, i.e., the
amount of stored blocks. Furthermore, our protocols cannot
protect the actual exchange of the block. It is therefore neces-
sary to disclose interests to a server for the block download.

A. Bloom-Swap

One solution to reduce the information leakage is to replace
the request of a specific CID with a general interest indication.
The server responds to the request by sending an inventory
list of all stored CIDs. This list can be potentially very long
and could consume a lot of bandwidth. Therefore, to save
space and give the server some plausible deniability the list is
encoded as a Bloom filter [6].

Bloom filters (BF) are PDS and can be used to approximate
membership. The BF is initially a fixed length set of unset
bits. An element, ci is added to the BF by setting specific bits
of the set. The number of bits depends on a predetermined
number of hash functions, H . For each hash function, Hj ,
the value Hj(ci) is computed. The result determines the bit
to set. To check if an element is in the BF, it is checked
whether all specific bits are set. Due to collisions of the
different hash functions, a false positive is possible, i.e., all
bits corresponding to an element not added to the BF are set.
False negatives are impossible, if a bit is unset, none of the
elements can be associated with the position.

Based on this, we propose Bloom-Swap, illustrated in Fig. 2.
In Bloom-Swap, we replace WANT-HAVEs of specific CIDs
with a request of a BF containing all stored CIDs. After
receiving the BF, the client can check, if the CIDs are in
the BF. If an element is in the BF, the client can send a
WANT-BLOCK request, to the server. However, it is possible
that a server does not store the block, due to a false positive.
Since BF do not have false negatives, however, it is guaranteed
that a server does not offer a CID, if the lookup fails. For
consecutive requests, we can skip requesting the BF, since

it already contains a list of all stored CIDs. If the storage
information of the server changes, a new BF needs to be sent.
It should be noted that the server can decide, which elements
to include in the BF.

B. PSI-Swap

Bloom-Swap protects client interests only. In fact, it reveals
even more information about the server than Vanilla-Swap: A
client can check all CIDs if they are contained inside the BF
to determine, which blocks are stored by the server. A curious
entity could now request the BF of all peers, approximating
the storage information of the whole network. Furthermore,
Bloom-Swap is probabilistic, probably protecting the client’s
privacy. To increase the cost of such an approximation and
therefore further protect the server privacy, we can use PSI.

The goal of PSI is to check whether an element or key
is known by both parties, without revealing any additional
information. After the execution of PSI, the only information
each party learns is the intersection of elements, i.e., if the
server would send a HAVE or DontHAVE. PSI may leak the
set size of both parties, but this is often not to be considered
sensitive. We propose to adapt the semi-honest ECDH-PSI
protocol presented in [7] to Bitswap, creating PSI-Swap.

PSI-Swap follows basically the same steps as Vanilla-Swap.
A block is requested, the server answers, and the client learns
if a server stores the block. The difference is that the server
does not know which item the client is interested in until
the WANT-BLOCK is sent. To accomplish this, the CIDs are
transformed into cyclic group points. Specifically, client and
server choose a cyclic group and a Hash function H to map
a multihash to the cyclic group. Additionally, both choose
a random number rC and rS . For the discovery, the client
transforms the multihash of the CID ci using the H and rC :

vi = H(ci)
rC . (1)

Instead of looking up if the server stores vi, it further trans-
forms the element with rS to

wi = (H(ci)
rC)rS , (2)

and sends wi as a DontHAVE back. For PSI, the client needs
further information from the server. This is similar to Bloom-
Swap, a list of all stored blocks. In contrast to Bloom-Swap,
this list does not contain the plain multihashes (sj) but instead
transformed multihashes:

uj = H(sj)
rS . (3)

The server sends this list with a HAVE to the client. After
receiving uj and wi the client reverses her rC transformation:

xi = ((H(ci)
rC)rS)

1
rC = H(ci)

rS . (4)

The xi can be used to determine the intersection. If there is
a uj equal to xi, the client knows that the server has ci. The
client can then send a WANT-BLOCK with ci to the server. For
consecutive requests, it is sufficient if the server only sends
wi. In Fig. 3, we show the message exchange of PSI-Swap,
where U , V , and W represent the sets of ui, vi, and wi.

C. BEPSI-Swap

BEPSI-Swap is a combination of Bloom-Swap and PSI-
Swap, namely a Bloom-filter Extended PSI-Swap (BEPSI-
Swap). It increases the efficiency using the BF approach of
Bloom-Swap at the cost of re-introducing the false positive
probability into PSI-Swap. To this end, we change the en-
coding of the set U = {uj}. In PSI-Swap, U is a set/list
of all transformed multihashes. In BEPSI-Swap, the elements
of U (i.e., uj) are encoded in a BF containing all transformed
multihashes. The message exchange of BEPSI-Swap consists
accordingly of the same steps as in PSI-Swap (see Fig. 3).

