
Imperfect Bandwidth-Sharing Policies using
Network Calculus

Anne Bouillard
Huawei Technologies France SASU,

Boulogne-Billancourt, France
anne.bouillard@huawei.com

Abstract—Bandwidth-sharing policies aim at enforcing fairness
among several classes of traffic by reserving one share of the
available bandwidth for each class. They recently attracted a
lot of attention, in particular in the context of time-sensitive
networking. One advantage of these policies is their simplicity of
implementation, especially the Round-Robin policies. Moreover,
if a traffic class does not use all its reserved bandwidth, the other
classes can use the unused part. Recent works greatly improve
the delay bounds by considering this phenomenon for the Deficit
Round-Robin policy, when the knowledge about the incoming
traffic is available.

There was also an attempt to use this approach for Weighted
Round-Robin policy. Unfortunately, this was incorrect, mainly
due to the variability of the packet lengths and the share
of the bandwidth is not perfectly known. In this paper, we
propose a generalization of bandwidth-sharing policies, that we
call imperfect bandwidth sharing. We compute per-class service
guarantees that correct and improves the state of the art on
Round-Robin policies, and assess through numerical experiments
the algorithmic and performance gain of our solution.

Index Terms—Network calculus, weighted round robin,
scheduling, performance evaluation.

I. INTRODUCTION

Bandwidth-sharing policies are service policies that share
the available bandwidth of a server among different classes of
traffic. The aim is to enforce fairness, by preventing a class
from starving too long. One advantage of these policies is
the ease of implementation. Representative example of such
policies are the Round-Robin (RR) ones [1], that are used
in the context of Time-sensitive networking [2], Networks on
Chips [3]...

RR policies are used when traffic is separated in multiple
classes. Packets of each class are served in rounds: while RR
serves one packet each class at a time, Weighted Round-Robin
(WRR) can serve several packets of a class at each round,
introducing more flexibility for the bandwidth allocated to
each class. Interleaved WRR (IWRR) interleaves the service
of packets of the classes inside each round to reduce the
per-class inter-service time. In Deficit Round-Robin (DRR),
the amount of data served at each round is based on the
quantity of data rather than on a packet count. This latter
policy enforces a perfect share of the bandwidth: for each
class, the bandwidth reserved, and guaranteed, is proportional
to its per-round allocated service. This is similar for WRR
when packets have a per-class fixed packet length, but not for

variable packet lengths, and we will call this policy imperfect
bandwidth-sharing.

One proposed analysis of bandwidth-sharing policies is
Network Calculus [4], whose aim is to compute performance
(end-to-end delays or buffer occupancy) upper bounds in
networks. Broadly speaking, the analysis of a large topology
with several traffic classes is done in two steps. The first
step is modeling, for each server (for example a router, a
switch, the output port of a switch...) and each class a function
characterizing its service guarantee, called a service curve.
Usually, within each class, the scheduling is FIFO (First-in-
First-Out). After characterizing each per-class service, FIFO
per-class networks are obtained, and the second step is the
analysis of these FIFO networks. Several methods have been
studied, for example TFA++ [5], [6], based on the algebraic
properties of Network Calculus, PLP [7], based on linear
programming.

In this paper, we focus on the first step: finding per-class
service curves for (imperfect) bandwidth-sharing policies.
Perfect bandwidth sharing policies have already received a
lot of attention: Generalized Processor-Sharing (GPS) [8], an
idealization of bandwidth-sharing policies, was among the
first service policies to be analyzed, for constant-rate servers.
The analysis was recently generalized [9], [10]. Strict service
curves have first been derived for DRR [11] and WRR [12] and
IWRR [13] without taking into account the characterization of
the incoming traffic. Recently approaches have been adapted to
account for the incoming traffic [10], [14], demonstrating great
improvement of the delay bounds in realistic topologies [15].

An attempt to adapt the approach of [10] to WRR was
done in [16]. The authors assume that the worst-case is to
consider only small packet lengths for the flow of interest and
large packets for the cross traffic. In fact, large packets of the
flow of interest can create large backlogs for the cross-traffic,
which in turn increases the delays of the flow of interest. The
authors have recently proposed a corrected version [17] that
is more similar to [15]. However, this new approach can be
very pessimistic as it can lead to infinite delay bounds even if
the system is stable.

Here is the list of contributions of the paper:
1) We provide a counter-example to [16], demonstrating

that WRR is not a (perfect) bandwidth-sharing policy.
2) We define imperfect bandwidth-sharing policies, that

unifies the approaches of [10] and [15].ISBN 978-3-903176-57-7 © 2023 IFIP

3) We derive strict service curves for WRR and IWRR that
corrects [16] and improves [17]. In particular, we obtain
finite bounds whenever the server is stable.

4) We improve the service curve of [17] for IWRR.
5) We give a heuristic that runs in quadratic time (instead

of exponential) and is a good approximation of WRR,
especially in for constant-length packets.

The rest of the paper is organized as follows: in Section II,
we define the necessary background of Network Calculus. In
Section III, we detail some approaches of the state of the
art of bandwidth-sharing policies. In Section IV, we define
imperfect bandwidth-sharing policies, and derive per-class
service curves. The algorithm and an approximation heuristic
is derived in Section V. Finally, we demonstrate the efficiency
of the analysis though numerical evaluation in Section VI.

II. NETWORK CALCULUS FRAMEWORK

In this section, we present the necessary background for our
analysis. More details can be found in [18], [12].

We consider a server crossed by 𝑛 classes of traffic num-
bered from 1 to 𝑛. We denote by N𝑛 the set {1, . . . , 𝑛} and
for all subset 𝑀 ⊆ N𝑛, its complementary in N𝑛 is denoted
𝑀 (= N𝑛 \ 𝑀). For a sequence (𝑥𝑖)𝑖∈N𝑛

, and 𝑀 ⊆ N𝑛, we
denote 𝑥𝑀 =

∑
𝑗∈𝑀 𝑥 𝑗 .

1) Arrival and departure processes: For each class 𝑖, 𝐴𝑖 :
R+ → R+ is its cumulative arrival process: ∀𝑡 ≥ 0, 𝐴𝑖 (𝑡) is the
amount a data of class 𝑖 arrived up to time 𝑡 in the server (i. e.,
in the time interval [0, 𝑡)). By abuse of the notation, and for
compactness, we will also denote by 𝐴𝑖 (𝑠, 𝑡) = 𝐴𝑖 (𝑡) − 𝐴𝑖 (𝑠)
the amount of data arrived in the time interval [𝑠, 𝑡).

We say that 𝐴𝑖 is constrained by the arrival curve 𝛼𝑖 if
∀𝑠 ≤ 𝑡, 𝐴𝑖 (𝑠, 𝑡) ≤ 𝛼𝑖 (𝑡 − 𝑠). One classical example of arrival
curve is the token-bucket 𝛾𝑏𝑖 ,𝑟𝑖 with arrival rate 𝑟𝑖 and burst
𝑏𝑖: 𝛼𝑖 = 𝛾𝑏𝑖 ,𝑟𝑖 : 0 ↦→ 0; 𝑡 > 0 ↦→ 𝑏𝑖 + 𝑟𝑖𝑡.

We denote by 𝐴 the aggregate arrival process: 𝐴 =
∑𝑛

𝑖=1 𝐴𝑖 .
More generally, for any subset 𝑀 of N𝑛, 𝐴𝑀 =

∑
𝑖∈𝑀 𝐴𝑖 is

the aggregated process of classes in 𝑀 .
Let us denote by 𝐷𝑖 : R+ → R+ the departure cumulative

process of class 𝑖. We assume causality and no loss: no data
is lost or created in the server, and then, 𝐷𝑖 ≤ 𝐴𝑖 . Similarly,
𝐷 is the aggregation of the departure process: 𝐷 =

∑𝑛
𝑖=1 𝐷𝑖 ,

and 𝐷𝑀 =
∑

𝑖∈𝑀 𝐷𝑖 .
The traffic of data is usually not fluid, but made of packets.

For each class 𝑖, we denote by ℓmin
𝑖

and ℓmax
𝑖

minimum and
maximum packet length of class 𝑖.

2) Server and service process: The network calculus frame-
work offers a variety of service curves, and one difficulty is
choosing the most suitable to the context. In this paper, we
will use variable capacity nodes (vcn) with a slight adaptation
of the terminology and strict service curves.

A server is a vcn if there exists a function 𝐶 : R+ → R+
such that for all 𝑡 ≥ 0, 𝐶 (𝑡) is the service is offered to the
incoming traffic up to time 𝑡. Similar to the arrival processes,
𝐶 (𝑠, 𝑡) = 𝐶 (𝑡) −𝐶 (𝑠) is the service offered during the interval
[𝑠, 𝑡). More precisely, if the system is never empty in the time
interval (𝑠, 𝑡], i.e. 𝐴(𝑢) > 𝐷 (𝑢) for all 𝑢 ∈ (𝑠, 𝑡], then the

quantity of data exiting the system during [𝑠, 𝑡) is exactly
𝐷 (𝑠, 𝑡) = 𝐶 (𝑠, 𝑡). The interval (𝑠, 𝑡] is called a backlogged
period. Note that the interval is open on the left because one
could have 𝐴(𝑠) = 𝐷 (𝑠), which would be the start of the
backlogged period.

