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Abstract—In elastic optical networks (EONs), a suitable guard-
band should be inserted between the spectrum assigned to two
lightpaths to prevent crosstalk if they share common fiber links.
In the meantime, these guard-bands may have diverse sizes for
different lightpath pairs due to the strength of the crosstalk
among them, which is determined by many factors, such as the
required bandwidth, the number of common fiber links, and the
modulation level of each lightpath. However, in the presence of a
high traffic load, not all communication requests can be satisfied
at all times since the spectrum resource on fiber links is limited. In
light of this, service providers need to prioritize communication
requests and even reject some of the low-priority requests in
cases of traffic blocking, especially in peak hours. Therefore, we
formulate the maximal distance spectrum assignment (max-DSA)
problem to investigate how to maximize the sum of weights of
requests we can serve and give them spectrum assignments under
the constraint of limited spectrum resources. At first, since max-
DSA is NP-hard, we propose an ILP model to get the optimal
solution. Then, we give the upper and lower bounds of the optimal
value of the max-DSA problem. To solve max-DSA efficiently in
polynomial time, we propose a Vertex-Deletion Iteration (VDI)
approximation algorithm. Our algorithm starts with building
several initial feasible solutions and then improves the solutions
iteratively until reaching the local optimality. Furthermore, we
also prove that the max-DSA problem can be solved in polynomial
time to optimality in some specific complete conflict graphs.
The obtained numerical results have demonstrated that the VDI
algorithm can find near-optimal solutions for max-DSA in various
conflict graphs and under various limited spectral resources.

Index Terms—Elastic optical networks (EONs), maximal dis-
tance spectrum assignment (max-DSA), heuristic, iterative ap-
proximation.

I. INTRODUCTION

RECENTLY, traffic requests in backbone networks grew
rapidly, according to the Cisco Visual Networking Index

[1]. For example, Global Internet Protocol (IP) traffic was
expected to increase threefold from 2017 to 2022; busy hour
internet traffic was expected to increase by a factor of 4.8,
while average internet traffic was expected to increase by
a factor of 3.7 [1]. To adapt to the fast growth of traffic
requests, flexible-grid elastic optical networks (EONs) have
been introduced to increase the flexibility of bandwidth al-
location in the optical layer [2], [3]. Specifically, in EONs,
the bandwidth-variable transponders (BV-Ts) and wavelength-
selective switches (BV-WSS’) provide several narrow-band
(i.e., 12.5 GHz) and spectrally-consecutive frequency slots
(FS) to build lightpaths and then transmit data over them

[4]. Hence, traffic requests from upper-layer networks can be
served in EONs by utilizing just-enough bandwidths and the
suitable bandwidth allocation granularity of an FS [5], [6].

Besides, if two routing lightpaths share one or more fiber
links [7], [8], an appropriate guard-band should be inserted
between their spectrum assignments to prevent inter-channel
crosstalk [9]. Note that the size of the guard-band is required to
be larger as the crosstalk level gets stronger, and several factors
have an impact on the crosstalk level, e.g., the bandwidth,
the number of common links and the modulation level [10].
Hence, different lightpath pairs require different guard-bands
in EONs. For instance, suppose that there are three communi-
cation requests R1, R2 and R3 with bandwidth requirements
2, 4 and 3 FS, respectively in an EON. We show in Fig. 1
their spectrum assignments with blocks in different colors, and
different-sized guard-bands with white blocks. Obviously, the
sizes of guard-bands will occupy spectral resources and hence
have a strong impact on the spectrum utilization in EONs [11],
[12].

guard-band guard-band

FS’ Index in Spectrum Domain

Fig. 1. Spectrum assignments with guard-bands in EONs.

Furthermore, the spectral resource of fiber links has already
been fixed in the network planning phase. With the dramat-
ically increasing traffic, it might not be sufficient to serve
all the communication requests, especially during peak hours
in the backbone networks. Although the distance spectrum
assignment (DSA) problem considers the guard-band with
diverse sizes [13], it was proposed for networking planning
purposes. Note that the DSA aims to serve all communication
requests while minimizing the total spectrum usage. However,
the DSA is not suitable to handle the case when the EON
is under-provisioned, where some requests should be rejected
due to the lack of spectrum resources.

To fill this gap, we put forward a new problem, i.e.,
maximal distance spectrum assignment under limited spectral
resources (max-DSA). We consider the service provisioning
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problem where all the communication requests with routing
lightpaths are given, each communication request has a weight,
the spectral resource is given, and the guard-bands of the
lightpath pairs are also known. With all the aforementioned
information, max-DSA tries to maximize the sum of weights
of communication requests we can serve. Without loss of
generality, we also use request and its routing lightpath to
represent communication request.