V. INTEGRATION AND IMPLEMENTATION

For the integration of our privacy-enhanced Bitswap pro-
tocols, our main goal is to maintain downwards compatibil-
ity. We therefore maintain Vanilla-Swap functionality, despite
any privacy enhancements, and use existing message types
and formats. Clients can still decide to request root CIDs
with Vanilla-Swap or with our privacy-enhanced protocol. A
Vanilla-Swap server can still process and respond to privacy-
enhanced requests; the answer, however, would be meaningless
for the client. Our implementation is based on go-bitswap
v0.10.1, the Go implementation of Bitswap [24].

A. General Changes

In general, the Bitswap code consists of four compo-
nents: (i) server, which is responsible for answering requests;
(ii) client, which is responsible for sending requests, select-
ing peers, and triggering the search for additional provider;
(iii) tracer, which records traffic statistics; (iv) network, which
converts Bitswap messages to the wire format and sends
and receives messages. Accordingly, the client sends and the
server processes WANT-HAVE, WANT-BLOCK, and CANCEL
messages. Vice versa, the server sends and the client processes
HAVE and DontHAVE messages.

For each of our protocols, we developed and added a
utility component to the Bitswap code: one for client and one
for server functions. The ClientUtil manipulates in- and

outgoing requests. The ServerUtil handles the sending of
the inventory list and takes care of necessary CID adjustments.
For Vanilla-Swap, both utility components do nothing. For
Bloom-Swap, the ClientFilterUtil replaces or answers
the WANT-HAVE requests of outgoing messages, temporary
caching request if necessary. The ServerFilterUtil
maintains and sends the BF. PSI-Swap and BEPSI-Swap
use the same components; the only difference is the send-
ing and handling of U , the transformed server list. The
ServerPsiUtil deals with the creation of U , and the
transformation of vi into wi. The ClientPsiUtil handles
the storage and requesting of U , as well as creation of vi, xi.
It also interprets xi, changing it into a HAVE or DontHAVE
depending on the result. The client and server side use different
r, reducing the leakage of information in case of newly send
U . The ClientUtil is located in the network component,
manipulating messages just before sending and immediately
after receiving the message. Changing the CIDs as close to
the wire as possible, allows the least interference with the
default Bitswap behavior. The ServerPsiUtil is located
in the decision engine of the server component. The specific
Bitswap protocol can be configured and is decided on startup.

B. Inventory U

In Bitswap, CIDs are requested and sent. A received block
needs to match its CID. This makes it difficult to request
specific objects with unknown or changing content, e.g., a BF.
We introduce DummyCIDs to address specific content of a
peer. The DummyCIDs, are 5B CIDv1 with specific multi-
codec identifiers, multihash code, and a digest length of 0B.
Similarly, we encoded the BF and for PSI the compressed
group element as the digest of a multihash. Afterwards, the
multihash, with the BF or group element, is encoded as a
CIDv1 with a specific multi-codec identifier.

For the BF, we chose the bbloom1 implementation, which
is at the time of writing part of the IPFS blockstore-wrapper.
The bbloom package uses SipHash-2-4 as its hashing func-
tion. Size and number of hashing functions are calculated
based on the number of entries and a given false positive rate.
The number of entries in the BF increases in steps of 50 entries
and depends on the number of elements. The JSONMarshall of
the BF is the digest of the CID. For our PoC implementation,
we use one fixed false positive rate of f = 0.0001.

The main ideas behind Bloom-Swap and BEPSI-Swap is
to reduce the communication and memory overhead of U .
While we use bbloom, other implementations or PDS are
also possible. For example, cuckoo filter would allow a simpler
communication of updates, since it is not necessary to re-send
the whole filter. For a low false positive rate, cuckoo filter can
be smaller than Bloom filter.

The communication overhead can be further reduced, by
caching U , making it a one time overhead. However, U
is unlikely to be static over time. Elements can be added,
deleted, or changed all resulting in other CIDs available

1https://github.com/ipfs/bbloom (2022-09-27)

at the server. This requires some considerations concerning
refreshing or updating U . In order to update U , it is possible
to use a push or (periodic) pull approach. Push updates
could be communicated, similarly to a pub-sub mechanism,
using Bitswap’s current functionality. The pub-sub mechanism
has the advantage that changes of U can be communicated
immediately. Since Bitswap is mainly used in combination
with IPFS, though, we assume a high churn rate [26]. In case
of high churn and constantly changing set of neighbors, a pull
mechanism seems to be more efficient. We therefore favor a
pull mechanism in our PoC for all protocols. Accordingly, U
is requested on a need-to-know basis and stored once received.