Often, 𝐶 (𝑠, 𝑡) is not exactly known. Also, we see from
the definition that it is only important to know 𝐶 (𝑠, 𝑡) during
backlogged period. Otherwise, 𝐶 can be fixed arbitrarily. We
say that a server guarantees a vcn 𝐶 if for all 𝑠 ≤ 𝑡 such
that (𝑠, 𝑡] is a backlogged period, 𝐷 (𝑠, 𝑡) ≥ 𝐶 (𝑠, 𝑡). Note that
in this case, 𝐶 is not necessarily deduced from a univariate
function 𝐶 such that 𝐶 (𝑠, 𝑡) = 𝐶 (𝑡) −𝐶 (𝑡), but we can always
assume super-additivity: 𝐶 (𝑠, 𝑢) ≥ 𝐶 (𝑠, 𝑡) + 𝐶 (𝑡, 𝑢) for all
0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑢.

We assume that the server offers a finite long-term service
rate: for all 𝑠 ≥ 0, lim𝑡→∞

𝐶 (𝑠,𝑡)
𝑡−𝑠 = 𝑅 < ∞. We also assume

the existence of a function 𝛽 : R+ → R+ such that ∀𝑠 ≤ 𝑡,
𝐶 (𝑠, 𝑡) ≥ 𝛽(𝑡 − 𝑠). This function 𝛽 is called a strict service
curve1. One classical example of service curve is the rate-
latency service curve with rate 𝑅 and latency 𝑇 , where 𝛽𝑅,𝑇 :
𝑡 ↦→ 𝑅(𝑡 − 𝑇)+ and (𝑥)+ = max(0, 𝑥).

3) Performance guarantees: The aim of network calculus is
to compute performance guarantees, such as delay or backlog
(or buffer usage) upper bounds from the arrival and service
curves, as well as guarantees for the departure processes (used
to propagate the computation for multi-server systems). The
following theorem is fundamental in Network Calculus.

Theorem 1. Assume a server offering a service curve 𝛽

crossed by a class of data with arrival curve 𝛼.
• The backlog of the system is upper bounded by 𝑏 =

sup𝑡≥0 𝛼(𝑡) − 𝛽(𝑡) = 𝑣𝐷𝑒𝑣(𝛼, 𝛽);
• The virtual delay is upper bounded by 𝑑 = inf{𝑠 ≥

0 | ∀𝑡 ∈ R+, 𝛼(𝑡) ≤ 𝛽(𝑡 + 𝑠)};
• An arrival curve of the departure process is 𝛼 ⊘ 𝛽(𝑡) =

sup𝑠≥0 𝛼(𝑡 + 𝑠) − 𝛽(𝑠).

The delay bound is valid if we assume that data are served
in their arrival order, which is not always the case, especially
for multi-class systems: the delay bound depends on the
scheduling policy. One way to tackle the problem of finding
valid delay bounds for each class of traffic is finding service
curves for each class of traffic. Indeed, inside each class of
traffic, the service policy is FIFO, and the delay bound can be
computed with Theorem 1.

The main goal of this paper is then to compute per-class
(strict) service curve 𝛽𝑖 for each class of traffic 𝑖, so Theorem 1
can be applied for each class.

III. NETWORK CALCULUS AND ROUND-ROBIN POLICIES

In RR scheduling, traffic classes are served in rounds: at
each round, every class can be served a certain amount of
data, relying either on a bit-count (DRR) or on a packet-count

1This is rather the definition of a vcn service curve, but it has been shown
that under the finite long-term service rate assumption [12, Th. 9.5], this is
equivalent to the strict service curve. Here, we will reserve the term variable
capacity node for the bivariate service guarantee for more clarity.

(RR or WRR). Moreover, there can be internal sub-rounds
inside each round, that lead to the interleaved round-robin
policies, where one packet per class is served at each sub-
round, until the per-round service limit is reached. Interleaved
policies prevent any class from starving too long. IWRR was
already described in the seminal paper [1], and is precisely
given in [13].

In this section, we provide some results from the state of
the art, first when the characteristics of the traffic (i.e., the
arrival curves) are unknown, then when they are known. We
finally provide a counter-example to [16].

Consider a server offering a strict service curve 𝛽.

A. Traffic-agnostic service curves for Round-robin policies

1) General Processor-Sharing (GPS) [8]: The idealized
bandwidth-sharing policy is GPS. Each class 𝑖 is offered a
proportion 𝜙𝑖 ≥ 0 of the service, with

∑𝑛
𝑖=1 𝜙𝑖 = 1. A strict

service curve for class 𝑖 is then

𝛽𝐺𝑃𝑆
𝑖 = 𝜙𝑖𝛽.

We can observe that
∑𝑛

𝑖=1 𝛽
𝐺𝑃𝑆
𝑖

= 𝛽: there is no cost in
dividing the bandwidth among the classes.

2) Deficit Round Robin (DRR) [11]: Each class 𝑖 is asso-
ciated a quantum 𝑞𝑖 representing the amount of data served
during each round (this is an approximation due to the
packetization). Denoting 𝑄 =

∑𝑛
𝑖=1 𝑞𝑖 , there exists a constant

𝐻𝑖 depending on (𝑞 𝑗 , ℓ
max
𝑗
) 𝑗∈N𝑛

such that a strict service curve
offered to class 𝑖 is

𝛽𝐷𝑅𝑅
𝑖 =

𝑞𝑖

𝑄

(
𝛽 − 𝐻𝑖

)
+
.

One can remark that 𝛽 ≥ ∑𝑛
𝑖=1 𝛽

𝐷𝑅𝑅
𝑖

≥
(
𝛽 −

∑𝑛
𝑖=1 𝑞𝑖𝐻𝑖

𝑄

)
+.

There is a cost to the sharing of the bandwidth, represented by∑𝑛
𝑖=1 𝑞𝑖𝐻𝑖

𝑄
, but on the long run, the sum of the per-class service

rates is the service rate of the server. There is no apparent loss
of bandwidth in this representation. We call this type of policy
perfect bandwidth-sharing.

3) Weighted Round Robin (WRR): Each class 𝑖 is offered
to serve 𝑤𝑖 packets at each round. There exists a constant 𝐻′

𝑖

depending on (𝑤 𝑗 , ℓ
max
𝑖

, ℓmin
𝑗
) 𝑗∈N𝑛

such that

𝛽𝑊𝑅𝑅
𝑖 =

𝑤𝑖ℓ
min
𝑖∑

𝑗≠𝑖 𝑤 𝑗ℓ
max
𝑗
+ 𝑤𝑖ℓ

min
𝑖

(
𝛽 − 𝐻′𝑖

)
+
. (1)

In this third case, we observe that
∑𝑛

𝑖=1 𝛽
𝑊𝑅𝑅
𝑖

≤(∑𝑛
𝑖=1

𝑤𝑖ℓ
min
𝑖∑

𝑗≠𝑖 𝑤 𝑗ℓ
max
𝑗
+𝑤𝑖ℓ

min
𝑖

)
𝛽. For variable-length packets, there

exists 𝜌 < 1 such that
∑

𝑖 𝛽
𝑊𝑅𝑅
𝑖

≤ 𝜌𝛽 and the residual service
curves cannot take account for the full usage of the bandwidth.
We call this type of policy imperfect bandwidth sharing. When
queues are saturated, the bandwidth is fully used, yet its exact
partition between classes is imperfectly known, contrary to
perfect bandwidth-sharing.

In [13], the authors derive several IWRR strict service
curves for fixed-length packets, and a constant rate server
(𝛽 = 𝛽𝑅,0): a tight service curve that alternates between idle
periods (slope 0) and full service (slope 𝑅), and a piece-wise

linear service curve. In particular, one service curve can be
similar to that of Eq. (1), replacing 𝐻′

𝑖
by 𝐻′′

𝑖
< 𝐻′

𝑖
.

The service curves given above can be computed without
the knowledge of the arrival curves of the classes, so they are
called traffic-agnostic. Service curves can be improved with
this knowledge.

B. Cross-traffic aware service curves for RR policies

Bandwidth-sharing policy (Def. 1) has been defined in [10]
and includes GPS and DRR. To differentiate from the imper-
fect bandwidth-sharing defined in Section IV, we call it perfect
bandwidth-sharing.

