
Graph Neural Network-based Delay Prediction
Model Enhanced by Network Calculus

Lianming Zhang, Benle Yin, Qian Wang, Pingping Dong*
Hunan Normal University, Changsha, China

Email:{zlm,yinbenle,wangqian,ppdong}@hunnu.edu.cn

Abstract—Network modeling is critical to network manage-
ment. Existing network modeling approaches still have room
for improvement in performance prediction of important perfor-
mance metrics, such as latency. Graph Neural Network (GNN)
has proven their effectiveness for network performance predic-
tion. However, the shortcomings of GNN in data interpretability
limit their performance. To address this problem, we introduced
network calculus to enhance the interpretation and learning
of GNN for data. We proposed a modified GNN model -
NetCTRT, which understands the information between topology,
routing and traffic and interacts with the Network Calculus
(NC)-based delay bound so that the end-to-end delay can be
accurately predicted. Experimental results show that NetCTRT
can significantly improve the prediction accuracy.

Index Terms—Network modeling, Network calculus, Graph
Neural Network, End-to-end delay

I. INTRODUCTION

Network modeling is a very important part in the field of
computer networks. The role of network modeling is to predict
various network performance metrics such as latency, jitter,
packet loss, etc. With the help of network models, network ad-
ministrators can predict the variation of network performance
metrics such as latency under “what-if” scenarios [1]. For
example, when the network topology environment changes in
a certain way, how the network latency will change with it. So
administrators can allocate network resources more rationally,
enabling efficient network planning and optimization without
the need for costly on-site deployments.

In the past, efforts have been made to construct network
models that can effectively predict network performance with
good results. The existing network modeling approaches can
be categorized into the following three types: network simu-
lators, analytical models, and machine learning-based models
[2]. Discrete-event network simulators, such as OMNET++ or
NS-3 can perform accurate simulations of network packets and
obtain accurate performance prediction values. However, they
require high computational cost and have limited applicability
for real networks. Analytical models, such as queuing theory
[3] or Network Calculus (NC) [4], are widely used in network
modeling. Analytical models abstract mathematical models
based on certain conditions and reasonable assumptions, and
eventually yield accurate prediction values. However, when
the actual situation of the network is more complex, such
restrictive assumptions make them difficult to describe the

*Corresponding author
ISBN 978-3-903176-57-7© 2023 IFIP

system accurately. Machine learning-based models show their
advantages when dealing with complex systems that are chal-
lenging for analytical models [5]. Machine learning-based
models are able to obtain the value of the performance metric
that we want to predict based on the given input variables
[6]. These approaches are not limited by the complexity of
the system, but often lack a reasonable explanation of the
interaction aspects of the network model and the system
parameters.

Although these approaches and applications have proven
to be successful, they still have their own limitations. In this
paper, we propose NetCTRT, which is a network modeling
approach that combines a NC-based analysis model with a
Graph Neural Network (GNN)-based machine learning model.
It has the mathematical theory support of analytical models,
but also has the advantages of machine learning models for
complex data processing, to some extent to compensate for the
limitations of existing models. The approach is implemented
using the RouteNet model [7] as a starting point. RouteNet
relies on the message passing mechanism of the GNN model
to be able to pass routing schemes in the network and abstract
meaningful information about the network state [6]. GNN is
well-suited for problems in communication networks. GNN
not only has a strong learning capability to capture spatial
information hidden in the network topology, but also has a
strong ability to generalize for use in invisible topologies when
the network is dynamic [8]. Although RouteNet can achieve
good prediction results, its understanding of the network
topology is based on a large amount of data and lacks the
support of mathematical interpretation models. In contrast,
there is a rigorous mathematical justification for quantitatively
analyzing the system performance parameters in NC [9].
With the help of arrival curve and service curve, NC can
obtain bounds on the network performance parameters, such
as upper bounds on delay. In this paper, we first derive an
analytical model of NC for end-to-end delay bounds based
on publicly available Knowledge-Defined Networking (KDN)
training datasets generated with packet-level simulator OM-
NeT++ [10]. Then, we implement the NC-based model inside
GNN. The theoretical value of the upper bound on end-to-end
delay is extracted based on the NC with the given network
states in the dataset, and it is used as a new network feature
quantity. This feature is then added to the input of the GNN.
By adding the theoretical value of the upper bound on end-to-
end delay, we believe that the theoretical support and guidance