C. PSI Integration
The integration of the ECDH-PSI required some additional

considerations and changes. ECDH-PSI can work with dif-
ferent cyclic groups. The server and the client, however, are
required to use the same cyclic group. Different groups can
have different point sizes, making it possible to distinguish
between the used group by the size of the CID. Larger groups
provide higher security at the cost of longer computation time
and an increased number of transferred bytes. For simplicity,
we chose to use one fixed group in our implementation.
Alternatively, the used group could be negotiated, during the
protocol handshake. It should be kept in mind, that supporting
multiple groups at once raises the memory overhead as each
supported group requires its own set of U and V .

Furthermore, ECDH-PSI requires that the answers arrive
in the same order as they were sent. This is not guaranteed
in Bitswap as messages can arrive out of order, split between
multiple messages, or even indefinitely delayed. As an alterna-
tive, it would be sufficient, if the answer can be matched to the
request. This is difficult, however, since the protocol requires
a modification of the request in form of a multiplication. We
therefore add an identifier into the CID of vi. The identifier
is realized as global incremental 16 b unsigned integer and
included in the multihash.

We cache the transformed request, vi. The transformation
needs to be calculated only once and can then be reused for
all requests. Similarly, U can be reused for all peers.

The PoC implementation is available in a public GitHub
repository2 as well as the used cryptographic transformations3.
For the group calculations, we use the CIRCL package [27].

VI. EVALUATION

For our evaluation, we compare the different protocols with
respect to their impact on the Bitswap performance, security,
and privacy. The baseline for our comparison is the behavior
of Vanilla-Swap, specifically go-bitswap v10.0.1 [24].

A. Performance
The enhanced privacy mechanisms eventually add overhead

to the Bitswap protocol. In the following, we evaluate the
communication and memory overhead theoretically, and give
an empiric evaluation of the computation overhead.

2https://github.com/epikd/go-bitswap/tree/psi-bitswap
3https://github.com/epikd/psiMagic

TABLE I: Communication overhead for nc #client interests,
ns #elements server, and m #server. For PSI-based protocols,
we assume an ideal BF and ristretto255.

Client Server

Bloom-Swap U ′ =
∑m

i=1 BFi U

PSI-Swap U ′ =
∑m

i=1 U
∗
i , U , W

W ′ =
∑m

i=1 Wi

BEPSI-Swap U ′ =
∑m

i=1 BFi, U , W
W ′ =

∑m
i=1 Wi

BF ≈ 1.44 · log2(1
f
) · ns

V ≤ 3B · nc

W ≤ 3B · nc (if HAVE), ≤ 45B · nc (if DontHAVE)
U∗ ≈ 43B · ns

1) Communication and Memory: Our protocols add a small
communication overhead, in the form of at most a few bytes
per message and no additional round trip times. However, there
is a comparatively large one-time communication overhead,
i.e., the inventory list of the server U . An overview of the
communication overhead can be found in TABLE I. U is also
the biggest memory overhead, since every neighbor has its own
U . The remaining memory overhead depends on the number
of pending request and consists mainly of data needed for
mapping ci, and xi.

For the content discovery in Vanilla-Swap, it is necessary
to send a WANT-HAVE per CID per server, and the server
needs to answer with HAVE or DontHAVE. While clients
send a WANT-HAVE to all neighbors for the first discovery
of content, it expects only servers holding the block to answer
the request. In Bloom-Swap, it is only necessary to request
the BF once. Once the client acquired the BF of a server, it
is no longer necessary to send WANT-HAVEs, which can save
two round trip times. For both PSI-Swap and BEPSI-Swap,
each WANT-HAVE requires a DontHAVE answer. While this
is the same as the normal exchange, the overall overhead is
larger for the first discovery, since every server is expected
to send a DontHAVE answer. Additionally, a DontHAVE is
2B longer than a HAVE. As a consequence of false positives
in Bloom-Swap and BEPSI-Swap, unnecessary WANT-BLOCK
messages will increase the communication overhead.

