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Abstract—TIn this paper, our goal is to leverage cellular network
traffic data to model and forecast the number of COVID-19
infections in the future. To this end, we partner with one of the
main cellular network providers in Brazil, TIM Brazil, and collect
and analyze cellular network connections from 973 antennas for
all users in the city of Rio de Janeiro and its suburbs. We develop
a Markovian model that captures the mobility of individuals
across municipalities of the city. The transition probabilities
of the Markov chain are determined by analyzing user-level
mobility events between antennas from the cellular network
connectivity logs. We combine the aggregate mobility charac-
teristics across municipalities as evidenced from the transition
probabilities with the number of reported COVID-19 cases in a
municipality during a particular week to design mobility-aware
COVID-19 case prediction models that predict the number of
cases for the following week. Our experiments demonstrate that
our mobility-aware models significantly outperform a baseline
mobility-agnostic linear regression model in terms of metrics such
as Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE).

I. INTRODUCTION

COVID-19 is a global pandemic that has infected human
beings in all countries of the world. To help governments
combat the pandemic, it is necessary to design mobility-aware
case prediction models that accurately predict the number
of future infections and assist officials in understanding the
connection between human mobility and rising infection rates.
These prediction models can also enable officials to design
and implement local lockdown measures instead of widely
unpopular blanket lockdown measures to contain the spread
of COVID-19.

Therefore, in this paper, our goal is to leverage cellular
network connectivity data to develop a simple but efficient
approach for determining the relationship between human
mobility and infection rates in municipalities within a city.
To this end, we partner with TIM Brazil, one of the largest
cellular network providers in Brazil to collect anonymized
cellular network connection logs (i.e., 3G/4G connections, text
messages, calls) for all users in the city of Rio de Janeiro.
The data consists of individual connections made by users to
973 cellular antennas in and around Rio de Janeiro and its
suburbs at 5-minute intervals from April 2020 to July 2020.
We also use publicly accessible COVID-19 infection data for
Rio de Janeiro’s various municipal administrative regions (a
total of 27). By analyzing cellular network connections, our
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methodology uses a data-driven approach to investigate and
model the mobility of individuals in a city, and then uses the
designed mobility model to forecast the number of COVID-19
infections in the future.

We first identify mobility events (i.e., user movements from

one antenna to another) from the connectivity logs. We then
use these mobility events to develop a Markovian model
that accurately captures the movement of individuals across
municipalities in the city. We determine the transition prob-
abilities of the Markov model for each week by considering
the mobility events for that week. We design mobility-aware
COVID-19 case prediction models by effectively combining
the transition probabilities encoding the mobility between
source and destination regions with the corresponding number
of infections in the source to predict the number of infections
in the destination regions for the next week. We observe
that our models significantly outperform a baseline mobility-
agnostic linear regression model in terms of metrics such
as Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Relative Error (RE) when predicting the number
of future cases.
Related Work: We discuss some pertinent related work
before presenting our research. To understand the relationship
between mobility and the spread of COVID-19, Gao et. al map
county-level mobility pattern changes in the US in response to
COVID-19 [1]. Similarly, Huang et. al analyze the impact of
the COVID-19 pandemic on transportation-related behaviors
using human mobility data [2]. Human mobility modeling
has received significant attention in the last decade, and
few recent examples include modeling semantic-rich human
mobility using hidden Markov models [3] and analyzing user
mobility in cellular networks [4].

II. DATA AND METHODS

In this section, we present an overview of two datasets
we analyze in this study. We work with TIM Brazil, one of
Brazil’s largest cellular network providers, to collect cellular
network connection logs for all users in the city of Rio de
Janeiro. Additionally, we use publicly accessible COVID-19
infection data for Rio’s various municipalities. Our goal is to
use the cellular network connectivity dataset to first understand
the aggregate mobility of people during COVID-19, and then
to leverage the two datasets to design mobility-aware COVID-
19 prediction models.



A. Cellular Network Connectivity Data

This dataset consists of approximately 10 billion
anonymized cellular network logs (i.e., phone calls, text
messages, 3G/4G data connections) of users along with the
information of the specific antenna (there are a total of 973
antennas in our dataset) through which the connections are
established from April 5t" to July 2"¢. A couple of example
entries in the dataset is shown in Table 1. We first identify
mobility events from the network logs. If a user moves from
one antenna to another antenna with different timestamps, we
consider this to be a mobility event.

TABLE I: Cellular Network Connectivity Dataset

Timestamp | User ID | Latitude | Longitude
timestamp-1 | hash-1 | -23.003431 | -43.342206
timestamp-2 | hash-2 -22.8415 | -43.278389

Figure 1 depicts the change in the total number of con-
nections and the number of mobility events over weeks. The
number of connections (i.e., the blue line), is shown on the
left y-axis and the number of mobility events (i.e., the red
line) is shown on the right y-axis. The vertical dotted line in
the figure is the day when Brazil eased its lockdown (June 1),
which corresponds to the beginning of week 9 in our analysis.
Even before the lockdown restrictions are lifted, we note a
significant rise in the number of connections and mobility
events per week.
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Fig. 1: The number of connections and mobility events per
week from April 5¢*, 2020 to July 2"¢, 2020

B. COVID-19 Case Data

Our second dataset consists of the daily number of positive
COVID-19 cases for each municipality in Rio. We show some
example instances from this dataset in Table II. Each row in the
table represents a single COVID-19 positive case. Though we
have COVID-19 case data from March, we focus on data from
April 5*" to July 2"¢ because it corresponds to our cellular
network connections data.