for the GNN can be enhanced. Experimental results show that
the prediction accuracy of the improved NetCTRT model has
been improved compared to the original RouteNet model and
new PLNet model [11]. The main contributions of this paper
are as follows:

• We determine an end-to-end delay upper bound calcula-
tion method based on NC for the publicly available KDN
training datasets, and extract the theoretical value of the
end-to-end delay upper bound by this method.

• We use the obtained upper bound of the NC delay
together with the network topology, routing scheme, and
traffic information as the input information of the GNN.
The relationship between these elements is modeled
inside the GNN to obtain a NetCTRT delay prediction
model with better performance.

• We evaluate the implemented model and demonstrate
the improvement in learning ability, prediction accuracy,
and generalization ability by comparing it with existing
models.

The rest of the paper is organized as follows. In Section II,
we summarize the related work. In Section III, we introduce
the method of NC to derive delay bounds. In Section IV,
we propose a NetCTRT model combining NC with GNN.
In Section V, we perform an implementation of the model
and evaluate the performance of the model. In Section VI, we
conclude this paper.

II. RELATED WORKS
KDN has sparked the interest of researchers, which was

proposed by Mestre et al. [12] describes a new paradigm uti-
lizing Software-Defined Networking (SDN), network analysis,
and artificial intelligence. It advocates the use of machine
learning and deep learning to gather knowledge about the
network, which could be utilized to control the network
using the logical centralized control capabilities provided by
SDN. Inspired by KDN, researchers tried to explore machine
learning models suitable for use in network modeling. Deep-
Q [13] designed a quality of service inference structure us-
ing a long short-term memory model to perform inferential
learning on traffic characteristics. Deep-Q achieves accurate
prediction of end-to-end path delays, but fails to generalize
the prediction to unknown topologies and routing schemes.
RouteNet [6] utilized GNN to understand the complex rela-
tionship between topology, routing, and input traffic, resulting
in accurate estimates of the average delay and jitter for each
source/destination pair. In this way, RouteNet can generalize to
topologies and routing schemes that are not visible in training.
PLNet [11] implemented a new model by improving the link-
path relationship of RouteNet. PLNet achieves good prediction
accuracy and shows the the possibility of improvement and
optimization of RouteNet. xNet [14] also utilized GNN for
network modeling. xNet achieves a significant breakthrough
in high expressiveness and fine granularity.

Several representative works mentioned above have been
very successful. However, we believe that machine learning-
based models always suffer from a lack of model interpretabil-

ity. The combination of NC-based analysis model in machine
learning can play a important role in the interpretability. By
adding end-to-end delay upper bound using NC of existing
data, the model can enhance the understanding of data. NC
has recently been widely used in delay prediction [9], which
is an effective tool for delay modeling. For example, Fantacci
et al. [15] proposed an end-to-end delay prediction method in
the context of 6G networks providing virtual reality services.
Wang et al. [16] proposed a network evolutionary analysis
model describing end-to-end delays in the tactile Internet.
In recent years, GNN has also received extensive attention
from researchers. GNN is particularly suitable for computer
networks because of its ability to learn information such as
node neighbors and their good generalization ability [17]. It
has recently been applied to predict the average queuing delay
[18].

In fact, DeepTMA [19] has achieved good results in com-
bining NC with GNN by proposing a new framework. The
framework predicts the best competition model and feeds back
to NC for calculation by learning various series possibilities of
NC. DeepTMA demonstrates the possibility and effectiveness
of this combination. The main body of DeepTMA is NC-based
analysis model, and GNN is only used as a tool to assist the
computation, which still has the drawback of simplification
for the network. In our work, NC is combined into GNN. The
main body of NetCTRT is GNN, and NC is only used as a
guide to enhance the understanding of the data. The model
we modeled takes into account many features in the network,
and learns these features through the neural network, so as to
achieve accurate prediction of end-to-end delay.