While there are no additional messages, the requested CIDs
differ. Vanilla-Swap and the PSI-based protocols use different
CIDs for the discovery, specifically the multihash of the CID
differs. The multihash consists of a code field, length field,
and digest field. The default multihash code is 0x12 (1B)
with a length field of 1B and a digest length of 32B. In PSI-
Swap and BEPSI-Swap, we have different multihash codes,
due to the varying ID and a digest length, which depends
on the cyclic group. The digest itself is a compressed point
with varying length, i.e., 32B (ristretto255), 33B (P-256),
49B (P-384), and 67B (P-521). The ID is an uint16 which
is encoded as a variant integer (1B–3B). Since our protocols
require multi-codec identifier, we require CIDv1. For P-256,

the communication overhead is around 2B–4B per CID.
The remaining overhead is mainly a one time overhead

and a result of the request of U . The size of the one time
overhead mainly depends on the number of elements stored
by the server. On the client side, the overhead is a request,
an additional WANT-HAVE of a DummyCID. The size of the
DummyCID depends on the multi-codec identifier, multihash
code, and multihash length. The minimal size of the Dum-
myCID is 4B. The request adds some additional encoding,
resulting in an additional overhead of ≈ 6B–8B. On the
server side, the overhead is the sending of U as a HAVE.
For PSI-Swap, the overhead depends on the cyclic group,
and can be approximated to 43B · n if all elements are sent
using ristretto255, excluding some additional wire encoding.
For Bloom-Swap and BEPSI-Swap, the overhead depends on
the BF implementation and false positive rate. The size m of
a BF is given by

m = log2(e) · n · log2(
1

f
) ≈ 1.44 · n · log2(

1

f
) (5)

where n is the number of elements and f the false positive
rate of the BF. To reconstruct the BF the number and type
of Hashing functions is also required. Due to the usage of
uint64 for the BF bit set, bbloom has a step-wise size
increase. For n = 50 and f = 0.0001, the bbloom BF of the
CID digest has a size of 201B. In our PoC, the BF needs to fit
in one Bitswap message. However, Bitswap has a maximum
receive size of 4MB. This restricts the maximal server set to
≈ 875′000 elements. Larger sizes are possible, however this
would require additional logic to split and reassemble the BF.

The size of the BF also determines the memory overhead on
the server side for Bloom-Swap. For the PSI-based protocols,
there is an additional overhead of a plain CID to transformed
CID mapping. In BEPSI-Swap, it would be sufficient to
only store the BF, however, storing the mapping speeds up
recreation of the BF in case the set changes.

The memory overhead of the client consists of U of all
neighbors, two maps connecting plain CID and ID, and a
mapping of plain CID to transformed CID. The translation
of plain CID to ID is necessary for PSI. The mapping of plain
CID to transformed CID allows to reuse the transformed CID.

The requesting set size will consist mostly of a single
file, which starts with a single root CID. Depending on the
file size, more blocks will follow. A normal user probably
provides only a few files, which results in a small server
set size. We therefore assume low or asymmetrical set sizes.
The biggest memory and communication overhead is the
creation and transfer of U . Through the leakage of some bytes
of information, it should be possible to reduce the size of
the requested U , reducing the initial overhead. The leaked
information could be the first bits of the digest or the multihash
code. However, leaking data reduces the gained privacy.

2) Computation: The computation overhead consists of
lookups, de-/encoding, queuing, and the group calculations.
For Bloom-Swap, there is a BF lookup for every selected
peer, which yields no significant overhead. For the PSI-

based protocols, the biggest overhead are the cyclic group
calculations of V and X for clients, and U and W for servers.

In order to get an impression of the time span of the delay,
we run the Go benchmarks of the (isolated) PSI calculations.4

We evaluate the point creation of V , W , and X , which
can be considered as encryption (V /U), re-encryption (W),
and decryption (X). The benchmarks are run via go test.
For the benchmarks, we use a consumer-grade device (de-
noted as Laptop) and a resource-restricted device (denoted as
Raspberry). The Laptop is a Lenovo ThinkPad T580 with an
Intel Core i7-8550U CPU with 1.8GHz, and 16GB RAM,
using Manjaro 64 b (Kernel 5.10, go1.19.3 linux/amd64m) The
Raspberry is a Raspberry Pi 4 B Rev 1.2 with 4GB RAM,
using Raspberry Pi OS Desktop 64 b (Kernel 5.15, go1.19.2
linux/arm64). Fig. 4 shows the results for different number of
elements. Each benchmark was run 30 times with a different
random number, the results are the mean values and show
a linear behavior. While calculating W and X consists of
multiplications only, V /U also includes a hashing operation.