1) GPS and DRR:

Definition 1. A server has a perfect bandwidth-sharing policy
if there exist positive numbers (𝜙𝑖)1≤𝑖≤𝑛 and non-negative
numbers (𝐻𝑖, 𝑗)1≤𝑖, 𝑗≤𝑛 such that for all 𝑖 ≠ 𝑗 , for all back-
logged period (𝑠, 𝑡] of class 𝑖,

𝜙 𝑗𝐷𝑖 (𝑠, 𝑡) ≥ 𝜙𝑖 (𝐷 𝑗 (𝑠, 𝑡) − 𝐻𝑖, 𝑗)+. (2)

This definition recovers GPS (when 𝐻𝑖, 𝑗 = 0 for all 𝑖, 𝑗) and
DRR. In the framework of network calculus, the first work
about GPS in [8] solves the case for a constant-rate server.
This result is generalized to convex service curves and concave
arrival curves in [9], and an alternative proof is given in [10],
that is also valid for all perfect bandwidth sharing policies.

Theorem 2. There exist non-negative constants (𝐻𝑖,𝑀)𝑖,𝑀⊆N𝑛

depending on (𝜙 𝑗 , 𝐻𝑖, 𝑗)𝑖, 𝑗 only such that a strict service curve
for class 𝑖 is

𝛽𝑖 = sup
𝑀⊆N𝑛\{𝑖}

𝜙𝑖

Φ
𝑀

(
𝛽 −

∑︁
𝑗∈𝑀

𝛼 𝑗 − 𝐻𝑖,𝑀

)
+
, (3)

with 𝐻𝑖,𝑀 = 0 for the GPS policy.

Another method has been proposed in [15]. First the au-
thors derive a more precise traffic-agnostic service curve as
𝛽𝐷𝑅𝑅
𝑖

= 𝜓𝑖 (𝛽), where 𝜓𝑖 is a non-decreasing function. They
propose two solutions: the tighter model where 𝜓𝑖 is a function
modeling precisely the alternation of idle (slope 0) and service
(slope R) periods for each class, and the linear model, where
𝜓𝑖 is a piece-wise linear convex function. This is due to a
more precise modeling of a bandwidth-sharing policy, where
Eq. (2) is replaced by 𝐷𝑖 (𝑠, 𝑡) ≥ 𝜓𝑖, 𝑗 (𝐷 𝑗 (𝑠, 𝑡)). To obtain
traffic-aware service curves, they combine this with the result
stating that if 𝛽𝑘 are per-class service curves for classes 𝑘 ∈ 𝑀 ,
then (𝛽 − ∑

𝑘∈𝑀 𝛼𝑘 ⊘ 𝛽𝑘)+ is a strict service curve for the
aggregations of classes in 𝑀 . This result can be combined with
the traffic-agnostic result, and the per-class service curves can
be computed iteratively with the formula for class 𝑖:

𝛽𝑖 = sup
𝑀⊆N𝑛\{𝑖}

𝜓
𝑖,𝑀

(
𝛽 −

∑︁
𝑗∈𝑀

𝛼 𝑗 ⊘ 𝛽 𝑗

)
+
, (4)

for some functions 𝜓
𝑗 ,𝑀

depending on the 𝜓𝑖, 𝑗 ’s only.
Experimentally, these latter bounds are better than with

Th. 2, even in the linear model. However, no proof has

been given. We show on a simplified example that these two
methods may not be comparable.

Example 1. Consider two classes, with 𝛽 : 𝑡 ↦→ 𝑅(𝑡−𝑇)+, and
𝛼1 (𝑡) = 𝑏1 + 𝑟1𝑡. Assume that for 𝑖 ∈ {1, 2}, 𝜙3−𝑖𝐷𝑖 (𝑠, 𝑡) ≥
𝜙𝑖 (𝐷3−𝑖 (𝑠, 𝑡) − 𝐻𝑖)+, and that 𝜙1𝑅 > 𝑟1, and 𝜙1 + 𝜙2 = 1.
A first strict service curve for class 𝑖 is 𝛽1

𝑖
= 𝜙𝑖 (𝛽 − 𝐻𝑖)+.

Another strict service curve for class 2 can be derived as

• [15]: 𝛽2
2 = (𝛽−𝛼1⊘𝛽1

1)+ = (𝑅−𝑟1) (𝑡−𝑇+
𝑏1+𝑟1 (2𝑇+

𝐻1
𝑅
)

𝑅−𝑟1
)+;

• [10]: 𝛽3
2 = (𝛽 − 𝛼1 − 𝜙1𝐻1)+ = (𝑅 − 𝑟1) (𝑡 − 𝑇 −

𝑏1+𝑟1𝑇+𝜙1𝐻1
𝑅−𝑟1

)+.
Let us compare 𝛽2

2 and 𝛽3
2.

• If 𝐻1 = 0, as in GPS, then the price of the latency of 𝛽
is paid twice in [15], and [10] is better than [15];

• If 𝑇 = 0 then [15] is better than [10] if 𝜙1 >
𝑟1
𝑅

, which
is often the case.

2) WRR is not a perfect bandwidth-sharing policy: In [16],
the authors claim that WRR is a bandwidth-policy, and that
Theorem 2 can be applied with 𝜙𝑖 = 𝑤𝑖ℓ

min
𝑖

and 𝜙 𝑗 = 𝑤 𝑗ℓ
max
𝑗

for all 𝑗 ≠ 𝑖. They moreover claim a simplification of the result
compared to [10] : 𝐻 𝑗 ,𝑀 =

∑
𝑖∈𝑀\{ 𝑗 } 𝐻 𝑗 ,𝑖 .

In the case of a two-class server,

𝛽2 = max
(𝜙2
𝜙2 + 𝜙1

(𝛽 − 𝐻2,1)+, (𝛽 − 𝛼1)+
)

is a strict service curve for class 2, and in particular, (𝛽−𝛼1)+
is a strict service curve.

Let us first give an example that contradicts this result.

Example 2. Assume that for 𝑖 ∈ {1, 2}, 𝑤𝑖 = 1, ℓmin
𝑖

= 1,
ℓmax
𝑖

= 3, that 𝛼1 = 𝛾3,1/2 and that the servers serves exactly
one packet per time unit (it guarantees the strict service curve
𝛽 = 𝛽1,0). The arrival and departure processes are represented
in Table I: packets of class 1 are numbered 𝑎𝑖 and packets of
class 2 𝑏𝑖 . The intuition is the following: from time 0 to time
6, five long packets arrive for class 2 and five short packets
for class 1. It takes up to time 23 to serve these packets. In
the meantime, five long packets of class 1 arrive, conform to
the arrival curve 𝛼1, creating a backlog that will be served
from time 23. This backlog will reduce the service, hence
increase the delay for class 2, which is not taken into account
in (𝛽 − 𝛼1)+. Class 2 is not backlogged from time 23 to 24,
and five small packets arrive at time 24, so time 24 is a start
of a backlogged period for class 2. These packets are served
alternately with the five long packets of class 1. Packet 𝑏11 is
served at time 43. One the one hand, 𝐷2 (43) − 𝐷2 (24) = 5.
On the other hand, (𝛽−𝛼1)+ (𝑡) = (𝑡−3− 1

2 𝑡)+ =
1
2 (𝑡−6)+ and

(𝛽 − 𝛼1)+ (19) = 6.5 > 5. So (𝛽 − 𝛼1)+ is not a strict service
curve for class 2.

Beyond disproving the result from [16], this example also
shows that WRR is not a bandwidth-sharing policy as defined
in Def. 1. Indeed, from Th. 2, there would exists 𝐻 ≥ 0,
independent on 𝛼1 and 𝛼2 such that (𝛽 − 𝛼1 − 𝐻)+ is a strict
service curve for class 2. To prove this does not hold, the
example can also be modified by increasing the number of

packets arriving in the both phases, creating a larger backlog
at the start of second phase and reduce the service for class 2.

Computing a correct arrival curve, requires either knowing
𝛼2 (to compute a backlog upper bound), or using both ℓmin

𝑖

and ℓmax
𝑖

for each class.

IV. IMPERFECT BANDWIDTH-SHARING POLICY

In this section, we define the imperfect bandwidth-sharing
policy, in order to give a general method to compute a strict
service curves for each class of traffic for scheduling policies
such as WRR or IWRR. Compared to [10], we will generalize
the definition, inspired by the work of [15], to allow a more
precise modeling of these policies. Nevertheless, for the sake
of conciseness, we focus on linear modelings only.

A. Definition

Definition 2. The server has an imperfect bandwidth-sharing
policy if there exist non-negative and non-decreasing functions
(b𝑖, 𝑗)1≤𝑖, 𝑗≤𝑛, such that for all class 𝑖, for all backlogged period
(𝑠, 𝑡] of class 𝑖, for all class 𝑗 ,

b𝑖, 𝑗 (𝐷𝑖 (𝑠, 𝑡)) ≥ 𝐷 𝑗 (𝑠, 𝑡).

We can assume that b𝑖,𝑖 is the identity function. One could
enforce that b𝑖, 𝑗 (0) = 0, but this is not necessary.