III. DELAY BOUND

This subsection will introduce the definition and theorems
of NC and derive the method for calculating the theoretical
value of NC-based delay in NetCTRT. In order to obtain
performance bounds for the flow, we need upper bounds on
the flow characteristics and lower bounds on the services that
the network can provide [20]. They are given by the arrival
curve and the service curve, respectively.

A. (min, plus) convolution

Let f and g be two non-negative generalized increasing
functions and their values can be infinite, then the (min, plus)
convolution of f and g is

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}. (1)

B. Arrive curve

The concept of an arrival curve is used to limit the amount
of data sent by a flow in any time interval. A generalized
increasing function α is the arrival curve of a flow R when
and only when

∀s ≤ t, R(t)−R(s) ≤ α(t− s). (2)

Assuming that the flow R is bounded by the arrival curve
α, then the amount of data sent by the flow is limited by α(τ)



for a period τ . Based on (min, plus) convolution, the definition
of the arrival curve is also equivalent to

R(t) ≤ R(t)⊗ α(τ). (3)

The leaky bucket model is the most commonly used arrival
curve model and its expression is

αr,b(t) =

{
rt+ b, if t > 0
0, otherwise (4)

where r denotes the rate of the traffic and b denotes the burst
amount of the traffic. This arrival curve limits the arrival rate
of the traffic to no more than r bits per second, and the burst
amount to a maximum of b bits.

C. Service Curve

A service curve is an abstraction that presents the server’s
processing of arrival traffic. In a system S, there is an input
function R and an output function R∗ of traffic. A generalized
increasing function β is the service curve of system S when
and only when

β(t) =

β(t) = 0, t ≤ 0

R∗(t) ≥ inf
s≤t
{R(s) + β(t− s)}, t > 0 (5)

Based on (min, plus) convolution, the definition of the
service curve is also equivalent to

R∗ ≥ R⊗ β. (6)

Assuming that the input traffic R of system S is limited by
the service curve β, then its output traffic R∗ is limited by
the service curve β. The service curve defines a lower bound
on the services that a system can provide. The latency-rate
model is the most commonly used service curve model, and
its expression is

βR,T (t) = R[t− T ]+ =

{
R(t− T ), t > T
0, otherwise (7)

where T denotes the fixed delay, R denotes the service rate
and has T ≥ 0, R ≥ 0. This service curve is usually used
for approximate modeling of nodes. It denotes that the time
T must be waited after the data arrive at the server to get a
service with a rate greater than or equal to R.

D. Delay Bound

The upper bound on the delay can be derived with the help
of the service curve and the arrival curve [21]. The delay
experienced by a flow providing an arrival curve α at a node
providing a service curve β is bounded by

d(t) ≤ sup
t≥0
{ inf
d≥0
{d : α(t) ≤ β(t+ d)}}. (8)

It can also be expressed as the maximum horizontal devia-
tion of the arrival curve α from the service curve β, and its
expression is

d(t) ≤ h(α, β). (9)

E. End-to-end Service in Tandem

Suppose a stream passes continuously through two servers
providing (min, plus) service curves β1 and β2 respectively,
then it can be equated to this stream passing through the
servers providing the service curves as

β̃ = β1 ⊗ β2. (10)

The multi-service node analysis follows the “Pay Burst
Only Once” in NC theory [20]. It refers to the fact that
intermediate bursts of growth in flow of interest do not affect
their performance bounds. This means that when we analyze
multiple servers, we can look at them as a whole. Due to
the convolutional form, the convolution of the service curve
through each individual server system, i.e., a tandem system,
can be treated as a single whole system [16]. Equation (10)
can be generalized to the case of multiple servers. Without loss
of generality, assume that a flow passes through n systems in
sequence and the equivalent service curve of these n systems
is