For the feasibility of the protocol, it is important that
especially the overhead for the server is low. While a client
might be willing to contribute more resources to protect her
privacy, a server’s resource should be considered as scarce.
Therefore, W is an important aspect. U only needs to be
adjusted every time the blocks stored by the server changes,
and W needs to be calculated on every request. Larger groups
(e.g., P-521) incur a significant latency, which consumes a
larger amount of resources on the server side. However, the
computation time of smaller groups (e.g., ristretto255 or P-
256) is much lower. The overhead of the client is bigger. While
V only needs to be calculated once and can then be reused,
X needs to be calculated for all servers. In IPFS with the
current default settings for the connection manager, this can
result in up to 100 more calculations. For clients, it means
that requesting 10 CIDs could result in 1’000 calculations
of X . Therefore, the computation latency is ≈ 78.7ms for the
Laptop and ≈ 0.422 s for the Raspberry, assuming ristretto255.

One important condition to make the privacy protection
feasible is a low impact on other voluntary participants, i.e.
servers. Servers have a one-time overhead by generating the
BF and therefore U . Next to the one time overhead, Bloom-
Swap reduces communication cost by eliminating most of the
WANT-HAVE messages. PSI-Swap slightly increases message
processing by requiring the calculation of W for each request.
Even on a resource-restricted device, the overhead of PSI-
Swap is for a low number of CIDs only a few milliseconds.
Since the overhead on the client side is in general larger, our
PSI-based protocols cannot completely replace Vanilla-Swap.
For a reasonable number of CIDs, the overhead even on the
server side is moderate. We therefore deem our protocols as a
feasible privacy supplement.

B. Security
Since the protocols add an overhead, they might be ex-

ploitable for Denial-of-Service (DoS) attacks. In this section,

4https://github.com/epikd/psiMagic

Laptop Raspberry ristretto255 P-256 P-384 P-521

100 101 102 103 104
10−5

10−2

101

#Elements (n)

C
om

pu
ta

tio
n

tim
e/

s

Encryption (U/V)

100 101 102 103 104

#Elements (n)

Re-Encryption (W)

100 101 102 103 104
10−5

10−2

101

#Elements (n)

Decryption (X)

Fig. 4: Cyclic group computation time.

we evaluate amplification vectors, which potentially can be
used for reflection and flooding attacks.

Our protocols have an amplification vector by requesting U
(which is only a few bytes) and hence generating an answer
including U , which could be potentially large. Another more
reliable amplification vector already exists in Vanilla-Swap,
if a requested block is stored. In this case, the answer to a
WANT-BLOCK request is the block, which causes an amplified
answer. While these amplification vectors exist, connections
are secured by default with Noise [28], effectively preventing
the exploitation of this attack vector, e.g., for reflection attacks.

An attacker, however, can flood a victim with messages,
e.g., many WANT-HAVE requests, to keep the victim busy,
impeding requests of other peers. Potential targets for such
attacks are pinning services, which are responsible for keeping
blocks available, or gateways, which make IPFS content avail-
able to non-IPFS speaking clients. In Vanilla-Swap, a flood of
request causes a series of CID look-ups and scheduled tasks for
sending data. Furthermore, as long as the attacker stays con-
nected the requested CIDs are stored in a peer specific ledger.
Our PSI-based protocols have a similar behavior, although,
the requested CIDs are no longer stored in a ledger, the flood
of request causes a series of calculations instead of look-ups.
Assuming a node is not downwards compatible, Bloom-Swap
would improve the resilience to such floods, since it could
simply ignores requests, not requesting the BF. Therefore, for
Bloom-Swap, it would be necessary to send floods of messages
requesting the BF. All versions are similarly vulnerable to a
flood of WANT-BLOCK requests.

We investigate the risk of a flood DoS attack with the
following experiment. As the setup for our experiment, we
directly connect the Laptop and Raspberry, using a 1m
CAT6a network cable, which results in an average ICMP
ping latency of around 223µs. All wireless communication on
Raspberry and Laptop are turned off. On the Raspberry, we
deploy a Bitswap server using a libp2p [29] host for network
management. We configured Bitswap to use QUIC as transport
protocol for both attacker and client. To the server’s block
store, we add 1’000 blocks, 100 randomly created, 256 kB
blocks and 900 smaller sample blocks. We chose 256 kB, since

it is the default aimed block size of the IPFS chunker. In our
experiment, we assume that the attacker has more resources
(deployed on Laptop) than the victim (deployed on Raspberry).

We simulate an attacker with a libp2p host who generates
and sends Bitswap messages containing many WANT-HAVE
requests, i.e., attack messages. Specifically, a single attack
message contains 89′240 WANT-HAVE requests for different
CIDs, giving the message a size of 4′194′285B. Please note
that this is the maximum message size for our Bitswap-based
PoC. For our evaluation, we increase the number of attack
messages and observe the impact of the requests.

