Precise and Adaptable: Leveraging Deep Reinforcement Learning for GAP-based Multipath Scheduler

Binbin Liao†, Guanxiong Zhang*, Zulong Diao* and Gaogang Xie†

*Institute of Computing Technology, Chinese Academy of Sciences, China
†University of Chinese Academy of Sciences, China
‡Computer Network Information Center, Chinese Academy of Sciences, China
{liaoabinbin, guanxing, diaozulong}@ict.ac.cn, xie@cnic.cn

Abstract—Using multiple network interfaces to accelerate data transfer is an attractive feature on multi-homed endhost. The key component in a multipath system such as MPTCP is the scheduler, which determines how to distribute the packets over multiple paths. In this paper, we propose GAPS, a new multipath scheduler aiming at decreasing the out-of-order queue size (OQS) under heterogeneous paths. In GAPS, a deep reinforcement learning agent monitors the network states, adjusts the GAP value of each path, and maximizes MPTCP’s reward utility. GAPS is precise in that it searches the optimal action policy, and only has 1.2% to 3.3% deviation from the true GAP. It is adaptable in that it performs better in varying network conditions and congestion control algorithms. In the controllable and realistic experiments, GAPS decreases the subflows’ 99th percentile OQS by up to 68.3%. It allows an increase of 12.7% in application goodput with bulk traffic while reducing application delay by 9.4% as compared to the state-of-the-art schedulers. For the short and long MPTCP flows, GAPS has the flow completion time (FCT) reduction by 13% and 21%, respectively.

I. INTRODUCTION

Currently, the most widely used multipath solution is MPTCP [1], which enables unmodified applications to leverage multiple network interfaces, such as Cellular, WiFi, and Ethernet. It has already been implemented in the linux kernel and supported by many commercial products [2]. MPTCP adds a shim layer between TCP and Application layer, which can establish several TCP subflows over each network interface. The scheduler determines the amount of packets to distribute to each subflow from a sending queue. However, the heterogeneity of TCP subflows makes it challenging to design a good scheduler. As discussed in [3]–[6], a wrong scheduler causes severe packet out-of-order arrival at the receiver side, when the packets scheduled on the faster path have to wait for the packets on the slower path, and thus to arrive in a shared out-of-order queue of the receiver. This phenomenon is also known as head-of-line (HoL) blocking [7]. Because of delaying the packets delivery, HoL makes the application less interactive and results in poor user experience.

Endhost must maintain a large buffer size to reorganize the out-of-order packets. If the host buffer is limited, it will cause a dramatic reduction in application performance, as the receive buffer has to exclude some packets. Besides, a datallevel acknowledgement (Data ACK) of the blocking packets in the slower subflow will cause bursting traffic [6], as the faster subflow accumulates huge free send windows (SWND) during the waiting time. If the in-network buffer is not bigger enough to store these bursting packets, it will cause severe packet loss and congestion window capping.

Several works have been made to address these problems. DAPS [8] firstly proposes the concept of out-of-order sending for in-order arrival. BLEST [9] calculates the waiting packets of the faster subflow based on the properties of paths, such as round-trip-time (RTT), congestion windows (CWND), and SWND. Inheriting these ideas, ECF [4] adds a deviation to calibrate the value of waiting packets and achieves better performance than DAPS and BLEST. STMS [6] finally maintains a GAP value for each subflow to preallocate future packets, which performs better than ECF. Through simple formula-derivation in Section II-B, we find that DAPS, BLEST, and ECF are also the GAP-based scheduler, which transforms the uncontrollable OQS problem from the receiver side to the adjustable GAP value at the sender side.

Our experiment shows that GAP-based schedulers decrease the OQS with their improvement of algorithms. However, they are inadaptable to various network environments, especially when the packet loss rate (PLR), the available bandwidth, and default buffer [9] are changeable. As none of the GAP-based schedulers detect these factors to distribute the sending packets. Moreover, the congestion controller (CC) algorithms greatly affect the OQS, since most schedulers take CWND as the main parameter to adjust their GAP value. We also observe that the GAP values are imprecise when MPTCP maintains more than three active subflows because their human experiences only consider partial factors to calculate the blocking packets and suit the specific scenarios.