One can first remark that this is a generalization of the
perfect bandwidth-sharing policies: in that case we have b𝑖, 𝑗 =
𝛾
𝐻𝑖, 𝑗 ,

𝜙𝑗

𝜙𝑖

. Therefore, perfect bandwidth-sharing could also be

defined with functions b𝑖, 𝑗 replacing parameters 𝜙𝑖, 𝑗 and 𝐻𝑖, 𝑗 .
If 𝑟𝑖, 𝑗 is the long-term growth rate of b𝑖, 𝑗 , perfect bandwidth-
sharing policies impose that 𝑟𝑖, 𝑗 = 1/𝑟 𝑗 ,𝑖 , which is not the
case for imperfect bandwidth-sharing policies.

B. Examples of imperfect bandwidth-sharing policies

Let us now give some examples of imperfect bandwidth-
sharing policies.

1) WRR is an imperfect bandwidth-sharing policy: With
the notations defined in Section III, the result can be directly
adapted from [16],

𝑤 𝑗ℓ
max
𝑗

𝑤 𝑗ℓ
min
𝑖

𝐷𝑖 (𝑠, 𝑡) + 𝑤 𝑗ℓ
max
𝑗 ≥ 𝐷 𝑗 (𝑠, 𝑡).

From the remark above, a perfect bandwidth-sharing would
impose that ℓmax

𝑖
= ℓmin

𝑖
for all class 𝑖.

2) IWRR is an imperfect bandwidth-sharing policy: An
adaptation from [16] would be straightforward, but function
b𝑖, 𝑗 can be improved.

Lemma 1. Consider a server with IWRR policy. Then for all
𝑖, 𝑗 ∈ N𝑛, for all backlogged period (𝑠, 𝑡] of class 𝑖,

𝑤 𝑗ℓ
max
𝑗

𝑤 𝑗ℓ
min
𝑖

𝐷𝑖 (𝑠, 𝑡) + ℎ𝑖, 𝑗ℓmax
𝑗 ≥ 𝐷 𝑗 (𝑠, 𝑡),

with ℎ𝑖, 𝑗 = 𝑤 𝑗 − 𝑤𝑖 if 𝑤 𝑗 > 𝑤𝑖 and ℎ𝑖, 𝑗 = 𝑤 𝑗

(
1 − 𝑤 𝑗−1

𝑤𝑖

)
if

𝑤𝑖 ≥ 𝑤 𝑗 .

Proof. Consider (𝑠, 𝑡] a backlogged period for class 𝑖, and
assume that 𝑝 packets are completely served. Let us compute

Arrival process:
packet 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8 𝑏9 𝑏10 𝑏11
length 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1

arr. time 0 0 0 3 6 10 16 22 28 34 0 0 0 0 0 0 24 24 24 24 24
Departure process:

packet 𝑏1 𝑎1 𝑏2 𝑎2 𝑏3 𝑎3 𝑏4 𝑎4 𝑏5 𝑎5 𝑏6 𝑎6 𝑏7 𝑎7 𝑏8 𝑎8 𝑏9 𝑎9 𝑏10 𝑎10 𝑏11
length 3 1 3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1

dep. time 3 4 7 8 11 12 15 16 19 20 23 26 27 30 31 34 35 38 39 42 43

TABLE I: Arrival and departure processes for the counter-example to [16].

an upper bound 𝐾 of the number of packets (partially) served
for class 𝑗 during this time interval. From [16], 𝐾 ≥ ⌊ 𝑝

𝑤𝑖
⌋𝑤 𝑗 +

(𝑤 𝑗 − 𝑤𝑖)+ +min((𝑝 mod 𝑤𝑖) + 1, 𝑤 𝑗).
The first term corresponds to consecutive rounds of service

of 𝑤𝑖 packets of class 𝑖, during which 𝑤 𝑗 packets of class
𝑗 are served. The two other terms account for the remaining
packets, either at the start of a round (packets are served in
turn) or at the end (packets of class 𝑗 might be served in a
row if 𝑤𝑖 < 𝑤 𝑗). If 𝑤𝑖 < 𝑤 𝑗 , then 𝐾 ≤ 𝑤 𝑗

𝑤𝑖
𝑝 + 𝑤 𝑗 − 𝑤𝑖 + 1. If

𝑤𝑖 ≥ 𝑤 𝑗 , note that for all 𝑥 < 𝑤𝑖 , min(𝑥 mod 𝑤𝑖 + 1, 𝑤 𝑗) ≤
𝑤 𝑗

𝑤𝑖
𝑥 + 𝑤 𝑗 −

𝑤 𝑗

𝑤𝑖
(𝑤 𝑗 − 1). Then 𝐾 ≤ 𝑤 𝑗

𝑤𝑖
𝑝 + 𝑤 𝑗 −

𝑤 𝑗

𝑤𝑖
(𝑤 𝑗 − 1).

We have 𝐷𝑖 (𝑠, 𝑡) ≥ 𝑝ℓmin
𝑖

and 𝐷 𝑗 (𝑠, 𝑡) ≤ 𝐾ℓmax
𝑗
≤

(𝑤 𝑗

𝑤𝑖
𝑝 +

𝑤 𝑗 −
𝑤 𝑗

𝑤𝑖
(𝑤 𝑗 − 1)

)
ℓmax
𝑗

, hence the result after rewritings. □

Note that our formula differs from that of [16] because there,
min((𝑝 mod 𝑤𝑖) + 1, 𝑤 𝑗) is bounded by 𝑝.

3) Packets distribution: We can also take advantage of
more knowledge about the packet-length distribution in each
class. For example, packets could be split into chunks of
similar size, except for the last chunk that could be smaller.
If ℓ is the length of the chunk, and ℎ𝑖 =

⌈ ℓmin
𝑖

ℓ

⌉
, we know that

there is at most one chunk shorter than ℓ every ℎ𝑖 chunks, and
obtain the following inequality, proved in Appendix A.

ℎ𝑖𝑤 𝑗

(ℎ𝑖 − 1)𝑤𝑖

𝐷𝑖 (𝑠, 𝑡) + 𝑤 𝑗ℓ +
𝑤 𝑗

𝑤𝑖

ℓ ≥ 𝐷 𝑗 (𝑠, 𝑡). (5)

C. Vcn guarantees and strict service curve for each class

We now derive vcn guarantees for each class. We proceed
in several steps. First, Lemma 2 is used to compute a per-class
vcn guarantee from a vcn guarantee for the aggregation of a
subset of classes. Second, from per-class vcn guarantees of
a subset of classes, one can compute a vcn guarantee of an
aggregation of classes (Theorem 3).

1) A cross-traffic agnostic vcn for each class: Suppose that
we are able to compute a vcn guarantee 𝐶𝑎𝑔

𝑀
for the aggregate

classes in 𝑀 ⊆ N𝑛 of classes. Lemma 2 shows how to derive
a vcn guarantee for each class 𝑖 ∈ 𝑀 .

Lemma 2. If 𝐶𝑎𝑔

𝑀
is a vcn guarantee for the aggregate classes

in 𝑀 , then for all 𝑖 ∈ 𝑀 ,

𝐶𝑖 = 𝜓𝑖,𝑀 ◦ 𝐶𝑎𝑔

𝑀
(6)

is a vcn guarantee for class 𝑖 with 𝜓𝑖,𝑀 = (∑ 𝑗∈𝑀 b𝑖, 𝑗)−1, and
𝑓 −1 (𝑥) = inf{𝑧 ≥ 0 | 𝑓 (𝑧) ≥ 𝑥}.

Proof. For all 𝑠, 𝑡 ∈ R+ such that (𝑠, 𝑡] is a backlogged for
class 𝑖, for all 𝑗 ∈ 𝑀 , b𝑖, 𝑗 (𝐷𝑖 (𝑠, 𝑡)) ≥ 𝐷 𝑗 (𝑠, 𝑡). Therefore,

∑
𝑗∈𝑀 b𝑖, 𝑗 (𝐷𝑖 (𝑠, 𝑡)) ≥

∑
𝑗∈𝑀 𝐷 𝑗 (𝑠, 𝑡). Since (𝑠, 𝑡] is also a

backlogged period for the aggregate classes in 𝑀 ,∑︁
𝑗∈𝑀

𝐷 𝑗 (𝑠, 𝑡) ≥ 𝐶𝑎𝑔

𝑀
(𝑠, 𝑡),

and then
(∑

𝑗∈𝑀 b𝑖, 𝑗

)
(𝐷𝑖 (𝑠, 𝑡)) ≥ 𝐶𝑎𝑔

𝑀
(𝑠, 𝑡). Denoting 𝜓𝑖,𝑀 =

(∑ 𝑗∈𝑀 b𝑖, 𝑗)−1, we obtain 𝐷𝑖 (𝑠, 𝑡) ≥ 𝜓𝑖,𝑀 (𝐶𝑎𝑔

𝑀
(𝑠, 𝑡)), which

concludes the proof. □

When 𝑀 = N𝑛, per-class traffic-agnostic guarantees are
computed.

