HTMT: High-Throughput Multipath Tunnelling for
Asymmetric Paths

Richard Sailer, Jorg Héhner
Organic Computing Group
University of Augsburg, Augsburg, Germany
Email: richard.willi.sailer @student.uni-augsburg.de, joerg.haehner @informatik.uni-augsburg.de

Abstract—Multipath Tunnelling (MT) is an effective approach
to increase the reliability and performance of network con-
nections. In contrast to Multipath TCP (MPTCP) or SCTP,
it also works for UDP traffic and its deployment is easy.
It requires neither full access to all uplink endpoints nor a
multipath protocol implementation in every involved host. Despite
its potential, research on MT is sparse. Most known prototypes
use either round robin or MPTCP schedulers that are not able
to fully utilise the potential of MT.

This paper proposes HTMT, a novel packet scheduling al-
gorithm designated for MT that achieves high throughput for
reliable traffic on asymmetric paths. Using the tunnel transport
protocol’s path estimation, it is able to dynamically adapt to
changing subtunnel characteristics. Additionally flow awareness
allows HTMT to associate packets to a flow and only send it
on subtunnels where it won’t overtake any of its predecessors.
This avoids packet reordering and its detrimental effect on TCP
throughput, without the latency and performance costs of a re-
reordering buffer at the tunnel exit.

In multiple testbed experiments, we compare HTMT with
several schedulers for MT and MPTCP, including LowRTT
(current MPTCP default), OTIAS and AFMT. In terms of
throughput, HTMT offers similar performance for symmetric
paths but outperforms all competitors on asymmetric paths.

Index Terms—internet architecture, multipath, cross layer
optimisation, reliability

I. INTRODUCTION

Network paths can be unreliable or have low bandwidth [1],
[2]. Redundancy can be a solution for these issues. Redun-
dancy has been used to provide reliability and higher through-
put in many fields of computer engineering, e.g. databases,
storage or power supply, but seldomly for network paths. There
are several proposed concepts for redundancy: Load balancing
[3], Multipath TCP [4] and Multipath Tunnelling [5].

Load balancing can be used on the client side. At connection
establishment, it selects one of multiple available paths. If a
path goes down, all flows routed through this path are cut. In
this way it uses several paths, but reliability is not improved.

Multipath TCP (MPTCP) grants more reliability, but needs
every client and every server to have direct full access to
all network uplinks (Figure 1) [6]. This complicates wiring.
Additionally, it needs all clients to implement MPTCP, a
complex protocol. It also does not solve the problem for UDP
flows. So while MPTCP performs better than load balancing,
it still leaves several issues unaddressed.

Annex to ISBN 978-3-903176-39-3© 2021 IFIP

L}
C N s

Fig. 1. Multipath TCP Network Topology. For every packet sent from S
to C, S decides (schedules) the path P; to use. For this, S and C need an
implementation of MPTCP and direct access to all the paths.

~ P

5—HEH—FE—F
=\ —
C Tentry Texit S

Fig. 2. Multipath Tunnelling Network Topology. A Packet p sent from a
Client C' is encapsulated at the tunnel entry Tentry and sent via one of the
paths P; to the tunnel exit T.z;+. There, it is decapsulated and sent to the
destination server S.

Multipath Tunnelling addresses these issues. As is visible
in Figure 2, only the tunnel endpoints T, and T¢,; need
to see and understand the subtunnels. The clients and servers
don’t know they’re connected by multiple paths, they need
no additional wiring or implementation of a new network
protocol. Since all flows between the two networks are tun-
nelled, this also works for UDP and can provide additional
confidentiality or a VPN.

Our novel contributions are:

o We introduce HTMT, a flow-aware packet scheduling
algorithm that avoids packet reordering and gains higher
throughput than existing MPTCP and MT algorithms,
especially on asymmetric paths.

o« We evaluate HTMT and multiple other schedulers for
various bandwidth and latency configurations with two
or three subtunnels and multiple payload flows. We show
the distribution of throughputs and latencies and find that
HTMT outperforms all others on asymmetric paths while
it performs comparable on symmetric ones.



II. BACKGROUND

A flow is the set of all sent packets in a transport layer
association (both directions, forward and reverse) [1].

We define a subtunnel as one of the multiple packet tunnels
in a multipath tunnelling (MT) system.

Packet reordering describes the arrival of packets in a flow
in an other order as they were sent at their source [7]. TCP
is sensitive to such packet reordering, as it interprets it as
an indicator of a congestion event and reacts with spurious
packet retransmission and a throughput reduction, often to
one half [8]. Multipath tunnelling, with simple non-flow-aware
scheduling algorithms often induce packet reordering [5].

TCP uses a sliding window (congestion window, CWND) al-
gorithm to adjust its send rate to the path’s capacity [9]. Often
after receiving a cumulative ACK, send space in the CWND
for several packets is freed. We call this free space free slots
or Srpcc. Many TCP implementations send several packets as
a burst or flowlet [3]. TCP and DCCP track a smoothed round
trip time (SRTT) for its path. In multipath routing context,
packet scheduling refers to the task of choosing an output
queue for every packet from an input queue [10].