In this paper, we design GAPS, which leverages a Deep Deterministic Policy Gradient (DDPG) [10] to train four deep neural networks (DNNs) through wide experiences in state space and generates the continuous control policy for adjusting GAP value. For each round of Data ACK, it gets OQS as the reward utility to optimize the overall performance of MPTCP. Extensive experiments show that GAPS significantly outperforms the state-of-the-art schedulers in various network conditions. The main contributions and results of this paper are summarized as follows.

- We present a DDPG-based deep reinforcement learning (DRL) framework, which realizes our experience-driven philosophy on MPTCP packet scheduling. We utilize DNNs as the function approximator to learn the GAP...
adjusting actions according to the runtime states without relying on any accurate mathematical model.

- We integrate a Transformer network [11] as the representation layer of the actor-critic networks to encode the raw states of dynamic subflows. With positional encoding, each subflow obtains a unique label to determine its GAP value. The relevant degree between any two subflows is calculated by the self-attention layer, which increases the accuracy of GAP.

- We add a new flag-bit in the reserved area of Data Sequence Signal (DSS) option for each Data ACK. Cooperating with the A-bit in the MP_CAPABLE option, the QoS is carried back from the receiver side to the scheduler at the sender side as the reward utility of critic network.

- We implement GAPS in the Linux kernel and evaluate it over controllable and realistic conditions. The experiments show that GAPS decreases the subflows’ 99th percentile OQS by 68.3%, improves the aggregated goodput by up to 12.7%, and reduces the application delay by 9.4% as compared to the state-of-the-art schedulers.

II. BACKGROUND AND MOTIVATION

A. State-of-the-practice schedulers

Whenever the MPTCP stack is ready to send data, its scheduler is invoked to execute two procedures: (a) choosing an available subflow among the set of TCP subflows and (b) deciding which segment to send considering the properties of the subflow. We describe a modular scheduler function analogous to [2]. The pseudo-code implementation of this behavior is illustrated in Algorithm 1, which allows us to design the scheduler in a modular infrastructure.

Within the modular framework, we begin with a simple round-robin scheduler (RR), which fully utilizes the capacity of each path but ignores the external influences on subflows. If any active subflow is poor or broken, RR suffers a long-term delay and the available congestion window on the faster path. Then the GAP value of DAPS is estimated as:

\[GAP_f = \min\left(\left\lceil \frac{RTT_s}{RTT_f} \right\rceil, CWND_f - uncACK_f \right) \]

MinRTT reduces the delay for the interactive applications but still suffers out-of-order arrival [14], head-of-line blocking [7], and receive-window limitation [15]. Through calculating RTT difference, RP and BM reinjects the blocking segment and drains the in-network buffer by capping CWND. Due to their opportunistic nature, RP and BM cannot always reduce the RTT to the optimal value but cause a recurrence of blocking [9]. Their frequent reinsertion also wastes available bandwidth and transmission time. Besides, MPTCP bursting pattern exacerbates the in-network bufferbloat, which is unsolved and detailedly discussed in [6]. To overcome these challenges, we take more factors into account to explore the following GAP-based schedulers, including DAPS, BLEST, ECF, and STMS.

B. State-of-the-art schedulers

We demonstrate a case with only two active subflows and denote CWND_f, CWND_s, RTT_f, RTT_s as the available CWND and RTT of the faster subflows and slower subflows. Assuming that there are 100 packets in the sending queue, which have not been assigned to any subflow. As shown in Fig.1, if RTT_f has redundant CWND_f, the packets are scheduled to it. If RTT_f does not have available space, the packets are scheduled to the RTT_s with CWND_s. Rather than taking packets whose sequence numbers are right after those transmitted on the faster path, the slower subflow sends packets with bigger sequence numbers. It leaves a sequencing GAP for the faster path to send the corresponding packets in the future. By the time the packets from the slower path arrive, all packets from the faster path (including GAP) have already arrived without any interval.

Delay Aware Packet Scheduler (DAPS) aims for in-order arrival at the receiver to prevent its buffer from blocking. It leverages RTT and the available CWND to calculate the GAP value. The sequence number of the packets transmitted on the slower path is determined by the ratio between the two paths, and the available congestion window on the faster path. Then the GAP value of DAPS is estimated as:

\[GAP_f = \min\left(\left\lceil \frac{RTT_s}{RTT_f} \right\rceil, CWND_f - uncACK_f \right) \]