The impact of flooding is evaluated using transaction suc-
cess and transaction delay [30]. In our case, a transaction is the
retrieval of a block. We define the transaction as successful,
when the retrieval of a block is faster than the current
default provider search delay of 1 s. For our experiment, the
client executes 100 transactions retrieving the 100 blocks
of size 256 kB. Our results assume a hot start, i.e., the
required creation and request of U is executed beforehand. In
our experiment, the hot start is ensured through request and
retrieval of one small block by the client, before sending the
attack messages. The experiment is run using Vanilla-Swap
and BEPSI-Swap. Due to the hot start, the results of BEPSI-
Swap are similar to PSI-Swap. Furthermore, the short latency
reduces possible speed advantages of Bloom-Swap, rendering
the result to be similar to Vanilla-Swap. The code for our
experiment is publicly available5.

Before we ran the experiment for different attack loads, we
checked if it is possible to kill the server entirely. As it turns
out, the server running Vanilla-Swap can indeed be killed due
to memory exhaustion. We needed between 37–40 message to
kill Vanilla-Swap on our Raspberry. Bloom-Swap, PSI-Swap,
and BEPSI-Swap were able to receive more messages without
problems. The memory exhaustion comes from storing the
requested CIDs in the peer’s ledger, which is not used by our
protocols. To avoid side effects due to an increased memory
usage, we removed the ledger utilization for Vanilla-Swap in
our experiments.

5https://github.com/epikd/go-bitswap/tree/psi-bitswap/experiment

Number of attack messages: 0 1 2 4 8

0 20 40 60 80 100

10−2

100

102

Block index

Tr
an

sa
ct

io
n

tim
e/

s

(a) Vanilla-Swap.

0 20 40 60 80 100

10−2

100

102

Block index

Tr
an

sa
ct

io
n

tim
e/

s

(b) BEPSI-Swap.

Fig. 5: Block retrieval time after different request floods.

In Fig. 5, we show the transaction time for each block
for varying attack loads, i.e., increasing number of attack
messages. In Fig. 5a, we can already see an effect after one
attack message, where more than the last 20 blocks experience
a transaction delay. Since all transactions require less than
1 s, they are still successful. After 4 attack messages, we can
see the first transaction failures, and after 8 attack messages
almost all transactions fail. The increase seems to appear
after some time and seems to stem from the Bitswap task
scheduler. The result shows Vanilla-Swap’s vulnerability to
flooding attacks, where sending ≈ 32MB of data, can cause
multiple transaction failures.

For BEPSI-Swap, we observe that the transaction time
remains low until approximately the first attack message is
completely processed, which takes ≈ 35 s. In order to show
the effect of the DoS, we postponed the block retrieval for
BEPSI-Swap and started it after 36 s. The results for BEPSI-
Swap (and PSI-Swap) can be seen in Fig. 5b. While the general
behavior is approximately the same as in Vanilla-Swap, there
are some anomalies in the form of a spike for a single block.
From the results, Bitswap seems to stall the answer of requests
until all requests are processed, resulting in a spike for the 1st
block after the attack message is processed. The transaction
time, after this spike shows a similar trend as Vanilla-Swap.

Using the PSI-based protocols, it is possible to first stall
and then delay transactions from a server for a certain time.
However, the same attack vector also exists in Vanilla-Swap
and enables an adversary to delay transactions from a server.
The results show that Bitswap in general and the PSI-based
protocols in particular should implement a rate limiting, i.e.,
limit the number of requests per peer in a specific time
interval. Since the PSI-based protocols Swap can be used
simultaneously to Vanilla-Swap, there could be different limit
for Vanilla-Swap and the PSI-based protocols to account for
the different computation overhead.

Please note, that these results do not imply that there is a
general threat in the IPFS network. The experiment targeted
a device with comparatively low resources, and the attacker
was very close to the victim with a latency of only a few

hundreds of microseconds. A closer inspection of the reasons
of the transaction delay and a more detailed analysis of the
threat are necessary, but out of scope of this work. We shared
these results with Protocol Labs.

C. Privacy

Compared to Vanilla-Swap, all of our protocols improve
clients’ content discovery privacy by obfuscating the item of
interest. In particular, interests are shared on a need-to-know
basis only. Upon closer inspection, the different protocols
provide slightly different privacy properties, specifically, the
amount of information a server learns.