To the best of our knowledge, there is no theoretical study
on the max-DSA problem in the literature. Furthermore, it is an
extremely hard problem, at least as hard as the DSA problem
[13], which is NP-hard. Hence, we formulate the max-
DSA problem and provide several significant and insightful
theoretical results for future research. The contributions of our
work can be summarized as follows:

• We provide for the first time a formal study of the max-
DSA problem: put forward a generalized problem defini-
tion where the request weights can be heterogeneous, and
propose an integer linear program (ILP) model to solve
it exactly.

• We propose the upper and lower bounds of the optimal
value of the max-DSA problem.

• To solve the max-DSA problem, we specifically build
a conflict graph, where each vertex represents a request
and an edge signifies the guard-band requirement between
two requests. We prove that the Intermediate Spectrum
Assignment (ISA) algorithm can obtain the optimal so-
lution in some complete conflict graphs. In general, we
propose a polynomial-time algorithm, namely Vertex-
Deletion Iteration (VDI), to give a near-optimal solution
of the max-DSA problem and study its performance on
different types of conflict graphs. The VDI algorithm
starts with building some initial feasible solutions and
then improves the solutions iteratively until reaching local
optimality.

II. RELATED WORK

Previous studies proposed the concept of EONs to utilize
resources flexibly in the optical layer and hence promoted
interesting research about spectrum assignment [2] - [5], [7],
[11] - [16]. In [2], bandwidth-variable transponders (BVTs)
and bandwidth-variable crossconnects (BV-WXCs) have been
proposed, which can be utilized to provide flexible and
just-enough bandwidth allocation for traffic requests. Hence,
compared with the traditional fixed-grid wavelength division
multiplexing (WDM) networks, EONs can sufficiently and
intelligently utilize the spectral resource to satisfy the requests.

In [5], the Routing and Spectrum Assignment (RSA) prob-
lem has been formally defined, which aims to find the suitable
lightpath for each traffic request and then assign sufficient
spectrum resource for each traffic request while minimizing
the total spectrum resource used in EONs. They also prove the
NP-hardness of the RSA problem. In light of this, both an
ILP model and two heuristic algorithms are proposed to solve
the RSA problem. [14] and [17] studied the RSA problem
with consideration of the multicast traffic in EONs, which
is named RMSA. However, all the aforementioned studies

on RSA assume an identical-size guard-band to separate the
lightpaths with common links, which is not realistic and will
result in spectrum waste. Wu et al. [13] considered the RSA
problem when guard-bands have various sizes and denoted is
as Distance Spectrum Assignment (DSA) problem. This paper
provides a thorough theoretical study of the DSA problem by
giving the formal proof of its NP-hardness, and the upper
and lower bounds of the optimal DSA solution. Besides, a
time-efficient heuristic algorithm is also proposed. All the dis-
cussions above are for networking planning purposes, assume
that the spectral resource is sufficient, and aim to minimize
the usage of the spectral resource to serve all requests in
EONs. In this paper, we consider the a under-provisioned
network. Hence, the spectral resource is limited, and we aim
to maximize the total weight of requests we can serve.

Furthermore, we introduce the Maximal Routing and Wave-
length Assignment (max-RWA) problem and the Minimal
Routing and Wavelength Assignment (min-RWA) problem
[18] in WDM networks to compare with the DSA and max-
DSA problems, as shown in Table I. Note that the purpose of
max-RWA problem is to maximize the number of requests that
can be served with limited wavelengths in under-provisioned
WDM networks. While the min-RWA problem aims to mini-
mize the number of wavelengths needed to serve all requests
in WDM networks for network planning purposes.

TABLE I
COMPARISON BETWEEN MIN-RWA, MAX-RWA, DSA AND

MAX-DSA

Minimize Wavelengths Maximize
/FS index Requests

WDM min-RWA max-RWA
EON DSA max-DSA

Specifically, as shown in Table II, min-RWA and max-RWA
can be solved by considering the classical coloring in the
conflict graph [19], [20], while DSA and max-DSA can be
solved by considering the fractional coloring [13]. Actually,
DSA and max-DSA both have two differences compared with
the fractional coloring: (1) Each vertex should be assigned
consecutive colors in the DSA and max-DSA problems, while
fractional coloring has no such constraint; (2) Any two ad-
jacent color sets should keep a distance at least the size
of its corresponding guard-band in the DSA and max-DSA
problems, while they only need to be disjoint in the latter
case.