BLocking ESTimation-based scheduler (BLEST) proposes a proactive scheduler to decide at packet scheduling time whether sending packets over the slower subflow blocks the SWND or not. It assumes that all segments will occupy space in SWND for at least one RTT_s, if they are sent on the slower subflow. Therefore, the amount of data that be sent on the faster subflow during RTT_s is the value of GAP, and derived as:

\[GAP_f = (CWND_f + \frac{RTT_f}{2}) \times \left(\frac{RTT_s}{RTT_f} - 1\right) \]

Earliest Completion First scheduler (ECF) monitors subflow not only RTT estimates but also the bandwidths. By determining whether using a slower path for the injected traffic will cause faster paths to become idle, ECF more efficiently
utilizes faster paths by removing the idle periods. Thus, the GAP value is the packets injection of faster subflow during the idle time. By using a hysterisis value β and a standard deviation δ of RTT, the formulation of ECF is then transformed as:

$$GAP_f = \frac{(2 \times RTT_f + \delta) \times CWND_s}{RTT_s - ((1 + \beta) \times (RTT_s + \delta) - RTT_f) \times CWND_f}$$ \hspace{1cm} (3)$$

Slide Together Multipath Scheduler (STMS) realizes the Data ACKed reflects the degree of OQS. Denoting δ-gap and δ-interval as the adjusting step and interval, STMS monitors the data_ack, for each Data ACK, then if data_ack is bigger than two and sent from the slower path, δ-gap = data_ack; otherwise, δ-gap = data_ack. An exponentially weighted moving average (EWMA) of δ-gap over δ-interval adjusts its value as below:

$$GAP_f^+ = EWMA(\delta_{-\text{gap}}, \delta_{-\text{interval}})$$ \hspace{1cm} (4)$$

After passing GAP as an argument to the callback function get_data(subflow, GAP) in Algorithm. 1, the design difficulty is then translated to adjust the GAP value. Any bias from its true value will cause packets out-of-order arrival. We rebuild the controllable testbed, which has been setup in STMS or ECF. The RTT, RTT_s, are randomly set with [20ms, 50ms] and [50ms, 100ms]. The bandwidths of both paths are set to 50Mbps. The packet loss rate is set to 0.01%. Based on [13], [16], the in-network buffer of routers are set to 100 packets for WiFi and 300 packets for LTE. With a coupled balia [17], both receive and send buffers are set to the Linux default size (6MB). Unless otherwise noted, these initial setups keep the same in this paper.

We monitor the OQS of MPTCP as the waiting bytes in the out-of-order queue [18]. Fig. 2 shows that the average OQS of GAP-based schedulers is smaller than the MinRTT scheduler under various network settings. The finer GAP-adjusting in STMS earns the smallest average OQS, which indicates that its GAP value is more accurate and makes packets arrive in-order. However, we also observe that PLR significantly affects the OQS, as none of the GAP-based schedulers detect the PLR to schedule the packets just like [19].

We consider the effects of different CCs implemented in [2]. ECF, BLEST, and DAPS are susceptible to CCs, as their GAP-values directly derives from CWND. STMS has the smallest deviation since it is CC agnostic [6]. For each Data ACK, the PDR, receive windows (RWND), and Data ACKed packets affect the OQS in a similar CCs. If we consider all these factors, the GAP value cannot be confirmed by a simple mathematical model but with a high-dimensional tensor. This is why the existing schedulers ignore some important attributes of a heterogeneous network.
results, we are motivated to enable DRL for automatic GAP adjusting to adapt the heterogeneous network environments.

Fig. 3. The relationship between OQS and GAP under multiple active subflows.

III. APPROACH

DRL is a deep version of regular reinforcement learning (RL), which combines insights from recent advances in deep learning and RL. Considering a standard RL system, which consists of an agent interacting with an environment in discrete timesteps. At each timestep t, the agent receives an observation of the measurement state s_t of the uncertain environment, takes actions a_t according to its policy π, and receives a reward r_t. The goal in RL is to learn a policy $\pi(s_t)$, which maps its state to a deterministic action or to a probability distribution over actions, such that the cumulative discounted reward $\sum_{t=0}^{T} \gamma^t r(s_t, a_t)$ is maximized, where $\gamma \in [0, 1]$ is the discounting factor.

For most practical problems, it is infeasible to learn all possible state-action pairs as the high-dimensional state space. Thus function approximation technique [22] is commonly used to learn the action policy. A function approximator is parameterized by a vector θ, whose size is much smaller (thus mathematically tractable) than the number of all possible state-action pairs. The function approximator can have many forms. Deepmind designs a Deep Q-Networks (DQN) [20] to play Atari games better than human experts, which extends the traditional Q-learning with a DNN approximator.