2) A vcn guarantees for aggregated classes: The next step
is to compute a vcn guarantee for classes 𝑀 ⊆ N𝑛, so that
Lemma 2 can be applied to any subset of classes.

Theorem 3. Assume that 𝐶 is a vcn guarantee for the server,
with strict service curve 𝛽, and that there exists 𝑀 ⊆ N𝑛 such
that each class 𝑗 ∈ 𝑀 has a vcn guarantee 𝐶 𝑗 ≥ 𝜓 𝑗 ◦𝐶, for a
non-decreasing function 𝜓 𝑗 such that 𝜓 𝑗 (0) = 0. Then 𝐶𝑎𝑔

𝑀
is

a vcn guarantee for the aggregated classes in 𝑀 , where, for
all 𝑠 ≤ 𝑡,

𝐶
𝑎𝑔

𝑀
(𝑠, 𝑡) ≥ 𝐶 (𝑠, 𝑡) −

∑︁
𝑗∈𝑀

sup
{
𝛼 𝑗 (𝑡 − 𝑠 + 𝑣 𝑗) − 𝜓 𝑗 (𝑌 𝑗)

��
∀ 𝑗 ∈ 𝑀, 𝑣 𝑗 ≥ 0, 𝑌 𝑗 ≥ max(𝛽(𝑣 𝑗), 𝛽(𝑡 − 𝑠 + 𝑣 𝑗) −𝐶 (𝑠, 𝑡))

}
.

(7)

Proof. Let 𝑠 and 𝑡 be such that (𝑠, 𝑡] is a backlogged period
for classes 𝑀 . Then, 𝐷 (𝑠, 𝑡) ≥ 𝐶 (𝑠, 𝑡).

For all 𝑗 ∈ 𝑀 , let 𝑝 𝑗 = sup{𝑣 ≤ 𝑠 | 𝐴 𝑗 (𝑣) = 𝐷 𝑗 (𝑣)} be the
last start of backlogged period of class 𝑗 before time 𝑠. On
the one hand, from the hypothesis,

𝐷 𝑗 (𝑝 𝑗 , 𝑠) ≥ 𝐶 𝑗 (𝑝 𝑗 , 𝑠) ≥ 𝜓 𝑗 (𝐶 (𝑝 𝑗 , 𝑠)). (8)

On the other hand, for all 𝑗 ∈ 𝑀 , 𝐷 𝑗 (𝑝 𝑗 , 𝑡) = 𝐷 𝑗 (𝑡) −
𝐷 𝑗 (𝑝 𝑗) = 𝐷 𝑗 (𝑡) − 𝐴 𝑗 (𝑝 𝑗) ≤ 𝐴 𝑗 (𝑡) − 𝐴 𝑗 (𝑝 𝑗) = 𝐴 𝑗 (𝑝 𝑗 , 𝑡) ≤
𝛼 𝑗 (𝑡 − 𝑝 𝑗).

Recall that 𝐷𝑀 =
∑

𝑗≠𝑀 𝐷 𝑗 . Combining the two previous
inequalities, we obtain

𝐷𝑀 (𝑠, 𝑡) ≥ 𝐶 (𝑠, 𝑡) −
∑︁
𝑗∈𝑀

𝐷 𝑗 (𝑠, 𝑡)

= 𝐶 (𝑠, 𝑡) −
∑︁
𝑗∈𝑀

(
𝐷 𝑗 (𝑝 𝑗 , 𝑡) − 𝐷 𝑗 (𝑝 𝑗 , 𝑠)

)
≥ 𝐶 (𝑠, 𝑡) −

∑︁
𝑗∈𝑀

(
𝛼 𝑗 (𝑡 − 𝑝 𝑗) − 𝜓 𝑗 (𝐶 (𝑝 𝑗 , 𝑠))

)
(9)

≥ 𝐶 (𝑠, 𝑡) −
∑︁
𝑗∈𝑀

sup
𝑝 𝑗≤𝑠

(
𝛼 𝑗 (𝑡 − 𝑝 𝑗) − 𝜓 𝑗 (𝐶 (𝑝 𝑗 , 𝑠))

)
. (10)

Since (𝑝 𝑗 , 𝑠] is a backlogged period for class 𝑗 and (𝑠, 𝑡] a
backlogged period for classes 𝑀 , then (𝑝 𝑗 , 𝑡] is a backlogged
period for the system, and the inequalities 𝐶 (𝑥, 𝑦) ≥ 𝛽(𝑥 −
𝑦) must hold for (𝑥, 𝑦) ∈ {(𝑝 𝑗 , 𝑠), (𝑝 𝑗 , 𝑡)}, so 𝐶 (𝑝 𝑗 , 𝑠) ≥
𝛽(𝑠− 𝑝 𝑗) and, since 𝐶 is super-additive, 𝐶 (𝑝 𝑗 , 𝑡) ≥ 𝐶 (𝑝 𝑗 , 𝑠) +
𝐶 (𝑠, 𝑡) ≥ 𝛽(𝑡−𝑝 𝑗). We obtain the formulation of the statement
in Eq. (7) with 𝑣 𝑗 = 𝑠 − 𝑝 𝑗 , and 𝑌 𝑗 = 𝐶 (𝑝 𝑗 , 𝑠). □

In order to solve the optimization given in Eq. (7) easily,
we specify this theorem to the linear model, where 𝛽 = 𝛽𝑅,𝑇
is a rate-latency function and 𝛼 𝑗 = 𝛾𝑏 𝑗 ,𝑟 𝑗 are token-bucket
functions.

Corollary 1. With the same hypotheses and notations as
above, if moreover 𝛽 = 𝛽𝑅,𝑇 , and 𝛼 𝑗 = 𝛾𝑏 𝑗 ,𝑟 𝑗 , then 𝐶

𝑎𝑔

𝑀
is

a vcn guarantee for the aggregated classes in 𝑀 , where, for
all 𝑠 ≤ 𝑡,

𝐶
𝑎𝑔

𝑀
(𝑠, 𝑡) ≥

(
(1 − 𝑟

𝑀

𝑅
)𝐶 (𝑠, 𝑡) − (𝑏𝑀 + 𝑟𝑀𝑇 + 𝑞𝑀)

)
+
.

where 𝑞 𝑗 = sup𝑡≥0 𝑟 𝑗 𝑡 − 𝜓 𝑗 (𝑅𝑡) and 𝑥𝑀 =
∑

𝑗∈𝑀 𝑥 𝑗 .

Proof. Since 𝐶 (𝑠, 𝑡) ≥ 𝑅(𝑡 − 𝑠 −𝑇)+, there exists 𝑇1 ≤ 𝑇 such
that 𝐶 (𝑠, 𝑡) = 𝑅(𝑡 − 𝑠 − 𝑇1). Then, we have

𝑌 𝑗 ≥ (𝑅(𝑡 − 𝑠 + 𝑣 𝑗 − 𝑇)+ − 𝑅(𝑡 − 𝑠 − 𝑇1))+ ≥ 𝑅(𝑣 𝑗 − 𝑇 + 𝑇1)+.

For all classes 𝑗 ∈ 𝑀 , let us bound the supremum of
Equation (7) using this bound on 𝑌 𝑗 :

sup{𝛼 𝑗 (𝑡 − 𝑠 + 𝑣 𝑗) − 𝜓 𝑗 (𝑌 𝑗) |
𝑣 𝑗 ≥ 0, 𝑌 𝑗 ≥ max(𝛽(𝑣 𝑗), 𝛽(𝑡 − 𝑠 + 𝑣 𝑗) − 𝐶 (𝑠, 𝑡))}

≤ sup{𝑏 𝑗 + 𝑟 𝑗 (𝑡 − 𝑠 + 𝑣 𝑗) − 𝜓 𝑗 (𝑅(𝑣 𝑗 − 𝑇 + 𝑇1)+) | 𝑣 𝑗 ≥ 0}
= 𝑏 𝑗 + 𝑟 𝑗 (𝑡 − 𝑠 + 𝑇 − 𝑇1) + sup

𝑣 𝑗≥0
{𝑟 𝑗 (𝑣 𝑗) − 𝜓 𝑗 (𝑅𝑣 𝑗)}

= 𝑏 𝑗 + 𝑟 𝑗 (𝑡 − 𝑠 + 𝑇 − 𝑇1) + 𝑞 𝑗 .

When summing those terms, we obtain

𝐶
𝑎𝑔

𝑀
(𝑠, 𝑡) ≥ 𝐶 (𝑠, 𝑡) − (𝑏𝑀 + 𝑟𝑀 (𝑡 − 𝑠 + 𝑇 − 𝑇1) + 𝑞𝑀).