β̃e2e = β1 ⊗ β2 ⊗ · · · ⊗ βn. (11)

F. End-to-end Delay Upper Bound Calculation in NetCTRT

In the topological environment of NetCTRT, we can rep-
resent the traffic flow with the help of a leaky bucket arrival
curve as

af (t) = rf t+ bf . (12)

In the simulation, the process of transporting traffic can be
considered as passing through several network systems S. We
use a latency-rate model to represent the service profile of each
system. Assume that there are n systems with fixed delays
of T1, · · · , TN , and their service rates of R1, · · · , Rn. The
end-to-end equivalent system provides a tandem service curve
expressed as

βe2e = min (R1, · · · , Rn) ∗

[
t−

N∑
i=1

Ti

]+

. (13)

At this point, the service rate R is greater than or equal to
the average rate of traffic rf .

The upper bound on the end-to-end delay derived from the
NC can be obtained from Eq. (8) as

de2e =

n∑
i=1

Ti +
bf

min (R1, · · · , RN )
. (14)

IV. PROPOSED NETCTRT

A. The Framework of NetCTRT

In order to explore a more accurate network modeling
method, we proposed a new GNN model based on NC called
NetCTRT. NetCTRT adds NC to GNN to produce accurate
prediction of end-to-end path delay. With the help of arrival
curve and service curve, network performance parameters can
be calculated by NC [16]. In this paper, the end-to-end delay
of the system can be quickly obtained using NC. NetCTRT
takes the network topology, the source-destination routing
scheme (the relationship between the end-to-end paths and



Fig. 1. The architecture of NetCTRT.

links), and the source-destination traffic matrix (the bandwidth
between each node) as inputs. At the same time, based on these
inputs and then based on the derivation in Section III, NC
delay bounds are calculated and jointly input into GNN. For
each source-destination pair, NetCTRT produces an accurate
estimate of the average delay for each packet as an output.
The architecture of NetCTRT is shown in Fig. 1.

NC is based on (min, plus) operation, and the process of
calculating the delay has a rigorous mathematical reasoning.
GNN has a good generalization ability by training and learning
for a large amount of data. GNN is based on training learning
for the data to get the final prediction results. It is not easy to
get accurate prediction results for those network topologies
that have not been trained. We think it is also important
to learn the connection between many data in the training
dataset. So we want to integrate NC into GNN to enhance
the understanding of the network features in GNN in order
to learn to get a model with better prediction accuracy and
generalization ability.

B. The Principle of GNN

GNN is able to effectively propagate the information of
nodes and edges to adjacent nodes or even the whole graph by
converting the graph structure data into normative and standard
representations and inputting them into various neural net-
works for training. GNN follows a neighborhood aggregation
scheme, where the representation vector of a node is computed
by recursively aggregating and transforming representation
vectors of its neighboring nodes [22]. Let G = (V,E) be
an undirected graph with node v ∈ V and edge (v, u) ∈ E.
Let iv and ov denote the input features and output values of
node, respectively. The architectural principle of NetCTRT
is based on message passing neural networks [23], where
the hidden representations of node hv are iteratively passed
between neighboring nodes. These hidden representations are
propagated through the graph by multiple iterations until a
fixed point is found. The final hidden representation is then
used to predict the attributes of the nodes. This concept can
be formalized as

ht
v = aggr

({
ht−1
u | u ∈ NBR(v)

})
, (15)

and
ov = out

(
ht→∞
v

)
, (16)

and
ht=0
v = init (iv) . (17)

where ht
v denotes the hidden representation of node v at

time t. aggr is a function that aggregates the set of hidden
representations of neighboring nodes NBR(v) of v. out is
a function that converts the final hidden representation to
the target value. init is a function that initializes the hidden
representation based on the input features.