DQN takes a state-action pair (s_t, a_t) as the inputs, and outputs the corresponding Q-value $Q(s_t, a_t)$, which represents the expected discounted cumulative reward $Q(s_t, a_t; \theta) = E[R_{t:T}|s_t, a_t; \theta]$. Then, the optimal policy $\pi^*(s)$ can be derived by applying a c-greedy strategy that follows the greedy strategy with probability $1-c$, and selects a random action with probability c. Since DQN refers to a neural network function approximator with weights vector θ^Q as a Q-network. The Q-network can be trained or updated by minimizing a sequence of loss functions $L(\theta^Q)$ that changes at each iteration.

$$L(\theta^Q) = E[(Q(s_t, a_t; \theta^Q) - y_t)^2]$$ \hfill (5)

where y_t is the target value for each state-action pair derived from the Bellman equation.

$$y_t = r(s_t, a_t) + \gamma \cdot Q(s_{t+1}, \mu(s_{t+1})|\theta^Q)$$ \hfill (6)

Although neural network or DNN has already been used as the function approximator before, it is known that such a non-linear function approximator is not stable and even leads to oscillation or divergence in the parameters. To improve the stability of training, DQN introduces two effective techniques: experience replay and the target network. By using experience replay, a DRL agent stores historical state transition samples into a replay buffer, and then updates the DNN by a mini-batch sampling from the replay buffer instead of the immediately collected transition. DRL agent thus breaks correlations in the observation sequence, and learns from a more independently and identically distributed past experience. Moreover, a separate target network is proposed for calculating target values y_t, which shares the same network structure as the original Q-network, and copies the weights θ^Q of the target network from θ^Q.

However, DQN can only handle discrete and low-dimensional action spaces. Many tasks of interest, such as our GAP adjusting, have continuous and high dimensional action spaces. As the popular approach to continuous control is the policy gradient [23]. The actor-critic based approach called Deep Deterministic Policy Gradient (DDPG) [10] for DRL, which has integrated both DQN and the emerging deterministic policy gradient for continuous control. The basic idea behind DDPG is to maintain four DNNs simultaneously. Two DNNs, critic $Q(s_t, a_t; \theta^Q)$ and actor $\mu(s_t; \theta^\mu)$ with weights θ^Q and θ^μ, are trained on sampled mini-batches of replay buffer, where each item represents an experienced transition tuple (s_t, a_t, r_t, s_{t+1}) during the agent interacts with the environment. The other two copying DNNs, target actor $\mu(s_t; \theta^\mu)$ and target critic $Q(s_t, a_t; \theta^Q)$ are used for smooth updates of the actor and critic networks. For a probability state distribution ρ and the start distribution J, the parameters θ^Q and θ^μ of above DNNs are updated by the following gradient.

$$\nabla_{\theta^Q} L(\theta^Q) = E_{(s_t, a_t) \sim \rho}[(y_t - Q(s_t, a_t; \theta^Q))^2\nabla_{\theta^Q}Q(s_t, a_t; \theta^Q)]$$ \hfill (7)

$$\nabla_{\theta^\mu} J \approx E_{s \sim \rho}[(\nabla_{a}Q(s_t, a; \theta^Q)|_{a = \mu(s_t)} + \nabla_{a} \mu(s; \theta^\mu)|_{s = s_t})^2]$$ \hfill (8)

The target networks of actor and critic are then updated by having them slowly track the two learned deep neural networks with $\tau \ll 1$, as below.

$$\theta^\prime \leftarrow \tau \theta + (1 - \tau) \theta^\prime$$ \hfill (9)

Combining with the powerful DDPG, several works have achieved excellent performance in network transmission systems, such as adjusting flow priority of datacenter in AUTO [24], adapting bitrate of video streaming in Pensieve [25], and classifying packets of high-speed switches in NeuroCuts [26]. With similar designing challenges, we carefully select the state space, action space, and reward function, which are critical to the ultimate performance of our system.

Because adding more parameters into the state space does not necessarily result in noticeable performance improvement, which instead increases the data collection overhead and training complexity. From the experiments in section II-B, we know that RTT, CWND, PDR, and PLR are correlated
with GAP adjusting. Data ACKed and the host buffer size are proved to be related to OQS-latency in [6]. Then, the value of RTT, CWND, PDR, PLR, Data ACKed, and RWND construct the attributes of each state input.