DCCP [11], the Datagram Congestion Control Protocol, is
a transport layer protocol that can be seen as a middle ground
between UDP and TCP. Like UDP, it sends datagrams instead
of a byte stream and does not provide any reliability. But like
TCP, it does congestion control (CC). This makes DCCP a
good fit for Multipath tunnelling, although conventional single
path tunnelling approaches use UDP as transport protocol
[1]. CC information from the transport layer proves to be
very helpful for multipath scheduling decisions, but we don’t
want the head-of-line blocking, reliability and byte stream
orientation of TCP, therefore we and [12] chose DCCP as
our subtunnel protocol.

III. RELATED WORK

LowRTT [10] is a simple scheduler currently used as default
in the Linux Kernel. When there is a new packet to schedule
and at least one subflow with free slots (free subflow), it is
invoked and puts the packets into the free subflow with the
lowest SRTT.

OTTIAS [13] schedules every packet p to the fastest available
subflow, similar to SRTT. But it does not only send packets
when there is free space in the CWND, but may also enqueue
them into the subflow’s send buffer. For every subflow, OTTAS
uses Tyelivery, the time until p would arrive at the peer using
SRTT, CWND and the number of packets in-flight and in the
send buffer.

AFMT [14] uses TCP for the subtunnels and does no re-
reordering at T,.;;. The packet scheduling algorithm is flow-
aware and adaptive. Flow awareness means sending packets of
one flow in a way that respects their ordering. Unfortunately,
the time estimations used don’t take the time a packet needs
to wait in the send buffer into account. In our approach we
avoid buffering altogether by only scheduling when there is
Sfree > 0, which keeps estimations accurate.

[12] uses DCCP subtunnels and re-reordering for unreliable
multimedia traffic. For packet scheduling it uses LowRTT or
OTIAS (see Section III). Therefore, this approach is adaptive
but not flow-aware.

IV. HTMT

Conceptually for every packet HTMT first determines the
applicable subtunnels (subtunnels on which the packet won’t
overtake any of its predecessors) (flow awareness), and then
picks the currently best of them (adaptivity). To find the
applicable subtunnels, a central flow table is used. For every
flow id, it contains the last subtunnel used by this flow and
a send time stamp. Initially, HTMT obtains the flow-id of
p (p-flow_id) from the operating system. Every operating
system that supports network address translation (NAT) needs
to track flows and can provide flow-ids. Therefore, there’s no
overhead for flow identification and tracking. For Linux, this
is possible with the conntrack module.

Next, we look up the flow id in the flow table . If it exists,
we calculate 4, the time that has passed since the last packet of
our flow was sent. With s;.SRTT, the SRTT of a subtunnel i,
it is possible to predict when p will arrive at T, ,;;, namely in
$;.SRTT time from now and s;.SRTT + ¢ time from when
Diast Was sent. Comparatively, s;,s:.SRTT gives the arrival
time of p;,; from when it was sent. Therefore, if s;.SRTT+6
is larger than s;45:.SRTT, p will arrive after p;,s¢, and we
can add s; to the list of applicable subtunnels .

After acquiring the list of applicable subtunnels, HTMT
selects the best of them (s,,;) (see below). Then, the flow table
is updated with the new values of s,,; and the current time
thow and p is finally sent via sy . If p. flow_id is not found
in the flow table, i.e. it starts a new flow, HTMT directly calls
the adaptive selection process with all available subtunnels. If
no applicable subtunnels are found HTMT waits until at least
one subtunnel opens up.

Algorithm 1: HTMT: Adaptivity

1 Sopt < 8; with maximal s;.weighted_s free
where
2 si.weighted_s pree = 109(8i.Sfree)/si-SRTT

Algorithm 1 illustrates how HTMT’s final subtunnel selec-
tion aims adaptively for low latency and high throughput. Line
1 iterates over the subtunnels and calculates the weighted free
slots for each, the subtunnel with the highest one is selected.
This is equivalent to choosing the subtunnel with the most
free capacity avoiding unnecessary congestion. However, we
also want to provide low latency if possible, therefore we
scale sy.¢. by dividing it by the subtunnel’s SRTT. Our first
experiments showed that using both factors linearly gives the
bandwidth (sf,..) too much impact, since its values vary
within a significantly larger range than those of the SRTT.
With scaling sf... logaritmically, we achieve competitive
throughput and latency.



Total throughput transported via the MT System

Total throughput transported via the MT System

Total throughput transported via the MT System

90 T T T T 200 T

Mbytes
Mbytes

OTIAS

(a) Path 1: 50ms, 8 Mbit/s - Path 2: 50ms, 8 Mbit/s (b) Path 1: 50ms, 16 Mbit/s - Path 2: 70ms, 8 Mbit/s (c) Path 1: 50ms, 8 Mbit/s - Path 2: 70ms, 16 Mbit/s

AFMT LowRTT HTMT

OTIAS

T T 160 T T T

Mbytes
®
3
.

AFMT

AFMT

LowRTT HTMT OTIAS LowRTT HTMT

Fig. 3. Total aggregated Goodput the four different packet schedulers achieve with five Linux TCP Cubic flows as payload. 70s bulk traffic, evaluated for

different path configurations.