As discussed above, the max-DSA problem is a new com-
binatorial optimization problem that has not yet been studied.
The rest of this paper is organized as follows. Section III
describes our model of the max-DSA problem and gives its
ILP model. Section IV proposes the upper and lower bounds of
the optimal value of max-DSA. Our algorithm is proposed in
Section V, and its theoretical results are proved in Section VI,
while its numerical results are shown in Section VII. Finally,
Section VIII summarizes this paper.



TABLE II
COMPARISON OF RELATIVE COLORING PROBLEMS

Classical Fractional DSA,
Coloring Coloring max-DSA

(min-RWA,
max-RWA)

Vertex One color A set of A set of
Color colors colors
Color N/A no need Required

Contiguity
Color Disjoint Disjoint Various

Distance of positive
Adjacent integers
Vertices

III. MAXIMAL DISTANCE SPECTRUM ASSIGNMENT
(MAX-DSA) PROBLEM

In this section, we construct a conflict graph to solve this
problem, propose its ILP model, and prove its NP-hardness.

A. Problem Description and Conflict Graphs

In this paper, the focus is on the provisioning over an
existing EON. Specifically, we consider that all the requests
with their routing paths are given, the spectral resource is
given, and all sizes of guard-bands for each spectrally adjacent
lightpath pair are known (given due to their crosstalk levels).
Also, we give each request a weight to consider their profits.
Then, max-DSA tries to maximize the sum of weights of
requests we can serve under limited spectral resources.

To solve the max-DSA problem, we construct a conflict
graph based on the above information as follows: 1) each
vertex represents a request; the vertex width is its bandwidth
demand in FS; and the vertex weight represents the weight of
the request; 2) two vertices are connected if and only if there
is a guard-band between the corresponding lightpath pairs; 3)
the edge width represents the required guard-band size; 4) We
give an constant integer C to represent the maximum spectral
resource.

In order to realize spectrum assignments in the conflict
graphs, we first introduce the following notations:

• G(V,E): The max-DSA conflict graph, where V repre-
sent the request set, and E the conflict edge set.

• n or |V |: the number of vertices in V .
• N+: the positive integer set representing the FS indices

in the spectral domain.
• vi ∈ V : represent the i-th request.
• wvi : the integer width representing bandwidth demand of

request vi in the number of FS.
• Lvi : the list of some integers representing the set of

consecutive FS assigned to vi.
• Lvi(a), Lvi(b): the smallest and biggest integer in Lvi ,

respectively.
• e or vivj : the edge e or vivj ∈ E connecting vi and
vj , which means that the lightpaths of requests vi and vj
share common fiber link(s).

• we(wvivj ) : the positive integer width representing the
least guard-band size between lightpaths vi and vj .

• cvi : the weight of vi representing the weight of the i-th
request.

• C: the constant integer representing the maximum spec-
tral resource.

• B: a large constant integer.
Then, the spectrum assignments in the conflict graph should

satisfy the following constraints:
• Bandwidth Requirement Constraint: Every request

should be assigned an sufficient number of FS equal to
its bandwidth demand. That is:

|Lvi | = wvi ,∀vi ∈ V (1)

• Spectrum Continuity Constraint: All the fiber links a
request utilizes should be assigned the same FS. This
constraint has been satisfied since all the lightpaths have
been routed and represented by vertices in the conflict
graph.

• Spectrum Contiguity Constraint: Every request should
be assigned a set of consecutive FS, i.e., Lvi =
{Lvi

(a), Lvi(a) + 1, . . . , Lvi
(b)} and all the integers are

positive.
• Spectrum Set Distance Constraint: If two lightpaths are

spectrally adjacent, their FS sets should have a distance
at least the size of their guard-band. So we have the
following inequality:

d(Lvi , Lvj ) ≥ wvivj (2)

where
d(Lvi , Lvj ) = min{|s− t| − 1 : s ∈ Lvi , t ∈ Lvj}.

We say that a spectrum assignment is proper if it satisfies
the above four constraints. Then the max-DSA problem can
be solved by finding the maximum-weight vertex-induced
subgraph with proper spectrum assignment in the conflict
graph under the given spectral resource. We say that the
feasible (optimal) solution in conflict graph is a vertex set or
a vertex-induced subgraph. Obviously, if the conflict graph is
disconnected, we can solve the max-DSA problem for every
connected component of the conflict graph separately. Also,
if there is a request whose width exceeds the given spectral
resource, then we cannot serve it anyway. Hence, we ignore
these two cases in this paper.