State space of an MPTCP flow at epoch t is $s_t = [s_{t1}, ..., s_{tN}]$, and $s_{ti} = [d_{ti}, c_{ti}, b_{ti}, l_{ti}, w_{ti}, k_{ti}]$, where s_{ti} is the state of subflow i of an MPTCP connection at t; d_{ti}, c_{ti}, b_{ti}, l_{ti}, w_{ti}, and k_{ti} are the corresponding RTT, CWND, PDR, PLR, RWND and DATA ACKed from the subflow i respectively; and N is the total number of the fluctuant subflows, which are established by the MP_JOIN option or closed by the RST option.

Action space of the active subflows at epoch t is $a_t = [g_{t1}, ..., g_{tN}]$, where g_{ti} specifies how much change needs to be made to the GAP value of subflow i at t. We denote the minimum tuning unit as one TCP packet (about 1KB), which is finer than the STMS. Then, the positive, negative, and zero actions lead to increasing, reducing, and staying at the same GAP value size, respectively. Note that at each epoch t, GAPS takes actions on one target MPTCP flow of N TCP subflows.

Reward function of the critic network at epoch t is $r_t = \sum_{i=1}^{N} f(i, t)$, where $f(i, t)$ gives the utility function of active TCP subflow i. Because OQS at the receiver side is the goal of optimizing, which is expected to construct the reward function. As shown in Table I, we add a Q-bit flag in the reserved area of DSS option for each Data ACK. Cooperating with the flag A-bit in the MP_CAPABLE option, we occupy the two octets of CHECKSUM area to return the current OQS to the sender side when Q&A = 1. Then we denote $r_t = -OQS$ since all active subflows share the out-of-order queue.

Table I

<table>
<thead>
<tr>
<th>Kind</th>
<th>Length</th>
<th>Subtype</th>
<th>Reserved</th>
<th>Q</th>
<th>F</th>
<th>M/m</th>
<th>A/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data-level Acknowledgment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Sequence Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subflow Sequence Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-level Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out-of-order Queue Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Because of the cumulative ACK mechanism, each Data ACK may free huge space and consume several subflow-level RTT, which satisfies the time cost of packets scheduling round from the sending queue at epoch t.

Except for the above considerations, the major obstacles of GAPS focuses on three points: (a) the number of active subflows is dynamically changed, which varies the attributes of subflows; (b) the correlation degree between any two subflows with their attributes is the premise of calculating the GAP value; (c) each subflow must have a unique symbol position to map its GAP value. Recurrent Neural Networks (RNN) or Long Short-Term Memory (LSTM) has been widely used to memory and encode the variable-length input sequences for DNN in [27]–[30]. However, RNN-based methods suffer from massive training and processing complexity [11], which becomes critical and causes poor correlation degree at longer input sequence lengths, as memory constraints limit batch-

To realize this formulation, we design the architecture of GAPS, which consists of the following two core elements.

Transformer network takes the raw state s_t of all active TCP subflows as the input at each decision epoch t, and generates output (i.e., a matrix with attached information), which are then used by the actor-critic networks for deriving actions.

As mentioned above, the major obstacle of GAPS is to deal with the situation, in which the active subflows may change over time. Most DNN needs to have a fixed input sequence. A straightforward way to use a neural network here is to zero-pad or exclude some attributes, which lead to poor training. Considering that Transformer-model encodes a variable input sequence into a normalized matrix. We thus choose Transformer encoders to process the states of dynamic subflows for the DNNs. As illustrated in Fig. 5, each encoder is composed of two sub-layers. The first is a multi-head self-attention layer, and the second is a simple position-wise fully connected feed-forward network. Two normalized layer [33] are deployed as a residual connection [34] around each of the encoder. Each state s_{ti} is embedded into a vector through the
Feed Forward Feed Forward
Subflow #1 Subflow #n
Embedding

θ

networks of actor and critic networks copy their structures
θ

After that, we enter a training loop until the neural network
is convergence. For each received Data ACK, the action is sel-
ected from \(a_t = \mu(s_t; \theta^\mu) + \mathcal{N}_t \) according to the current actor
policy and exploration noise. Then the action \(a_t \) is applied
to the active TCP subflows at the sender side, the reward \(r_t \)
and new state \(s_{t+1} \) are observed from the environment. The replay
buffer \(R \) stores the newest state transition \((s_t, a_t, r_t, s_{t+1}) \)
and removes the oldest tuples when the buffer is full. And
then a random minibatch of \(N \) transitions \((s_t, a_t, r_t, s_{t+1}) \) is
sampled from the buffer \(R \) to update the neural networks.
The target value \(y_t \) is calculated according to Equation.6.
Then the critic network is updated according to Equation.7
by minimizing the loss function. According to Equation.7, the
actor network is updated by using the sampled policy gradient
with \(N \) transitions. Finally, the target networks are slowly
updated according to Equation.9.