Now, one can express 𝑇1 as 𝑇1 = 𝑡 − 𝑠 − 𝐶 (𝑠,𝑡)
𝑅

, and

𝐶
𝑎𝑔

𝑀
(𝑠, 𝑡) ≥ 𝐶 (𝑠, 𝑡) − (𝑏𝑀 + 𝑟𝑀 (𝑇 + 𝐶 (𝑠, 𝑡)

𝑅
) + 𝑞𝑀)

= (1 − 𝑟
𝑀

𝑅
)𝐶 (𝑠, 𝑡) − (𝑏𝑀 + 𝑟𝑀𝑇 + 𝑞𝑀).

We conclude by remarking that 𝐶𝑎𝑔

𝑀
≥ 0. □

A strict service curve can be deduced by bounding the
variable capacity node of the server by its strict service curve:
𝐶 (𝑠, 𝑡) ≥ 𝛽(𝑡 − 𝑠) for all 𝑠 ≤ 𝑡.

Corollary 2. With the same assumptions as Cor. 1, a strict
service curve for classes 𝑀 is 𝛽𝑎𝑔

𝑀
= (𝛽 −∑ 𝑗∈𝑀 (𝛼 𝑗 + 𝑞 𝑗))+.

Example 3. Consider again Example 1. We find 𝑞1 =
𝑟1𝐻1
𝑅

,
so that Corollary 2 gives

𝛽4
2 = (𝑅 − 𝑟1)

(
𝑡 − 𝑇 +

𝑏1 + 𝑟1 (𝑇 + 𝐻1
𝑅
)

𝑅 − 𝑟1

)
+
,

and [15] is improved by 𝑟1
𝑅−𝑟1

𝑇 compared to 𝛽2
2 and while [10]

is improved by (𝜙1 − 𝑟1
𝑅
)𝐻1 compared to 𝛽3

2.

Note that Corollaries 1 and 2 do not require that the 𝜓 𝑗 ’s
are linear, so it can also be applied to the tight model of [15].

D. Dealing with the stability issue

The results of the previous section may not be enough to
compute finite performance bounds, as illustrated next.

Example 4. Consider the RR server with 2 classes, with
ℓmin = 1 and ℓmax = 2. Then, b1,2 = b2,1 = 𝛾2,2: 𝐷1 (𝑠, 𝑡) ≥
2(𝐷2 (𝑠, 𝑡)−2)+. Assume that 𝛽 = 𝛽1,0 and that 𝛼1 = 𝛼2 = 𝛾𝑏,𝑟 .
We have 𝜓1 = (b1,2 + 𝐼𝑑)−1 = 𝛽1/3,2. The service rate
guaranteed to class 1 is 1/3 (and similarly for class 2 by
symmetry). Finite bounds for 𝑞1 can be found only if 𝑟 ≤ 1/3,
and finite performance bounds can be finite, using this theorem
only if the load of the system is less than 0. 667.

We now solve this issue in the linear model. The idea is to
use backlog upper bounds for each subset of classes. Assume
the server is stable:

∑
𝑖∈N𝑛

𝑟𝑖 < 𝑅. We can compute an upper
bound of the backlog in the server: 𝐵 = sup𝑡≥0

∑
𝑖 𝛼𝑖 (𝑡) − 𝛽(𝑡).

This is also an upper bound of the backlog for any subset of
class.

More precisely, we can improve Corollary 1 if we know a
backlog bound 𝐵𝑀 for the aggregation of classes in 𝑀 .

Theorem 4. With the same hypotheses and notations as in
Cor. 1, and if 𝐵𝑀 is an upper bound for the backlog of classes
in 𝑀 at any time, then 𝐶𝑀

𝐵
is a vcn guarantee for classes 𝑀

where 𝐶𝑎𝑔

𝑀
is defined for all 0 ≤ 𝑠 ≤ 𝑡 as

𝐶
𝑎𝑔

𝑀
(𝑠, 𝑡) =

(
𝐶 (𝑠, 𝑡) − 𝑟𝑀𝑗 (𝑡 − 𝑠) − 𝐵𝑀

)
+.

Proof. We use a result from [12, Theorem 5.4], stating that if
1) (𝛾𝑏 𝑗 ,𝑟 𝑗) 𝑗∈𝑀 are respective arrival curves for classes 𝑗 ∈ 𝑀 ,
and this is their only constraints; 2) the service curve 𝛽 is
continuous; 3) the server is causal; 4) 𝐵𝑀 is a backlog upper
bound for the aggregate classes 𝑗 ∈ 𝑀 , then 𝛾𝐵𝑀 ,𝑟𝑀 is an
arrival curve for the departure process. The assumptions are
satisfied by our server, so for all 𝑠 ≤ 𝑡, 𝐷𝑀 (𝑠, 𝑡) ≤ 𝐵𝑀 +
𝑟𝑀 (𝑡 − 𝑠).

For all 𝑠 ≤ 𝑡 in the same backlogged period for classes 𝑀 ,
𝐷𝑀 (𝑠, 𝑡) ≥ 0 and

𝐷𝑀 (𝑠, 𝑡) ≥ 𝐶 (𝑠, 𝑡) − 𝐷𝑀 (𝑠, 𝑡)
≥ 𝐶 (𝑠, 𝑡) − 𝐵𝑀 − 𝑟𝑀 (𝑡 − 𝑠).

□

One can now regroup Theorem 4 and Corollary 1.

Corollary 3. With the same notations as in Theorem 4, a vcn
guarantee for aggregate classes 𝑀 is

𝐶
𝑎𝑔

𝑀
(𝑠, 𝑡) ≥

(
(1 − 𝑟

𝑀

𝑅
)𝐶 (𝑠, 𝑡) −min(𝑏𝑀 + 𝑞𝑀 , 𝐵𝑀) − 𝑟𝑀𝑇

)
+
.

Proof. We start by deriving another variable capacity node
from Theorem 4. First notice that

𝐶 (𝑠, 𝑡) ≥ 𝑅(𝑡 − 𝑠 − 𝑇)+ ≥ 𝑅(𝑡 − 𝑠 − 𝑇),

so 𝑟𝑀 (𝑡−𝑠) ≤ 𝑟𝑀

𝑅
𝐶 (𝑠, 𝑡)+𝑟𝑀𝑇 . As a consequence, 𝐶𝑎𝑔

𝑀
(𝑠, 𝑡) ≥

(𝐶 (𝑠, 𝑡) − 𝑟𝑀

𝑅
𝐶 (𝑠, 𝑡) −𝑟𝑀𝑇 −𝐵𝑀)+ = ((1− 𝑟𝑀

𝑅
)𝐶 (𝑠, 𝑡) −𝑟𝑀𝑇 −

𝐵𝑀)+. We conclude by taking the maximum with the vcn
guarantee from Cor. 1. □

Example 5. Continuing from Example 4, a backlog upper
bound for the server is 2𝑏, so class 2 is guaranteed a variable
capacity node 𝐶1 ≥ ((1 − 𝑟)𝐶 − 2𝑏)+ from Corollary 3, and
then combining with Lemma 2, we obtain 𝐶1 (𝑠, 𝑡) ≥ max((1−
𝑟)𝐶 − 2𝑏)+, 1

3 (𝐶 (𝑠, 𝑡) − 2)+), which ensures finite performance
bounds for any server load under 1.

V. ALGORITHMS FOR IMPERFECT BANDWIDTH SHARING

We now focus on the algorithmic aspect of computing
service curves for imperfect bandwidth-sharing scheduling. We
first give an iterative algorithm that has an exponential-time
complexity. and then give a simpler heuristic.

A. Iterative algorithm

Let us denote 𝜒
𝑀

: 𝑡 ↦→
(
(1− 𝑟𝑀

𝑅
)𝑥 −min(𝑏𝑀 + 𝑞𝑀 , 𝐵𝑀) −

𝑟𝑀𝑇
)
+. If we combine Lemma 2 and Corollary 3 to subset 𝑀

and class 𝑖 ∉ 𝑀 , one gets that 𝜓
𝑖,𝑀
◦𝜒

𝑀
◦𝐶 is a vcn guarantee

for class 𝑖, and that 𝛽𝑖 = 𝜓𝑖,𝑀
◦ 𝜒

𝑀
◦ 𝛽 is a strict service curve

for class 𝑖. We denote 𝛽𝑎𝑔
𝑀

= 𝜒
𝑀
◦ 𝛽.

We have the following dependencies:
• 𝛽𝑖 depends on 𝛽

𝑎𝑔

𝑀
;

• 𝛽𝑎𝑔
𝑀

depends on (𝛽 𝑗) 𝑗∈𝑀 and 𝐵𝑀 ;
• 𝐵𝑀 depends on 𝛽

𝑎𝑔

𝑀
.

Algorithm 1 is an iterative scheme to solve these inter-
dependencies and compute per-class strict service curves.