Table III, Fig. 2 and Fig. 3 show how to construct the
conflict graph and solve max-DSA in the case when each
request has the same weight. As in Table III, there are four
requests with their bandwidth demands and routing paths, also
shown in a 4-node ring topology in Fig. 2. We use the number
of common links to represent their sizes of guard-bands (the
size of a guard-band has a positive correlation to its crosstalk
level [10]). For example, if the routing paths of R1 and R2

share exactly one common link B-A, then their guard-band
is 1 FS. Hence, the conflict graph is illustrated in Fig. 3(a),
where the number in each cycle is the bandwidth demand of
each request, and the number near each edge is the guard-
band size. Also, we assume here a limited spectral resource
C = 10. Based on Fig. 3(a), the optimal solution is marked
in red braces with their spectrum assignment in Fig. 3(b).

B. max-DSA Model and Integer Linear Program
As shown in the above illustrations, we can solve the

max-DSA problem in the corresponding conflict graph. Since



TABLE III
INFORMATION ON LIGHTPATHS

Bandwidth Demand Route
Request R1 3 FS B-A-D
Request R2 2 FS C-B-A
Request R3 3 FS A-D-C-B
Request R4 1 FS C-B-A-D

A

B

C

D

Fig. 2. A 4-node ring topology about four lightpaths in Table III.

(a) Conflict graph
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Fig. 3. The conflict graph for Table III and Fig. 2, and an optimal solution

the classical Maximum-k-Colorable-Induce-Subgraph (MkCS)
problem [21] can be reduced to max-DSA, it is easy to see
that the max-DSA problem is NP-hard. Then an ILP model to
obtain the optimal solution to the max-DSA problem is given
below.

Decision Variables:

• xa
i , x

b
i : Integer variable representing the value of

Lvi(a), Lvi(b), respectively.
• Ii: Binary variable, and Ii = 1 if xb

i ≤ C, Ii = 0 if
xb
i > C for all i = 1, . . . , n.

• Ovivj : Binary variable, and Ovivj = 0 if xb
i < xb

j ,
Ovivj

= 1 otherwise.

Objective Function:

max
∑
i

cvi ∗ Ii (3)

subject to:

xb
i − xa

i = wvi − 1 (4)

xb
i − xa

j + wvivj + 1 ≤ B ∗Ovivj (5)

Ovivj +Ovjvi
= 1 (6)

xb
i ≤ C ∗ Ii +B ∗ (1− Ii) (7)

xa
i , x

b
i ∈ N+ (8)

Ii ∈ {0, 1}, Ovivj ∈ {0, 1} (9)
vi ∈ V, vivj ∈ E (10)

Constraint (4) is the bandwidth requirement. Constraints (5)
and (6) are the spectrum set distance requirement. Constraint
(7) chooses some vertices satisfying the limited spectral re-
source.

IV. UPPER AND LOWER BOUNDS OF THE OPTIMAL VALUE
OF MAX-DSA

In this section, we give the upper and lower bounds of
the optimal value of the max-DSA problem. We use several
terminologies of graph theory [22] to bound the optimal value
of max-DSA and give some definitions as below.

• α(G): the cardinality of the maximum independent set of
G.

• opt(G): the optimal value of the max-DSA problem, that
is, the largest number of requests can be served.

• wi
e, w

i
v: the i-smallest width of edge and vertex in G,

respectively.
• me: me = we + wvi + wvj , where e = vivj .

Now we give the lower bound and upper bound of the
optimal value of the max-DSA problem.

Theorem 1: If every vertex has weight one, then α(G) ≤

opt(G) ≤ max{s ∗ α(G) :
s−1∑
i=1

wi
e +

s∑
i=1

wi
v ≤ C}.

Proof: Obviously, the maximum independent set is a feasi-
ble solution of max-DSA, hence α(G) ≤ opt(G).

Now we prove the upper bound. Let s be the maximum

value such that
s−1∑
i=1

wi
e +

s∑
i=1

wi
v ≤ C. Suppose that G′ is an

optimal solution of max-DSA of the conflict graph G, and
we give every vertex of G′ a proper assignment such that
Lv(b) ≤ C for all v ∈ V (G′). We use Algorithm 1 to partite
V (G′) as Fig. 4 showing. Let ui ∈ V ′

i be the vertex with the
smallest width in V ′

i , and ei be the edge between V ′
i and V ′

i+1

with the smallest width. By the Algorithm 1, the first vertex
added to V ′

i has a neighbor in V ′
i−1, then all the integers of

its list is bigger than its neighbor’s in V ′
i−1. Hence the biggest

value of Lv(b) is at least
k−1∑
i=1

wei +
k∑

i=1

wui ≤ C. By the s we

choose and the definitions of wi
v, w

i
e, wei , wui , we get k ≤ s.