V. IMPLEMENT

In our implementation, the Transformer network is con-
structed by \(E_x = 6 \) stacked encoders. The Input Embedding of
each encoder is a vector of size 512. The actor-network has
two fully-connected hidden layers with 48 and 48 neurons.
The rectified linear function [37] is used for activation in the
two hidden layers. The hyperbolic tangent function is
used for activation in its output layer. The critic-network has
two hidden layers same as the actor-network except for one
extra output layer, which has only one linear neuron (with
no activation function). During training, we use Adam [38]
for learning the neural network parameters with a learning
rate of \(10^{-3} \) and \(10^{-3} \) for the actor and critic, respectively.
The soft target update is set to \(\tau = 0.001 \). We set the
default weight \(\alpha = 0.5 \) to and use a discount factor \(\gamma = 0.99 \), which implies that 100 future time steps will influence
current rewards. For compatibility, we leveraged the TFLearn
deep learning library’s TensorFlow API [39] to declare the
neural network during both training and testing. Thus, in the
operation of the GAPS system, it requires interaction between
the kernel and userspace. To simplify the execution logic, we
implement the packet scheduler in the kernel that executes
the GAP adjusting of each subflows from the actor-network
in the userspace by a system call setsockopt(). Besides,
we call getsockopt() to capture the raw network states and
OQS metrics. For the rest parts, we compile MPTCP v0.95
[2] into two endhosts with Ubuntu 16.04 by making kernel
configure, which includes the recent comparable schedulers
and congestion control algorithms. An Openwrt [40] router
installed with TC [41] connects the two endhosts and simulates
the network settings in the controllable lab. The endhosts are
equipped with three kinds of interface in the wild, including
Ethernet (80Mbps), WiFi (50Mbps), and LTE (30Mbps, USB
cellular modem). We maintain at most 8 subflows (each with
6 attributes) except for the wire to wire one.

Fig. 5. The stacked Transformer encoders.

Algorithm 2 Actor critic algorithm for multipath scheduler

1: Randomly initialize critic network \(Q(s, a; \theta^Q) \) and actor
 policy \(\mu(s; \theta^\mu) \) with weights \(\theta^Q \) and \(\theta^\mu \);
2: Initialize target network \(\hat{Q} \) and \(\hat{\mu} \) with weights
 \(\theta^\hat{Q} \leftarrow \theta^Q, \theta^\hat{\mu} \leftarrow \theta^\mu \);
3: Initialize replay buffer \(R \leftarrow \phi \);
4: Initialize a random process \(\mathcal{N} \) for action exploration;
5: Receive initial state \(s' \) from Transformer network;
6: for each received Data ACK do
7: Select action \(a_t = \mu(s_t; \theta^\mu) + \mathcal{N}_t \);
8: Execute \(a_t \) and observe reward \(r_t \) and state \(s_{t+1} \);
9: Store transition \((s_t, a_t, r_t, s_{t+1}) \) into \(R \);
10: Sample transitions \((s_t, a_t, r_t, s_{t+1}) \) from \(R \);
11: Calculate \(y_t = r_t + \gamma Q(s_{t+1}; \hat{\mu}'(s_{t+1}; \theta^\hat{\mu}))[\theta^Q(s_t, a_t)] \);
12: Update critic network by minimizing the loss:
 \[L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i; \theta^Q))^2; \]
13: Update the actor policy by using the gradient:
 \[\nabla_{\theta^\mu} J \approx \frac{1}{N} \sum_i \nabla_{\theta^\mu} Q(s, a; \theta^Q) \nabla_{\theta^\mu} \mu(s; \theta^\mu); \]
14: Update the target networks:
 \[\theta^\hat{Q} \leftarrow (1 - \tau)\theta^Q + \tau \theta^Q, \]
 \[\theta^\hat{\mu} \leftarrow (1 - \tau)\theta^\mu + \tau \theta^\mu; \]
15: end for

Firstly the algorithm randomly initializes parameters \(\theta^\mu \)
of actor-network and \(\theta^Q \) of the critic-network. The target
networks of actor and critic networks copy their structures
with initial parameters \(\theta^\mu \) and \(\theta^Q \). In order to sample
the state transitions, we initialize the replay buffer \(R \). As the
major challenge in continuous action spaces is exploration.
We initialize a noise process [36] \(\mathcal{N} \) for action exploration.