The concrete implementations of the aggr and out functions
are feed-forward neural networks, with the addition that aggr
is the sum of per-edge terms [19], such that

ht
v = aggr

({
ht−1
NBR(v)

})
=

∑
u∈NBR(v)

f
(
ht−1
u

)
. (18)

C. Message Passing of NetCTRT
In NetCTRT, the network topology is then abstracted into an

undirected graph. In order to facilitate the call of the GNN on
the input data, NetCTRT needs to process the data first. The
path and link states are encoded separately using vectors, with
the initial states being h0

p and h0
l . Given a routing scheme, the

link between paths and links is well represented by a GNN.
By incorporating node features in the algorithm, NetCTRT
simultaneously learn the topological structure of each node’s
neighborhood as well as the distribution of node features in
the neighborhood [24]. NetCTRT predicts the path KPI by
constructing a computational graph containing T iterations.
Each iteration t consists of two steps: updating the path state
ht
p and updating the link state ht

l . NetCTRT uses a Gated
Recurrent Unit (GRU) [25]. The GRU that updates the path
state obtains the current state of the link on the path as
input. The GRU that updates the link state uses the sum of
the messages from all paths containing the current link. The
messages sent to the link state GRU are considered as the
intermediate hidden state of the path state GRU. After the last
T iterations, a readout neural network from the final path state
is used to predict the path KPI. The readout neural network
is implemented as a multilayer perceptron.

In NetCTRT, Algorithm 1 describes the internal architecture
of the network. In this process, NetCTRT receives as input
the initial path and link characteristics fp, fl and the routing
information R and outputs the inferred predicted delay yp. In
Algorithm 1, line 2 represents the delay calculation operation
of the NC to derive a new path characteristic among the
information of each path present in the routing table. The
loops in lines 10–12 and 15–18 represent message passing op-
erations, which exchange encoded information (hidden state)
between links and paths with each other. Line 11 uses a
recurrent neural network for link-level message aggregation to
deliver messages among all paths. Lines 13 and 17 are state
update functions that encode the newly collected information
as hidden states. The function Fp in line 21 represents a
fully connected neural network modeling readout function that
performs the final path-level prediction.



Algorithm 1 NetCTRT algorithm
Input: fp, fl, R
Output: yp

1: for each path p in R do
2: f̂p ← de2e (fp, fl, R)

3: h0
p ←

[
f̂p, 0 · · · , 0

]
4: end for
5: for each link l do
6: h0

l ← [fl, 0 · · · , 0]
7: end for
8: for t = 1 to T do
9: for each path p in R do

10: for each link l do
11: m̃t

p,l ← m̃t
p,l +RNNt

(
ht−1
p , ht−1

l

)
12: end for
13: ht

p ← PathUpdate
(
ht−1
p , m̃t

p,l

)
14: end for
15: for each link l do
16: mt

l ←
∑

p:lep m̃
t
p,l

17: ht
l ← LinkUpdate

(
ht−1
l ,mt

l

)
18: end for
19: end for
20: for each path p in R do
21: yp = Fp (hp)
22: end for

V. PERFORMANCE EVALUATION

A. Experimental Setup

We implemented NetCTRT using TensorFlow. In the ex-
periment, the number of message passing iterations of the
model is set to T = 8. Dropoutrate is set equal to 0.5, which
means that each training step randomly de-activates half of the
neurons in the readout neural network. This also allows us to
probabilistically sample the results and to infer the estimated
confidence level. During training, we minimized the Mean
Square Error (MSE) between the model prediction and the
true fact plus the L2 regularization loss (λ = 0.1). And we
minimized the loss function using an Adam optimizer with an
initial learning rate of 0.001. These parameters for NetCTRT
are set by reference to RouteNet [6].

To implement the training and evaluation of GNN models,
we used publicly available KDN training datasets generated
with packet-level simulator OMNeT++ [10].