Obviously, |V ′
i | ≤ α(G), then we get |V (G′)| ≤ s ∗ α(G). ■

Suppose that every vertex has weight one. It can be shown
that two bounds in Theorem 1 are tight when me > C for all
e ∈ E(G), and the conflict graph is a complete graph with the
same edge width, respectively.



Algorithm 1: A Partition of V (G′)

Input : G′ and its proper assignment
Output: A partition of V (G′)

1 V ← V (G′);
2 i← 1;
3 V ′

1 ← ∅;
4 while V ̸= ∅ do
5 Choose a vertex v ∈ V with the smallest Lv(a);
6 if V ′

i ∪ {v} is independent then
7 add v to V ′

i ;

8 else
9 i← i+ 1; V ′

i ← ∅;
10 add v to V ′

i ;

11 delete v from V ;

12 k ← i;
13 Return {V ′

1 , V
′
2 , . . . , V

′
k}

V ′
1 V ′

2 V ′
k−1 V ′

k

· · ····
···

···
···

Fig. 4. The partition of V (G′) according to Algorithm 1.

V. TIME-EFFICIENT APPROXIMATION ALGORITHM FOR
MAX-DSA

In this section, we first give several algorithms to obtain
vertex sequences and the spectrum assignments under these
vertex sequences. Based on these algorithms, we give a time-
efficient iterative approximation algorithm for max-DSA.

Note that the max-DSA problem is to prioritize vertices
and give some of them the proper spectrum assignments under
limited spectral resources. We first give some methods to order
vertices. One method to give the initial vertex sequence is
to use four indexes here to evaluate which vertex has high
priority. The first three indexes are wv,mv, d(v), where mv =∑
v∈e

me/d(v) and d(v) is the degree of v, ∀v ∈ V (G). Because

the vertex with a small value of wv,mv, d(v) is easy to give the
spectrum assignment with a small Lv(b), it will have a small
impact on the spectrum assignments of other vertices under
the limited spectral resource. The last index is cv , which is
the weight of v ( the weight of the request). As the argument
above shows, we give the first vertex sequence such that bv =
λ1 ∗ wv + λ2 ∗ d(v) + λ3 ∗mv − λ4 ∗ cv is ascending, where
λ1 = λ2 = λ3 = λ4 = 0.25. Another method to order vertices
is to use a graph theory method to decompose the graph into
some subgraphs and order the vertices in each subgraph (i.e.
block decomposition). Note that a block in the graph is its
maximal 2-connected vertex-induced subgraph. For example,
the graph shown in Fig. 5 is decomposed into three subgraphs,

induced by brown, orange and green edges, respectively.

Fig. 5. An example of block decomposition

We denote this method as Block Decomposition (BD) de-
scribed in Algorithm 2. In lines 1 and 2, we decompose G into
B 2-connected subgraphs, and order the vertices in each block.
We use i to record the i-th sequence. We run lines 4-11 if
there is a block that cannot be marked. After the while-loop in
lines 4-11, we will get vertex sequences U1, . . . , UB . Now we
calculate the time complexity of the BD algorithm. The block
decomposition is based on the DFS [22] algorithm, whose time
complexity is O(|E(G)|) ≤ O(|V 2(G)|), and the complexity
of ordering the vertices is at most O(|V 2(G)|). Besides, the
BD algorithm has two while-loops, whose time complexity is
O(B2) ≤ O(|V 2(G)|). Hence, the time complexity of the BD
algorithm is O(|V 2(G)|).

Algorithm 2: BD to get initial sequences
Input : A conflict graph

G(V,E, {wvi}, {we}, {cvi}, C)
Output: Some sequences of vertices

1 Give G a block decomposition;
2 Calculate bv in each block and order the vertices in

each block such that bv is ascending;
3 i← 0;
4 while there is a block not be marked do
5 i← i+ 1; Ui ← ∅;
6 mark one of the unmarked block;
7 choose this block as the first block;
8 Add the vertex order in this block to Ui;
9 while there is a block not yet be chosen do

10 choose a block that has not yet been chosen
and contains a vertex in Ui, denote as v′;

11 add the vertex order in this block to Ui, except
v′;

12 return U1, . . . , UB

Second, we use Intermediate Spectrum Assignment (ISA)
algorithm, described in Algorithm 3 to give high-priority ver-
tices the spectrum assignments with a certain vertex sequence
under the limited spectral resource. For convenience, we
suppose that the vertex sequence is (v1, . . . , vn). We say that
Lvi is an intermediate assignment if Lvi satisfies the Spectrum
Set Distance Constraint to Lv1 , . . . , Lvi−1 and min{Lvj (b) :
j < i} ≤ Lvi(a), Lvi(b) ≤ max{Lvj (a) : j < i} (i.e. Lvi can
be asserted to the middle of the before assignments).