V. EVALUATION

The topology of our network testbed is comparable to Figure
2 but with two subtunnels, and router nodes between the tunnel
gates. All nodes are i7-2600 desktop computers with 8GB
RAM connected via Gigabit Ethernet. As operating system,
we use Debian Bullseye with Linux 5.6.14-1. All network
interfaces use pfifo_fast as queueing discipline and fc netem
on the routers to emulate latency and bandwidth limitation.

We created a user space MT implementation with plugable
packet schedulers called einsfroest. It opens a DCCP socket
for every subtunnel to be used and gets the DCCP inter-
nal congestion information via getsockopt() with the option
DCCP_SOCKOPT_CCID_TX_INFO. We had to implement
this getsockopt variant as two small kernel commits. One of
them is already accepted upstream. Our test traffic is created
and measured with iperf, running the iperf client on Tippy
and the server on 1,.;;.

Figure 3 illustrates the total throughput sums the four
different packet schedulers could achieve in 70 seconds for
5 TCP Cubic bulk flows. Subfigure 3a displays the results
for a symmetric path configuration, both paths have the same
latency and bandwidth. Here HTMT performs comparably to
the state-of-the-art LowRTT with roughly 80 Mbyte. While
both OTIAS and AFMT perform worse with about 65 Mbyte,
this is likely due to the number of lost packets because the
DCCP send buffers overflew at some point, causing TCP to
throttle as also visible in Retransmissions reported by iperf.

Subfigures 3b and 3c display asymmetric path configura-
tions. One where the low latency path has more bandwidth (3b)
and one where the high latency path has more (3c). In both
cases HTMT performs noticeably better than all others: For 3b
it’s 180 Mbyte vs. LowRTT’s 155 Mbyte for 3c it is roughly
160 Mbyte vs. LowRTT’s 125 Mbyte. This is very likely the
positive effect of flow awareness and an adaptivity scheme that
takes not only SRTT but also the path’s estimated capacity
into account. AFMT performs considerably worse although
it’s flow aware and adaptive presumably because of packet
loss due to send buffer overflows, which makes it comparable
to OTIAS.

It is worth noting that throughout all experiments the latency
the payload flows experienced was lower average for HTMT

and the highest for AFMT . Regarding throughput fairness all
schedulers treated their flows comparably fair.

VI. CONCLUSION

In this paper we presented HTMT a Multipath Tunnelling
system for asymmetric paths relying on DCCP subtunnels. In
several experiments we evaluated throughput and latency for
different symmetric and asymmetric subtunnel paths, regarding
throughput and latency. In all asymmetric cases HTMT out-
performs all comparison candidate packet schedulers regarding
throughput. Among them are LowRTT, the current standard of
MPTCP, but also OTIAS and AFMT.

[1]
[2]

[3]

[4]
[5]
[6]
[7]
[8]

[9]
[10]

(11]

[12]

[13]

[14]

REFERENCES

A. S. Tanenbaum, Computer networks, 4-th edition, 2003.

K. Dominikn, “Multipath aggregation of heterogeneous access net-
works,” Ph.D. dissertation, PhD Thesis, University of Oslo, 2011.

S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic Load
Balancing Without Packet Reordering,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 2, pp. 51-62, Mar. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1232919.1232925

C. Paasch and O. Bonaventure, “Multipath tcp,” Queue, vol. 12, no. 2,
p- 40, 2014.

M. Bednarek, G. Barrenetxea, M. Kiihlewind, and B. Trammell, “Mul-
tipath bonding at layer 3.” in ANRW, 2016, pp. 7-12.

A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” RFC 6824, 2013.
A. Jayasumana, N. Piratla, T. Banka, A. Bare, and R. Whitner, “Im-
proved Packet Reordering Metrics,” RFC 5236, June 2008.

S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka, “A
new TCP for persistent packet reordering,” IEEE/ACM Transactions on
Networking (TON), vol. 14, no. 2, pp. 369-382, 2006.

J. Postel, “Transmission Control Protocol,” RFC 793, 1981.

C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath tcp schedulers,” in Proceedings of the 2014 ACM
SIGCOMM workshop on Capacity sharing workshop. ACM, 2014, pp.
27-32.

E. Kohler, M. Handley, and S. Floyd, “Datagram congestion control
protocol (DCCP),” RFC 4340, 2006.

M. Amend, E. Bogenfeld, M. Cvjetkovic, V. Rakocevic, M. Pieska,
A. Kassler, and A. Brunstrom, “A framework for multiaccess support
for unreliable internet traffic using multipath dccp,” in 2019 IEEE 44th
Conference on Local Computer Networks (LCN), 2019, pp. 316-323.
F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath tcp,” in 2014 28th International
Conference on Advanced Information Networking and Applications
Workshops. 1EEE, 2014, pp. 749-752.

R. Sailer and J. Héhner, “An adaptive flow-aware packet scheduling
algorithm for multipath tunnelling,” in 2019 IEEE 44th Conference on
Local Computer Networks (LCN). 1EEE, 2019, pp. 109-112.