The dataset obtains information on end-to-end delay and
packet loss between node pairs by simulating packet sending
and consists of three main components: network topology con-
figuration information, routing tables, and simulation results.
The dataset is an accurate measure of the relevant end-to-
end key performance indicators derived from simulations of
samples with different input topologies, routing configurations,
and traffic patterns. We mainly used the more classical 14-
node NSF network topology [26] and 24-node Geant2 network
topology [27]. In KDN training dataset, it is assumed that each
node of the network can send packets to any other node. The

TABLE I
DATASET INFORMATION DESCRIPTION

Parameter Meaning
MaxPktSize Maximum packet size of flow (bits).
ExpMaxFactor Factor of an upper bound for exponential distributions.
Lambda Traffic intensity.
EqLambda Average bitrate per time unit (bits/s).
Delay Fixed delay of this system(s).
Bandwidth Service rate of this system (bits/s).

routing table is given for each node before the start of the
simulation. And a total of several routing schemes are defined
by some algorithms. There are no special assumptions about
routing protocols. In the simplest case, routes are computed
based on the shortest path first Dijkstra algorithm.

In the experimental setting, in addition to the end-to-end
delay counted in the dataset, we also need to derive a predicted
value from the NC. Without loss of generality, assuming that
the flow through the network is limited by the leaky bucket
model, in order to obtain the arrival curve of the flow, we need
to know the average rate of the flow with the maximum burst.
The parameters for generating flows in the network simulator
can be obtained specifically by interpreting the information in
the dataset, and the required dataset information is described
in Table I.

The training and validation of the experiments in this paper
are divided into two parts, the first part trains and validates the
learning ability of the model, and the second part trains and
validates the accuracy and generalization ability of the model.

B. Learning Ability Evaluation

First, we trained and validated with data from the NSF
topology network. We trained RouteNet and NetCTRT with
240,000 training samples from the NSF network generated
with a packet-level simulator. Although the samples in this
dataset are all from a single topology, it contains about
100 different routing schemes and a wide variety of traffic
matrices with different traffic strengths. We then performed
experimental evaluation on validation samples with completely
different routing schemes as well as traffic strengths from the
training data.

Fig. 2. Comparison of loss between the two models during training.



Fig. 3. Comparison between model predicted values and real simulated values.

We performed more than 40,000 steps of training, with 32
randomly selected samples from the training set for each batch.
Figure 2 shows the loss by Mean Absolute Error (MAE) during
the training process.

It is easy to see from Fig. 2 that the training of both
NetCTRT and RouteNet is stable, and the loss decreases
rapidly as the training step increased. The initial loss value
may be a bit too high so it is not reflected in Fig. 2. It
is worth mentioning that the loss of NetCTRT decreases
faster than that of RouteNet. During the training process,
the losses of both models have some fluctuations, but the
fluctuations of NetCTRT are obviously smaller. Therefore, it
can be inferred that NetCTRT learns the latency more rapidly
during the training process due to the incorporation of NC,
which enhances the ability of the GNN to explain the latency.
By embedding NC to calculate the upper bound on delay,
NetCTRT can better understand the input data and thus achieve
more accurate predictions.

To visualize the comparison between the simulated delays
and the predicted delays, we present a boxplot of the predicted
delays by RouteNet and NetCTRT in the NSF topology in
Figure 3. The example is randomly taken from three kinds
of traffic intensity verification sample sets in NSF topology
that are not used for training. As can be seen, both models
are trained to produce more reasonable predictions of latency.
However, RouteNet’s prediction of high value and low delay
has obvious deviation, while the predicted value of NetCTRT
is relatively closer to the real value. With the increase of
traffic intensity, the predicted value distribution of NeTCTRT
is closer to the simulated value than that of RouteNet. It can be
seen that NetCTRT is able to achieve a better fit by enhancing
the learning of the GNN for delays.

TABLE II
COMPARISON OF MODEL PERFORMANCE

Metrics RouteNet PLNet-GRU PLNet-MLP NetCTRT
MSE 3.64× 10−4 4.10× 10−4 1.76× 10−4 1.45× 10−4

R2 0.975 0.947 0.977 0.990

Fig. 4. Comparison of Cumulative Distribution Function of relative error of
different models.