In lines 1-2, we first add v1 to U and give it a spectrum
assignment. We use i to record which vertex we consider



in each while-loop in lines 4-16. In lines 5-6, we use s1
(s2) to calculate the minimum Lvi(a) (maximum Lvi(b)) in
the current loop under the bandwidth requirement constraint,
spectrum contiguity constraint, and spectrum set distance
constraint, but maybe smaller than 1 (larger than C). In lines
7-15, we consider three possible cases of the assignment of
Lvi . The calculations of s1, s2 need to consider all the edges.
The determination about whether there is an intermediate
assignment of vi and the choice of the smallest assignment Lvi

need to consider all the before assignments Lv1 , . . . , Lvi−1
.

Hence, its time complexity is at most O(|V 2(G)|).

Algorithm 3: Intermediate Spectrum Assignment un-
der certain sequence (ISA)

Input : A conflict graph
G(V,E, {wvi}, {we}, {cvi}, C) with a given
vertex sequence (v1, . . . , vn).

Output: An induced subgraph G[U ] of G with its
assignment strategy

1 U ← {v1};
2 Lv1 ← {1, . . . , wv1};
3 i← 2;
4 while i ≤ n do
5 s1 ← min{Lvj (a)− wvivj − wvi : vivj ∈

E(G) and vj ∈ U};
6 s2 ← max{Lvj (b) + wvivj + wvi : vivj ∈

E(G) and vj ∈ U};
7 if s1 ≥ 1 then
8 add vi to U ;
9 Lvi ← {1, . . . , wvi};

10 else if vi has an intermediate assignment then
11 add vi to U ;
12 choose the smallest Lvi as its assignment;

13 else if s2 ≤ C then
14 add vi to U ;
15 Lvi ← {s2 − wvi + 1, . . . , s2};
16 i← i+ 1;

17 return G[U ] and {Lv : v ∈ U}

Based on the BD and ISA algorithms, we give the Vertex-
Deletion Iteration (VDI) algorithm described in Algorithm 4
for the max-DSA problem. In lines 1-2, we give the vertex
sequence S0 where bv is ascending. In line 3, we give the
sequences S1, . . . , SB according to the BD algorithm. In line
4, we give the spectrum assignment by the ISA algorithm with
vertex sequences S0, . . . , SB , respectively. Based on these
initial results, we run lines 5-11. In lines 5-7, if max{|U |} =
n− 1, we reverse such a sequence that its output of the ISA
algorithm satisfies |U | = n − 1, and run ISA algorithm with
this sequence. In lines 8-11, if max{|U |} < n − 1, we go
into the for-loop in lines 9-11. We delete one vertex with the
largest value of bv in G or in blocks and get two subgraphs in
each loop, and repeat lines 1,2,4 or lines 3-4, respectively. In
line 12, we select the largest G[U ] of all outputs of the ISA
algorithm and its spectrum assignment. Note that, the largest
G[U ] is such vertex-induced subgraph with the largest sum of

weights. The VDI algorithm uses the BD algorithm at most n
times and the ISA algorithm at most n2 times. So, the time
complexity of the VDI algorithm is O(|V 4(G)|).

Algorithm 4: Vertex-Deletion Iteration (VDI) with BD
and ISA algorithms
Input : A conflict graph

G(V,E, {wvi}, {we}, {cvi}, C)
Output: A solution G[U ] and the spectrum

assignments.
1 calculate bv for all vertices;
2 give a sequence S0 of all vertices where bv is

ascending;
3 run BD algorithm and we get B sequences of all

vertices S1, . . . , SB ;
4 run ISA algorithm with each sequence above,

respectively;
5 if max{|U |} = n− 1 then
6 let S′ be such sequence that its output of ISA

algorithm satisfying |U | = n− 1;
7 run SA algorithm again with the sequence that is

the reverse of S′;
8 if max{|U |} < n− 1 then
9 for i = 1 : n−max{|U |} − 1 do

10 abtain two vertex-delete subgraphs by deleting
v with the largest value of bv in G and in the
blocks, respectively;

11 repeat steps 1,2,4 and 3-4 with these two
subgraphs, respectively;

12 return the largest G[U ] of all outputs of ISA
algorithm and its spectrum assignments

VI. ALGORITHM ANALYZES

In this section, we analyze the performance of our algo-
rithms in complete conflict graphs. We prove here that if the
conflict graph is a complete graph under some other con-
straints, we can find the optimal vertex sequence in polynomial
time and then use the ISA algorithm to give the optimal
solution.