First, one can define constants that depend only on the server
and traffic parameters: the arrival curves (𝛼 𝑗) 𝑗∈N𝑛

, the service
curve 𝛽, and (b𝑖, 𝑗)𝑖, 𝑗∈N𝑛

as defined in Def. 2. We can also
pre-compute and store the following constants:
• 𝜓𝑖,𝑀 = (∑ 𝑗∈𝑀 b𝑖, 𝑗)−1 (see Lemma 2);
• 𝛼𝑀 =

∑
𝑗∈𝑀 𝛼 𝑗 , the aggregate arrival curves.

Second, the variables used in the algorithm, and basic
functions to compute them are the following:
• Aggregate backlog for the subset of classes 𝑀 , 𝑀 ⊆ N𝑛:
𝐵𝑀 = AGGBACK(𝑀, 𝛽𝑎𝑔

𝑀
) = 𝑣𝐷𝑒𝑣(𝛼𝑀 , 𝛽

𝑎𝑔

𝑀
) (Th. 1);

• Per-class service curve for class 𝑖 ∈ N𝑛:
𝛽𝑖 = CLSSC(𝑖, 𝑀, 𝛽𝑎𝑔

𝑀
) (Lemma 2);

• Aggregate service curve for subset 𝑀 ⊆ N𝑛:
𝛽
𝑎𝑔

𝑀
= AGGSC(𝑀, (𝛽 𝑗) 𝑗∉𝑀 , 𝐵𝑀

) (Corollary 3).
Lines (1-2) initialize the variables, to the maximum backlog

for the server for the aggregate backlog 𝐵𝑀 , null functions for
aggregate service curves and a first application of Lemma 2
to 𝑀 = N𝑛 for the per-class service curves. Then we iterate
the loop (lines 3-8) until a stopping criterion is met. It can
be arbitrarily defined, since the service curve computed are
always valid. The inner loop improves the service curves for
each class and subset of classes (we use that the maximum of
strict service curve is also a strict service curves).

The complexity of each round of Algorithm 1 is exponential
in the number of classes. Indeed, it as an internal loop on all

Algorithm 1: Iterative scheme for computing per-class
strict service curves

Data: (𝛼 𝑗) 𝑗∈N𝑛
, 𝛽, (b𝑖, 𝑗)𝑖, 𝑗 , STOP a stopping criterion.

Result: A per-class strict service curve for all class 𝑗
1 foreach 𝑀 ⊆ N𝑛 do 𝐵𝑀 ← 𝐵; 𝛽𝑎𝑔

𝑀
← 𝛽0,0; ;

2 foreach 𝑗 ∈ N𝑛 do 𝛽 𝑗 ← CLSSC(𝑗 ,N𝑛, 𝛽);
3 while not STOP do
4 foreach 𝑀 ⊆ N𝑛 do
5 𝛽

𝑎𝑔

𝑀
← max(𝛽𝑎𝑔

𝑀
,AGGSC(𝑀, (𝛽 𝑗) 𝑗∈𝑀 , 𝐵𝑀));

6 foreach 𝑗 ∉ 𝑀 do
7 𝛽 𝑗 ← max(𝛽 𝑗 , CLSSC(𝑗 , 𝑀, 𝛽𝑎𝑔

𝑀
));

8 𝐵
𝑀
← min(𝐵

𝑀
,AGGBACK(𝑀, 𝛽𝑎𝑔

𝑀
));

9 return (𝛽 𝑗) 𝑗∈N𝑛
.

the subsets of classes. A first way to improve is to remove
useless computations. If, for example 𝛽𝑎𝑔

𝑀
is not improved at

line 5, lines (6-8) become useless, and so on. This can be
done by introducing Boolean variables to state if a variable
has been improved, and can then improve other variables in
the subsequent steps.

Another solution is to perform the computations in parallel.
Indeed, elementary operations for improving 𝛽𝑎𝑔

𝑀
, 𝛽𝑖 and 𝐵𝑀

for each 𝑖 ∈ N𝑛 or 𝑀 ⊆ N𝑛 can be done in parallel, using a
shared memory, similarly to what is done in [19] or [20]. We
do not detail the approach here, but rather present a heuristic
to reduce the complexity.

B. A polynomial time heuristic

Tight per-class service curves can be computed in poly-
nomial time for GPS [9]. Intuitively, the classes that use
the less their share of service give the benefit of unused
bandwidth to the other classes of traffic, but not the reverse.
This enables to compute an order on the classes so that (let
us assume this is the natural order) only the computation of
𝛽
𝑎𝑔

{𝑘,...,𝑛} = (𝛽−
∑𝑘−1

𝑗=1 𝛼 𝑗)+ is needed to compute tight per-class
GPS strict service curves2:

𝛽𝑖 = sup
𝑗≤𝑖

𝜙𝑖∑𝑛
𝑘= 𝑗 𝜙𝑘

(
𝛽 −

𝑗−1∑︁
ℓ=1

𝛼ℓ

)
+
.

Algo. 2 presents the modification of Algo. 1 using this intuition
and improving the per-round complexity: we only update the
variables for 𝑛 inclusion-increasing subsets. At each step, we
add one element to 𝑀 , and update the variables as in Algo 1.
If the complexity of each elementary operation is constant, the
complexity of Algo. 2 is quadratic.

VI. NUMERICAL EVALUATION

In this section, we compare with the state of the art:
the performance bounds with cross-traffic-agnostic approaches
and the one from [17]. We first deal with constant packet

2Better service curves can be found, by computing the maximum for all
subset of classes, but the performances bounds (delay or backlog) will not be
improved.

Algorithm 2: Heuristic for computing per-class strict
service curves

1 Initialization: Lines (1-2) of Algo. 1;
2 𝑀 ← ∅;
3 while 𝑀 ≠ N𝑛 do
4 foreach 𝑗 ∉ 𝑀 do 𝑡 𝑗 ← sup{𝑡 | 𝛼 𝑗 (𝑡) > 𝛽 𝑗 (𝑡)};
5 𝑖 ← argmin{𝑡 𝑗 , 𝑗 ∈ 𝑀};
6 𝑀 ← 𝑀 ∪ {𝑖};
7 Update the variables: Lines (5-8) of Algo. 1;
8 return (𝛽 𝑗) 𝑗∈N𝑛

.

TABLE II: Comparison of the state of the art and 1-round
heuristic

number of average 1 %-approximation acceleration
classes pessimism proportion factor

4 0.11 % 97.5 % 4.9
5 0.18 % 96.1 % 7.6
6 0.20 % 94.8 % 13.2
7 0.25 % 93.8 % 18.3
8 0.27 % 92.8 % 23.3

lengths (which is a perfect bandwidth-sharing policy, similar
to DRR) to assess the quality of the heuristic. We then focus
on imperfect bandwidth-sharing policies and take inspiration
on the numerical results from [17].

A. Constant packet length

For each class, packets have a fixed length. We consider
servers with 4 to 8 classes, and for each case, we generate
10, 000 random instances of token-bucket arrival curves (bursts
and arrival rates generated uniformly at random in [0, 100] kb
and [0, 1]Mb.s−1 and service rates with the load generated
uniformly at random. The packet length of class 1 is 3040 b,
and is 12 kb for the other classes, and 𝑤1 = 5, 𝑤𝑖 = 2 for
𝑖 > 1.

We do not observe improvement of the delays compared
to the state or the art. Indeed, we did not introduce any
latency in the server. But even introducing a latency did not
improve the delays: this might be due to the iteration process.
However, we can compare this bound with the heuristic given
in Algorithm 2. Table II summarizes the results. The average
pessimism of the bound is less than 0.3 %, and more than 92 %
of the instances approximate the bound of Algo. 1 with less
than 1 % relative error. The pessimism slightly increases with
the class number. However, the computation time is reduced
by up to 23 times.

B. Variable packet length

Consider the example from [16]: a 4-class server with char-
acteristics summarized in Table III. The server is a constant-
rate server with service rate 𝑅, that varies from 3 Mb.s−1

(server load is 1) to infinity. While in [17], the authors focus of
small server loads (less than 0.2), to ensure the stability of the
system, we can compute finite bounds for all server loads up to
1. Let us denote by 𝜌 the server load (𝜌 =

∑
𝑖 𝑟𝑖/𝑅). Figures 1a

and 1b show the comparison between several methods for the

TABLE III: Characteristics of the server use of Section VI-B

class 1 2 3 4
𝑏𝑖 (b) 30208 19968 24576 27648

𝑟𝑖 (Mb.s−1) 0.65 0.85 0.95 0.55
ℓmin
𝑖

(b) 4096 3072 4608 3072
ℓmax
𝑖

(b) 8704 5632 6656 8192
𝑤𝑖 4 6 7 10

delay bound of classes 2 and 3 for WRR ad IWRR. The
agnostic method (Lemma 2 with 𝑀 = N𝑛) cannot compute
finite delay bounds for respectively 𝜌 > 0.37 and 𝜌 > 0.57
with WRR. The same stability region (with smaller delays)
could be observed for IWRR. The state-of-the-art method from
[17] computes similar bounds for WRR and IWRR, and finite
delay bounds are computed for 𝜌 up to 0.85, and we can verify
that Algorithm 1 can compute finite bounds for all loads. The
new modeling of IWRR improves the bounds compared to
WRR. The growth rate of the delay bounds (on their linear
parts) is smaller with IWRR. This can be explained by the fact
that class 3 can serve more packets in a round, and never waits
for the service of more than one packet of each class, which
results in a reduction of the latency proportional to the service
rate. The heuristic also gives a good approximation of the
delay bounds. In particular, for class 3, where the difference
with Algo. 1 is negligible.