C. Accuracy and Generalization Aapability Evaluation

In order to evaluate the accuracy of the models, we refer not
only to the RouteNet model but also to two models of PLNet
proposed by Kong et al. [11]. As shown in Table II, all four
models are validated on the NSF network. Here, the MSE loss
and the coefficient of determination R2 are used as evaluation
metrics. The MSE loss demonstrates the error level of the
model when evaluate, and the R2 can well describe the fit level
of the model. It can be seen that the PLNet-MLP model has
higher prediction accuracy compared to the RouteNet model.
And the performance of our NetCTRT is the best among the
four models.

From Fig. 2, we can know that the loss steadily decreases as
the training steps increase and the models obtained by training
tend to be stable. We obtain stable RouteNet and NetCTRT
models by training, respectively. They are also evaluated in
comparison with PLNet-GRU and PLNet-MLP implemented
in [11]. We use samples from Geant2 network for evaluation
to test the generalization ability of the models on untrained
topological networks. Here, it is more convincing to visualize
the probability distribution of the prediction results in the
evaluation sample. Thus, we use the Cumulative Distribution
Function (CDF) that reflects the relative error of the evaluation
sample, as shown in Fig. 4. The distribution function shows
that the prediction results of the four models were mostly
distributed between -1 and 1. This shows that all these models
have good generalization ability and can make predictions with
small errors on invisible topological networks. The models
obtained from the training are able to generalize to other
networks. This is related to the use of dropout technique. It
can also be seen that RouteNet showes some predictions with
large errors, while PLNet-GRU, PLNet-MLP, and NetCTRT
are more densely distributed with relatively small errors.
In contrast, our NetCTRT model has stronger generalization
ability and the prediction model can be better extended to other
topological networks.

From the experimental data, it can be found that the GNN-
based model proposed in this paper can model the relationship
between the physical links in the network and the paths in



the routing policy quite efficiently. And once the relationship
between links and paths is known, the topology of the physical
network itself can be ignored in the calculation. Thus the
model proposed in this paper, although trained only in NSF
topology, can be generalized to other topologies for more
accurate predictions.

VI. CONCLUSION

In this paper, we built a new GNN model called NetCTRT,
mainly by adding the predicted values of the analytical model
NC to GNN, hoping that this combination will compensate for
the lack of interpretability of some machine learning models.
GNN captures the complex relationships between paths and
links forming the network topology and network traffic, and
NC enhances the interpretation of the relationship between
end-to-end delays in paths and traffic and link information.
We implemented the NetCTRT model. Then, we evaluated the
model obtained from the training together with the other three
models. The results show that all four models can achieve good
prediction performance after training with a small number
of batches under the same topology. While the accuracy of
NetCTRT is slightly higher and the loss of the training process
decreases faster. The NetCTRT model can provide an option
for machine learning based network modeling tools. In future
research, we will further explore the internal principles of
GNN network modeling and also the application of NC in
more complex network scenarios.

ACKNOWLEDGMENTS

This work was supported in part by the Hunan Provincial
Natural Science Foundation of China (Nos. 2022JJ30398
and 2022JJ40277) and Scientific Research Fund of Hunan
Provincial Education Department of China (Nos. 22A0056 and
22B0102)

REFERENCES

[1] M. B. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,
“Answering what-if deployment and configuration questions with wise,”
in Proceedings of ACM SIGCOMM on Data communication, 2008.

[2] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network
Modeling and Optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, pp: 2260-2270, 2020.

[3] G. F. Newell, Applications of Queueing Theory. Wiley, 1984.
[4] J. Boudec, and P. Thiran, Network Calculus: A Theory of Deterministic

Queuing Systems for the Internet. Springer-Verlag, 2001.
[5] F. Krasniqi, J. Elias, J. Leguay, and A. E. C. Redondi, “End-to-end Delay

Prediction Based on Traffic Matrix Sampling,” in Proceedings of IEEE
INFOCOM WKSHPS, 2020.