Theorem 2: If the conflict graph is a complete graph with
the same vertex weight and the same edge width, then we can
choose a sequence of vertices in polynomial time such that
the ISA algorithm gives an optimal solution.

Proof: Order the vertices as (vj1 , . . . , vjn) such that the
widths of vertices are ascending. It is obviously that the
induced subgraph G[{vj1 , . . . , vji}] is the optimal solution,

where
i∑

k=1

wvjk
+

i−1∑
k=1

wvjkvjk+1
≤ C and i is as large as

possible, and ISA algorithm can give the optimal solution.
Since we can obtain this sequence in polynomial time, we see
that the conclusion holds. ■

VII. NUMERICAL RESULTS

In this section, we give the performance of the VDI al-
gorithm. Since max-DSA is a new model to select high-
priority vertices and give them the spectrum assignment, there



is no heuristic algorithm for comparison. Hence, we use ISA
the algorithm with vertex sequence S0 to be the benchmark
algorithm, which we denote as the AS0 algorithm. All the
optimal solutions are given by the ILP model solved by Python
3.8 with the module docplex.mp.model. The approximate
solutions of the AS0 and VDI algorithms are also solved in
Python 3.8 with the module networkx. We run 30 independent
simulations on each conflict graph and average the results
to ensure sufficient statistical accuracy. All our simulations
were conducted on a computer with an Intel(R) Core(TM) i5-
1035G1 CPU 1.00GHz and 16GB of RAM.

A. Simulation Setup

To verify the performance of our algorithm, we both con-
sider the theoretical and real situation of conflict graphs. In
the theoretical situations, we consider different properties of
conflict graphs, i.e. vertex number, edge number, spectral
resource and complete conflict graphs. In the real situations,
we consider three famous practical EON topologies, NSFNET,
US Backbone and GERMANY [18]. We generate all the
conflict graphs by using the functions of Python 3.8 with
module networkx. All the vertex widths here are randomly
chosen within [1, |V |] in both situations. All the edge widths
here are randomly chosen within [1, |V |] in the theoretical
situation. In all the conflict graphs below, we give two cases
to simulate:

(1) Each vertex has a weight of one.
(2) Each vertex’s weight is the same as its vertex width.
We run simulations in the first four theoretical situations

and the last real situation as below.

• Vertex number: We give six random conflict graphs with
|V | ∈ [10, 15], as shown in Fig. 6. Each edge probability
here is 50%. In each case, we set C = 40.

• Edge number: We give six random conflict graphs with
|V | = 13 and |E(G)| ∈ {20, 30, 40, 50, 60, 70}, as shown
in Fig. 7. And in each case, we set C = 40.

• Limited spectral resource C: In each case, we give
six random conflict graphs that |V | = 13, each edge
probability is 50%, and set C ∈ {10, 20, 30, 40, 50, 60}.

• Complete graphs: In each case, we give six com-
plete conflict graphs with |V | = 13 and C ∈
{10, 20, 30, 40, 50, 60}.

• NSFNET, US Backbone and GERMANY: To consider
the real situations, we perform simulations on three
practical EON topologies : NSFNET, US Backbone and
GERMANY [18]. We generate their conflict graphs as
follows: (1) Randomly choose the source and destination
of each request in the EON topology by uniform distribu-
tion. (2) The shortest path between any source-destination
pair is used as the lightpath to route each request. (3)
Each guard-band (edge width) between two requests is
computed according to the number of common links
in their lightpaths, which corresponds to the practical
crosstalk level [10]. Following these principles, conflict
graphs can be constructed in each case.

(a) 10-vertex (b) 11-vertex (c) 12-vertex

(d) 13-vertex (e) 14-vertex (f) 15-vertex

Fig. 6. Six random conflict graphs with 10-15 vertices.

(a) 20 edges (b) 30 edges (c) 40 edges

(d) 50 edges (e) 60 edges (f) 70 edges

Fig. 7. Six random conflict graphs with 13 vertices and 20-70 edges.

B. Simulation Results

1) Vertex number: Table IV presents the average results
computed by AS0, VDI, and ILP respectively, for the six
random conflict graphs in Fig. 6 in two cases. In Table IV,
we can see that the improved solutions of VDI are better
than those of AS0, especially in case (2). It means that VDI
performs well when the weights of requests, cv , are different.