For the PSI-based protocols, a server learns the time of a
request and the number of interested items. While leaking the
set sizes is typically considered as non-critical, the leak could
affect the client privacy in Bitswap. If a client is interested in
a file consisting of multiple blocks, these blocks are requested
along a Directed Acyclic Graph (DAG), starting with the root.
If a client’s requests follow a DAG, a server could infer the
interest based on her storage. For file request, it therefore
might be beneficial for client privacy to forgo discovery on
follow-up requests from the same peer. In Bloom-Swap, the
server only learns that a client was interested in some CID.

Due to the uncertainty of the BF-based approaches, a client
might leak more information due to false positives. In the case
of false positive, a client sends a WANT-BLOCK, revealing the
interest, despite the server not storing the item. This risk can
be adjusted with the false positive rate of the BF.

A malicious (active) server can learn additional information.
The malicious server can manipulate U , claiming that it stores
more CIDs than actually available. As result, it will receive
client requests, eventually learning client interests. Since this
problem is a Vanilla-Swap inherent problem, we consider semi
honest (passive) adversaries only. Yet, it adds an attack vector
to circumvent the privacy protection for our protocols.

While improving the privacy of the server is not our primary
goal, our protocols still have an effect on the server privacy.
Since the server sends a list of all stored elements, more
information about the server is revealed. In case of Bloom-
Swap, an approximation of all elements of the server is

revealed. However, the BF provides some plausible deniability
for the server. The false positive rate is therefore a trade-
off between client and server privacy. In case of PSI-Swap,
the number of elements stored by the server are revealed.
However, a client needs to know and request a specific CID to
gain the storage information, which is similar to Vanilla-Swap.
Since BEPSI-Swap is a combination of Bloom-Swap and PSI-
Swap, it mainly shares the advantages of both protocols. Due
to the BF, the server gains plausible deniability,

VII. CONCLUSION

We explored three different protocols to improve the privacy
of the Bitswap content discovery process. We find that all
protocols effectively reduce the privacy leak of a peer’s
interest. The feasibility trade-offs of the protocols, however,
differ. Bloom-Swap can reduce the communication cost of the
discovery process and adds client privacy at the cost of a re-
duced server privacy. PSI-Swap and BEPSI-Swap can improve
the privacy (also for servers) at the cost of a computation
overhead. While feasible for reasonable request rates, the over-
head of the PSI-based protocols can be considerable for large
numbers of items. In Summary, all proposed protocols improve
the privacy of content discovery. While Bloom-Swap offers the
additional potential to speed up data exchange, BEPSI-Swap
provides better privacy with a reasonable overhead.

ACKNOWLEDGEMENTS

We thank Protocol Labs for funding our research.

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, “Networking named content,” in CoNext ’09:
Proceedings of the 5th ACM International Conference on Emerging
Networking Experiments and Technologies, Rome, Italy, Dec. 2009,
pp. 1–12.

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, 2012.

[3] E. Daniel and F. Tschorsch, “Ipfs and friends: A qualitative comparison
of next generation peer-to-peer data networks,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 1, pp. 31–52, 2022.

[4] J. Benet, “IPFS - content addressed, versioned, P2P file system,”
vol. abs/1407.3561, Jul. 2014. [Online]. Available: http : / / arxiv. org /
abs/1407.3561.

[5] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection
based on ot extension,” ACM Transactions on Privacy and Security
(TOPS), vol. 21, no. 2, pp. 1–35, 2018.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[Online]. Available: https://doi.org/10.1145/362686.362692.

[7] N. Angelou, A. Benaissa, B. Cebere, W. Clark, A. J. Hall, M. A.
Hoeh, D. Liu, P. Papadopoulos, R. Roehm, R. Sandmann, et al.,
“Asymmetric private set intersection with applications to contact tracing
and private vertical federated machine learning,” vol. abs/2011.09350,
2020. [Online]. Available: https://arxiv.org/pdf/2011.09350.pdf.

[8] N. Trieu, K. Shehata, P. Saxena, R. Shokri, and D. Song, “Epi-
one: Lightweight contact tracing with strong privacy,” arXiv preprint
arXiv:2004.13293, 2020.

[9] Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, “Private set
intersection for unequal set sizes with mobile applications.,” Proc. Priv.
Enhancing Technol., vol. 2017, no. 4, pp. 177–197, 2017.

[10] M. Rosulek and N. Trieu, “Compact and malicious private set intersec-
tion for small sets,” in CCS ’21: Proceedings of the 2021 ACM SIGSAC
Conference on Computer & Communications Security, Virtual Event,
Republic of Korea, Nov. 2021, pp. 1166–1181. [Online]. Available:
https://doi.org/10.1145/3460120.3484778.