[6] K. Rusek, J. Suárez-Varela, S. Carol-Bosch, P. Barlet-Ros, and A.
Cabellos-Aparicio, “Unveiling the potential of Graph Neural Networks
for network modeling and optimization in SDN,” in Proceedings of ACM
Symposium on SDN Research (SOSR), 2019.

[7] J. Suárez-Varela, S. Carol-Bosch, K. Rusek, P. Almasan, M. Arias, P.
Barlet-Ros, and Albert Cabellos-Aparicio, “Challenging the generaliza-
tion capabilities of Graph Neural Networks for network modeling,” in
Proceedings of ACM SIGCOMM Conference Posters and Demos, 2019.

[8] W. Jiang, “Graph-based deep learning for communication networks,”
Computer Communications, vol.185, pp: 40-54, 2021.

[9] Q. Ren, K. Liu, and L. Zhang, “Multi-objective optimization for task
offloading based on network calculus in fog environments,” Digital
Communications and Networks, vol. 8, no. 5, pp: 825-833, 2022.

[10] Knowledge-defined networking training datasets. [Online]. Available:
http://knowledgedefinednetworking.org/

[11] Y. Kong, D. Petrov, V. Räisänen, and A. Ilin, “Path-Link Graph Neural
Network for IP Network Performance Prediction,” in IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM), 2021.

[12] A. Mestres, A. Rodriguez-Natal, J. Carner et al., “Knowledge-defined
networking,” ACM SIGCOMM Computer Communication Review,
vol.47, no.3, pp: 2-10, 2017.

[13] S. Xiao, D. He, and Z. Gong, “Deep-q: Traffic-driven qos inference
using deep generative network,” in Proceedings of the 2018 Workshop
on Network Meets AI & ML, 2018.

[14] M. Wang, L. Hui, Y. Cui, R. Liang, and Z. Liu, “Xnet: Improving
expressiveness and granularity for network modeling with graph neural
networks,” in IEEE INFOCOM, 2022.

[15] R. Fantacci, and B. Picano, “Edge-Based Virtual Reality over 6G
Terahertz Channels,” IEEE Network, vol.35, no.5, pp: 28-33, 2021.

[16] Q. Wang, Z. Mo, B. Yin, L. Zhang, and P. Dong, “Bounding the upper
delays of the Tactile Internet using deterministic network calculus,”
Electronics, vol. 12, no. 1, Article 21, 2023.

[17] P. W. Battaglia, J. B. Hamrick, V. Bapst et al., “Relational in-
ductive biases, deep learning, and graph networks,” arXiv preprint
arXiv:1806.01261, 2018.

[18] K. Rusek, and K. Chołda, “Message-passing neural networks learn
little’s law,” IEEE Communications Letters, vol. 23, no. 2, pp: 274-277,
2018.

[19] F. Geyer, and S. Bondorf, “DeepTMA: Predicting effective contention
models for network calculus using graph neural networks,” in IEEE
INFOCOM, 2019.

[20] A. Bouillard, M. Boyer and E. Le. Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. Wiley, 2018.

[21] S. Bondorf and F. Geyer, “Virtual cross-flow detouring in the determin-
istic network calculus analysis,” in IFIP Networking, 2020.

[22] K. Xu, H. Weihua, L. Jure, and J. Stefanie, “How powerful are graph
neural networks?,” arXiv preprint arXiv:1810.00826, 2018.

[23] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning, 2017.

[24] W. Hamilton, S. Z. Ying and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017.

[25] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[26] F. Barreto, E. C. Wille, and L. Nacamura Jr, “Fast emergency paths
schema to overcome transient link failures in ospf routing,” arXiv
preprint arXiv:1204.2465, 2012.

[27] X. Hei, J. Zhang, B. Bensaou, and C. C. Cheung, “Wavelength converter
placement in least-load-routing-based optical networks using genetic
algorithms,” Journal of Optical Networking, vol.3, no.5, pp: 363-378,
2004.