TABLE IV
NUMERICAL RESULTS FOR FIG. 6 IN CASE (1)/(2)

case (1)/(2) (a) (b) (c) (d) (e) (f)
AS0 7/40 8/52 9/55 9/74 9/70 9/60
VDI 9/53 9/60 11/76 10/85 10/89 10/92
ILP 10/55 10/62 11/76 11/85 11/89 11/92

2) Edge number: Fig. 8 and Fig. 9 show the simulation
results on six random conflict graphs in Fig. 7 in two cases.
The maximum sum of weights of requests solved by AS0,
VDI, and ILP is indicated by the blue, red, and purple bars,
respectively. The performance of VDI is better than AS0 and
is almost optimal whenever the number of edges is high. We
also see that the maximum sum of weights decreases when the
number of edges increases. The approximation ratio of VDI
decreases when the number of edges increases. Therefore, if a
good routing algorithm can reduce more common links, then
we can get a larger sum of weights of communication requests
we can serve.

3) Limited spectral resource C: Fig. 10 and Fig. 11 plot
the simulation results on random graphs that |V | = 13, each
edge probability is 50%, and set C ∈ {10, 20, 30, 40, 50, 60}
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Fig. 8. Numerical results for Edge number scenario in case (1).
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Fig. 9. Numerical results for Edge number scenario in the case (2).

in two cases. We can see that the more spectral resource C
is, the larger the sum of weights we can get. In case (1), VDI
can get the optimal solution when C ≤ 30, but gets the near-
optimal solution when C ≥ 40. That means VDI can get the
optimal solution when the limited spectral resources are small
in case (1). In case (2), VDI gets almost optimal solutions. It
means that VDI performs well when the weights of requests
are different.
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Fig. 10. Numerical results for Limited spectral resource scenario in case (1).
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Fig. 11. Numerical results for Limited spectral resource scenario in case (2).

4) Random complete graphs: Fig. 12 and Fig. 13 plot the
simulation results on complete graphs that |V | = 13 and
C ∈ {10, 20, 30, 40, 50, 60} in two cases. We can see that if
C ≤ 40, then VDI can get an almost optimal solution. When
C ≥ 50, we just get the near-optimal solution. It means that
when the conflict graph is complete and the spectral resource
is small, the VDI algorithm can get the optimal solution. We
also see that the approximation ratio of case (2) performs better
than that of case (1), which means that VDI performs well
in complete conflict graphs when the weights of requests are
different.
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Fig. 12. Numerical results for complete graphs in case (1).

5) NSFNET, US Backbone and GERMANY: We evaluate
the performance of the VDI algorithm in three famous EON
topologies. We simulate them in case (1), with 30 requests
and C ∈ {25, 40, 55, 70, 85, 100} in Tables V - VII. We
can see that VDI performs well in the real EON topologies.
Furthermore, the VDI can get the optimal or an almost optimal
solution in US Backbone or GERMANY with all the value of
spectral resource C, and performs well than in NSFNET. This
can be interpreted as follows. Note that NSFNET is a small
topology with 14 nodes, while US Backbone has 28 nodes, and
GERMANY has 50 nodes. The larger the topology, the fewer
common links all lightpath pairs will have. When the number
of common links is small, the VDI algorithm can perform
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Fig. 13. Numerical results for complete graphs in case (2).

well.

TABLE V
NUMERICAL RESULTS FOR NSFNET

C 25 40 55 70 85 100
VDI 14 17 23 25 26 28
ILP 14 18 23 27 28 30

TABLE VI
NUMERICAL RESULTS FOR US BACKBONE

C 25 40 55 70 85 100
VDI 11 20 22 23 27 28
ILP 11 20 22 24 28 29

TABLE VII
NUMERICAL RESULTS FOR GERMANY

C 25 40 55 70 85 100
VDI 18 22 25 28 29 29
ILP 18 22 26 28 29 30

Based on the above simulations, we can conclude that the
VDI algorithm closely approximates the optimal solution for
the max-DSA problem in both randomly generated scenarios
and realistic EONs.

VIII. CONCLUSIONS

In this paper, we study the max-DSA problem in EONs.
First, we propose an ILP model to solve it optimally and give
the upper and lower bounds of its optimal value. Then, we
introduce the VDI algorithm to solve max-DSA efficiently and
prove that its time complexity is O(|V |4). We also give a
polynomial-time algorithm, namely ISA, to get the optimal
solution for complete conflict graphs under some constraints.
Finally, we present some simulation results to demonstrate that
the VDI algorithm can find near-optimal solutions for max-
DSA in various conflict graphs.
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