[11] K. Pentikousis, B. Ohlman, E. B. Davies, S. Spirou, and G. Boggia,
Information-centric networking: Evaluation and security considerations,
RFC 7945 (Informational), RFC, Fremont, CA, USA: RFC Editor, Sep.
2016. DOI: 10.17487/RFC7945. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7945.txt.

[12] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy,
and access control in information-centric networking: A survey,” IEEE
communications Surveys & Tutorials, vol. 20, no. 1, pp. 566–600, 2017.

[13] E. Mannes and C. Maziero, “Naming content on the network layer:
A security analysis of the information-centric network model,” ACM
Computing Surveys, vol. 52, no. 3, pp. 1–28, 2019.

[14] A. Chaabane, E. De Cristofaro, M. A. Kaafar, and E. Uzun, “Privacy
in content-oriented networking: Threats and countermeasures,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 3, pp. 25–33,
2013.

[15] C. Bernardini, S. Marchal, M. R. Asghar, and B. Crispo, “Privicn:
Privacy-preserving content retrieval in information-centric networking,”
Computer Networks, vol. 149, pp. 13–28, 2019.

[16] N. Fotiou, D. Trossen, G. F. Marias, A. Kostopoulos, and G. C.
Polyzos, “Enhancing information lookup privacy through homomorphic
encryption,” Security and Communication Networks, vol. 7, no. 12,
pp. 2804–2814, 2014.

[17] M. Ion, J. Zhang, and E. M. Schooler, “Toward content-centric privacy in
icn: Attribute-based encryption and routing,” in ICN ’13: Proceedings of
the 3rd ACM SIGCOMM Workshop on Information-Centric Networking,
Hong Kong, China, Aug. 2013, pp. 39–40.

[18] B. Li, D. Huang, Z. Wang, and Y. Zhu, “Attribute-based access control
for icn naming scheme,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 2, pp. 194–206, 2016.

[19] S. Wang, Y. Zhang, and Y. Zhang, “A blockchain-based framework for
data sharing with fine-grained access control in decentralized storage
systems,” IEEE Access, vol. 6, pp. 38 437–38 450, 2018.

[20] L. Balduf, S. Henningsen, M. Florian, S. Rust, and B. Scheuermann,
“Monitoring data requests in decentralized data storage systems: A
case study of ipfs,” in ICDCS ’22: Proceedings of the 42nd IEEE
International Conference on Distributed Computing Systems, Bologna,
Italy, Jul. 2022, pp. 658–668.

[21] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in USENIX Security ’14: Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, Aug. 2014,
pp. 797–812. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/pinkas.

[22] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert,
“Mobile private contact discovery at scale,” in USENIX Security ’19:
Proceedings of the 28th USENIX Security Symposium, Santa Clara, CA,
USA, Aug. 2019, pp. 1447–1464.

[23] OpenMined, Github – openmined/psi: Private set intersection cardinality
protocol based on ecdh and bloom filters, https : / / github . com /
OpenMined/PSI, Accessed: 2022-06.

[24] Protocol Labs, Github – ipfs/go-bitswap: The golang implementation of
the bitswap protocol, https : / /github.com/ ipfs /go- bitswap, Accessed:
2022-09.

[25] A. De la Rocha, D. Dias, and Y. Psaras, “Accelerating content routing
with bitswap: A multi-path file transfer protocol in ipfs and filecoin,”
p. 11, 2021.

[26] E. Daniel and F. Tschorsch, “Passively measuring ipfs churn and network
size,” in ICDCSW ’22: Proceedings of the 42nd IEEE International
Conference on Distributed Computing Systems Workshops, Bologna,
Italy, Jul. 2022, pp. 60–65.

[27] A. Faz-Hernández and K. Kwiatkowski, Introducing circl: An advanced
cryptographic library, Available at https://github.com/cloudflare/circl.
v1.2.0 Accessed Sep 2022, Cloudflare, Jun. 2019.

[28] T. Perrin, “The noise protocol framework - revision 34,” pp. 1–65,
Jul. 11, 2018. [Online]. Available: http://www.noiseprotocol.org/noise.
pdf.

[29] Protocol Labs, Github – libp2p/go-libp2p: Libp2p implementation in go,
https://github.com/libp2p/go-libp2p, Accessed: 2022-11.

[30] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher, R. Thomas,
W.-M. Yao, and S. Schwab, “Towards user-centric metrics for denial-
of-service measurement,” in Proceedings of the 2007 workshop on
Experimental computer science, 2007, p. 14.