TABLE II: COVID-19 Case Dataset

Timestamp | Latitude | Longitude | Region Code
timestamp-1 | -22.888272 | -43.552508 144
timestamp-2 | -22.898441 | -43.223156 10

III. MOBILITY-AWARE COVID-19 CASE PREDICTION
MODEL

Our objective in this paper is to develop mobility-aware
COVID-19 case prediction models in order to forecast the
number of future infections and to better understand the con-
nection between human mobility and the spread of the disease.
To achieve this, we first use cellular network connection logs to
model aggregate human mobility patterns across Rio’s munici-
palities, and then combine this aggregate mobility information
with the case data from the various regions to make informed
future predictions. We first describe our Markovian models for
modeling the mobility across municipalities and then discuss
our mobility-aware COVID-19 case prediction models.

A. Markov Models for Human Mobility

We construct a Markov model at the municipality level
to elegantly capture and model aggregate human mobility
patterns in Rio. Each state in our Markov model corresponds
to a municipality and transitions between states encode move-
ment between municipalities. We first peruse the cellular
network connectivity logs to identify mobility events between
the different antennas for all the users to determine the
transition matrix of the Markov model. As one municipality
can have multiple antennas, a mobility event between two
antennas in the same municipality corresponds to a same
state transition. In comparison, mobility events between two
antennas in different municipalities lead to transitions between
the corresponding states of the Markov chain. As our aim is to
predict the number of COVID-19 cases for the coming week
using data from the previous week, we calculate the Markovian
model’s transition probabilities on a weekly basis.

B. COVID-19 Case Prediction Model

In this subsection, we discuss how we combine the mobility
model with the current active COVID-19 cases to predict
the number of future cases. We design two versions of our
mobility-aware prediction model — i) a linear model, and ii)
a polynomial model.

1) Linear Model: Our linear mobility-aware prediction
model determines the number of COVID-19 cases for the next
week in a municipality (i.e., destination) by considering the
linear weighted sum of the current COVID-19 infections in
the different municipalities (sources) multiplied by the one
step transition probability from the different sources to the
destination (Eqn. (1)).

¢j(t+1) = moj +mi; (Y pis(t)ei(t)) (1)
where ¢;(t + 1) denotes the number of cases in week (¢ + 1)

in state j, ¢;(t) denotes the cases in week ¢ in state 4, p;;(t)
is the probability of moving from state ¢ to state j (1-step



transition probability from the Markov chain). mg; and m;
are the intercept and slope of the line.

2) Polynomial Model: In addition to the linear model, we
also design higher-order polynomial models to better capture
nuances in the underlying data. Unlike the linear model, the
higher-order polynomial model in Eqn (2) fits the best curve.
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where m = (mg;, m1j,...,My;) are the coefficients of the

polynomial terms. We experiment with primarily polynomials
of orders 2 and 3 to keep the number of parameters to a
minimum and to avoid overfitting the model to the data. The
logic behind this approach is to account for the number of
active infections at a source and then use the mobility metric
(i.e., transition probability from source to destination) as a
measure of infection spread from source to destination.

IV. EXPERIMENTS

In this section, we present experimental results to demon-
strate the superior prediction performance of our mobility-
aware COVID-19 case prediction models when compared to a
baseline mobility-agnostic linear prediction model. The base-
line linear regression model considers only the past COVID-19
cases in a region and produces the best fit straight line for the
data. We evaluate the models with respect to 3 different error
metrics: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Relative Error (RE).
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where 1; and §); are the i'" actual and predicted values, and
N denotes the number of samples (in our case there are 12
samples, one corresponding to each week).

Figure 2 shows the prediction performance for one of
Rio’s municipalities, Maduereira (MA). The green and black
lines correspond to the mobility-aware linear and polynomial
(order 3) models. The mobility-agnostic linear regression fits
a straight line (i.e., blue line) with respect to the actual case
numbers (i.e., red points). As our mobility-aware linear and
polynomial models fit linear and higher order polynomials
between past and future cases while taking the one-step
transition probabilities into account (Eqns 1 and 2), we observe
qualitatively from Figure 2 that our mobility-aware models
provide better performance than the baseline mobility-agnostic
model. To support this finding, we present the RMSE, MAE,
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Fig. 2: COVID-19 Case Prediction Performance

and RE for two regions, Maduereira (MA) and Meier (ME),
in Table III. We observe from the table that the mobility-
aware models overall outperform the baseline for all the error
metrics. As expected, higher-order polynomial models have
better prediction performance because they can better model
the underlying patterns in the data.

TABLE III: Error rates region PA and CE

Regions Models Errors
MAE RMSE RE
MA Mobility-Agnostic | 53.094 | 60.463 0.273
Mob-Aware Linear | 44.968 54.146 0.233
Mob-Aware Poly-2 | 35.755 48.488 0.160
Mob-Aware Poly-3 | 35.832 | 48.472 | 0.159
ME Mobility-Agnostic | 90.728 | 104.250 | 0.294
Mob-Aware Linear | 76.774 95.450 0.246
Mob-Aware Poly-2 | 64.302 90.427 0.185
Mob-Aware Poly-3 | 65.776 | 90.159 | 0.187

V. CONCLUSION

In this paper, we designed a mobility-aware COVID-19 case
prediction model that predicts the number of future infections.
Via experiments on large scale real-world cellular network
traffic data from Rio, we demonstrated that our models outper-
formed a baseline mobility-agnostic model. Our method can
be easily extended to other cities, states, and countries around
the world and can help government officials better understand
the spread of the disease and enact targeted local lockdowns
instead of widely unpopular blanket lockdowns.
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