Second, we study the influence of the packet lengths on the
delay bounds: every parameter is the same as in Table III,
except ℓ𝑚𝑎𝑥

𝑖
= `ℓmin

𝑖
, with ` ∈ [1, 3], and 𝜌 = 0.5. Figure 1c

compares the delay bounds of class 2 with IWRR, WRR and
state of the art [17]. The delay bound from the state-of-the-
art increases strictly with the ratio `. In contrast, the WRR
delay bound first increases, and then remain constant. This
happens when the backlog bounds become useful in Algo. 1.
This bound is not based on the packet lengths anymore. The
same phenomenon can be observed for IWRR, although the
delay bounds are smaller, hence the initial part is longer.

VII. CONCLUSION

In this paper we have presented a method to compute strict
service curves for WRR, under the more general framework of
imperfect bandwidth-sharing. It corrects and improves the state
of the art. Numerical experiments show the gain that can be
observed, either algorithmically for constant packet lengths or
in the bounds in the general case. Further research will focus 1)
towards using the knowledge of the packet-length distribution
more generally than Eq. (5) using for example [21]; 2) on
balancing the per-round periodic scheme of IWRR, to reduce
again the latency of such scheduling. Although the computa-
tions presented in this paper are focused on one server, the
analysis presented for DRR, in particular [20] and [15] can be
applied almost directly (the only difference is to compute the
arrival curves at the input instead of the output of the servers).

REFERENCES

[1] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-
robin cell multiplexing in a general-purpose atm switch chip,” IEEE

(a) Delay bounds with different methods for
class 2.

(b) Delay bounds with different methods for
class 3.

(c) class 2 whith increasing packet length
ratio `.

Fig. 1: Delay bounds with different methods.

Journal on Selected Areas in Communications, vol. 9, no. 8, pp. 1265–
1279, 1991.

[2] “IEEE standard for local and metropolitan area network–bridges and
bridged networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std
802.1Q-2014), pp. 1–1993, 2018.

[3] J. Heißwolf, R. König, and J. Becker, “A scalable noc router design
providing qos support using weighted round robin scheduling,” in
2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications, 2012, pp. 625–632.

[4] R. Cruz, “Quality of Service Guarantees in Virtual Circuit Switched
Networks,” IEEE Journal on selected areas in communication, vol. 13,
pp. 1048–1056, 1995.

[5] A. Mifdaoui and T. Leydier, “Beyond the Accuracy-Complexity Trade-
offs of Compositional Analyses using Network Calculus for Complex
Networks,” in 10th International Workshop on Compositional Theory
and Technology for Real-Time Embedded Systems (co-located with RTSS
2017), 2017, pp. 1–8.

[6] L. Thomas, J.-Y. Le Boudec, and A. Mifdaoui, “On Cyclic
Dependencies and Regulators in Time-Sensitive Networks,” in IEEE
Real-Time Systems Symposium, RTSS 2019. IEEE, 2019, pp. 299–311.
[Online]. Available: https://doi.org/10.1109/RTSS46320.2019.00035

[7] A. Bouillard, “Trade-off between accuracy and tractability of network
calculus in FIFO networks,” Perform. Evaluation, vol. 153, p. 102250,
2022. [Online]. Available: https://doi.org/10.1016/j.peva.2021.102250

[8] A. Parekh and R. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: the single-node case,”
IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, 1993.

[9] A. Burchard and J. Liebeherr, “A General Per-Flow Service Curve for
GPS,” in 30th International Teletraffic Congress, ITC 2018, Vienna,
Austria, September 3-7, 2018 - Volume 2. IEEE, 2018, pp. 31–36.
[Online]. Available: https://doi.org/10.1109/ITC30.2018.10058

[10] A. Bouillard, “Individual service curves for bandwidth-sharing policies
using network calculus,” IEEE Networking Letters, vol. 3, no. 2, pp.
80–83, 2021.

[11] M. Boyer, G. Stea, and W. M. Sofack, “Deficit Round Robin with
network calculus,” in 6th International ICST Conference on Performance
Evaluation Methodologies and Tools, ICST/IEEE, 2012, pp. 138–147.
[Online]. Available: https://doi.org/10.4108/valuetools.2012.250202

[12] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. ISTE, 2018.

[13] S. M. Tabatabaee, J. L. Boudec, and M. Boyer, “Interleaved weighted
round-robin: A network calculus analysis,” IEICE Trans. Commun.,
vol. 104-B, no. 12, pp. 1479–1493, 2021. [Online]. Available:
https://doi.org/10.1587/transcom.2021iti0001

[14] S. M. Tabatabaee and J.-Y. Le Boudec, “Deficit round-robin: A second
network calculus analysis,” in 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 171–183.

[15] S. M. Tabatabaee and J. L. Boudec, “Deficit round-robin:
A second network calculus analysis,” IEEE/ACM Trans. Netw.,
vol. 30, no. 5, pp. 2216–2230, 2022. [Online]. Available:
https://doi.org/10.1109/TNET.2022.3164772

[16] V. Constantin, P. Nikolaus, and J. B. Schmitt, “Improv-
ing performance bounds for weighted round-robin sched-
ulers under constrained cross-traffic,” in IFIP Networking
Conference. IEEE, 2022, pp. 1–9. [Online]. Available:
https://doi.org/10.23919/IFIPNetworking55013.2022.9829772

[17] ——, “Improving performance bounds for weighted round-robin
schedulers under constrained cross-traffic,” CoRR, vol. abs/2202.08381,
2022. [Online]. Available: https://arxiv.org/abs/2202.08381

[18] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer-Verlag, 2001, vol.
LNCS 2050, revised version 4, May 10, 2004.

[19] S. Plassart and J. L. Boudec, “Equivalent versions of total flow
analysis,” CoRR, vol. abs/2111.01827, 2021. [Online]. Available:
https://arxiv.org/abs/2111.01827

[20] S. M. Tabatabaee, A. Bouillard, and J. L. Boudec, “Worst-case
delay analysis of time-sensitive networks with deficit round-
robin,” CoRR, vol. abs/2208.11400, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2208.11400

[21] A. Bouillard, N. Farhi, and B. Gaujal, “Packetization and
packet curves in network calculus,” in 6th International
ICST Conference on Performance Evaluation Methodologies and
Tools, ICST/IEEE, 2012, pp. 136–137. [Online]. Available:
https://doi.org/10.4108/valuetools.2012.250208

APPENDIX

A. Proof of formula (5)

Assume that packets are split into chunks of size ℓ and that
ℓmin
𝑖

is the minimum packet length of class 𝑖. Then one packet

is divided in at least ℎ𝑖 = ⌈
ℓmin
𝑖

ℓ
⌉ chunks, the last one potentially

having a smaller length. So in 𝑚 consecutive packets, at most
⌈ 𝑚
ℎ𝑖
⌉ ≤ 𝑚

ℎ𝑖
+ ℎ𝑖−1

ℎ𝑖
have length less than ℓ, and at least 𝑚−⌈𝑚

ℎ𝑖
⌉ ≥

(ℎ𝑖−1) (𝑚−1)
ℎ𝑖

have length exactly ℓ.
Consider (𝑠, 𝑡], a backlogged period for class 𝑖, and assume

that there are exactly 𝑝 complete rounds of service for class 𝑖.
This means that at least 𝑝𝑤𝑖 packets are served, and conse-
quently

𝐷𝑖 (𝑠, 𝑡) ≥
(ℎ𝑖 − 1) (𝑝𝑤𝑖 − 1)

ℎ𝑖
ℓ. (11)

There are at most 𝑝 + 1 (possibly incomplete) rounds of
service for class 𝑖 during (𝑠, 𝑡], and then at most 𝑤 𝑗 (𝑝 + 1)
packets served: 𝐷 𝑗 (𝑠, 𝑡) ≤ 𝑤 𝑗 (𝑝 + 1)ℓ, so we have a lower
bound for 𝑝: 𝑝 ≥ 𝐷 𝑗 (𝑠,𝑡)

𝑤𝑙ℓ
− 1. We can replace 𝑝 by this bound

in Eq. (11), and after basic transformation,

ℎ𝑖𝑤 𝑗

(ℎ𝑖 − 1)𝑤𝑖

𝐷𝑖 (𝑠, 𝑡) + 𝑤 𝑗ℓ +
𝑤 𝑗

𝑤𝑖

ℓ ≥ 𝐷 𝑗 (𝑠, 𝑡).