The Ex stacked encoders

Add & Normalize
Feed Forward
Add & Normalize
Multi-head Attention

Input Embedding

Fig. 5. The stacked Transformer encoders.
VI. Evaluation

A. Evaluation in the lab

We first focus on the out-of-order queue size at the receiver side with multiple active subflows. Fig. 6 shows the CDF of OQS at the same endhost with different schedulers. GAPS causes the smallest OQS than other schedulers. The average OQS of STMS is around 0.31MB, but the 99th percentile of MPTCP connection in GAPS has OQS less than 100KB, which makes about 68.3% reduction. Simulating a poor network environment with 1% PLR and 50KB in-network buffer, We further test the GAP-value deviation under different active subflows. Fig. 7 demonstrates that GAPS only has 1.2% to 3.3% deviation from the inspecting true GAP, which is ten times more accurate than the existing schedulers.

Fig. 6. The distribution of OQS.
Fig. 7. The accuracy of GAP.

Fig. 8. The normalized OQS of GAPS relative to that of STMS.

By varying the default settings, we normalize the OQS of GAPS relative to that of STMS. As the heat map is shown in Fig. 8, GAPS is more adaptable to a heterogeneous network. Because it has no more than half of the OQS than STMS in the lossy environment (PLR > 0.01%). When we sysctl different CCs, GAPS is also CCs agnostic as its OQS stays a stable normalized ratio compared with STMS.

Because the OQS latency affects the packet delivery, we also test the application delay of different schedulers. The result that established 5 subflows is shown in Fig 9. It demonstrates that GAPS has a smaller application delay in different network settings. The reduction of its application delay reaches up to 9.4% as compared to STMS. When the network environment is poor, GAPS reduces the application delay by up to 16.3% as compared to DAPS.

Fig. 9. The application delay under various network environments.

We then investigate how our scheduler improves the aggregated goodput under different buffer sizes. Fig.10 shows the result. When the in-network buffer is limited, our scheduler can improve the average goodput by about 12.7% as compared to STMS. When the host buffer is extremely limited, GAPS still has no blocking packets, and gets about 5.8% goodput improvement than STMS. When the PLR and bandwidth are changeable, GAPS still achieves significant goodput improvements.

Fig. 10. The goodput under various network environments.
B. Evaluation in the wild

We implement a web service at the server endhost, which provides files download service with different sizes. The client endhost has installed a browser, which is located inside four different locations of our campus: Office, Library, Dorm, and canteen. Fig 11 shows the improvement of aggregated goodput and application delay in the wild, which maintains at least three subflows. GAPS allows an increase of 11.4% in application goodput with bulk traffic as compared to STMS while reducing application delay by 6.3%.

![Flow Completion Time](image1)

Fig. 11. The performance improvement in different locations.

We measure the FCT of downloading files with different sizes 32MB and 512MB as the short and long MPTCP flow, respectively. The result is shown in Fig. 12. As compared to STMS, GAPS reduces the flow completion time by up to 13%, 21% for 32MB, and 512MB files download.

![Application Delay](image2)

Fig. 12. The flow completion time in different locations.

VII. RELATED WORK

Several advanced schedulers have been proposed to optimize the performance of MPTCP in different application scenarios. ReMP [42] sends duplicated data to improve reliability in the cost of high redundancy. eMPTCP [43] considers energy consumption to make scheduling decisions. MultiMob [44] extends the MPTCP handshake to enable immediate retransmissions. Lim et al. [45] propose a cross-layer optimization model for multipath scheduling. DEMS [5] develops theoretical analyses that making all subflows complete at the same time is a necessary condition for achieving the optimal performance. Different from the existing solutions, GAPS is an experience-driven scheduler, which is self-adaptive to various networks. To the best of our knowledge, it is the first time that DDPG and Transformer are integrated into the design and implementation of a realtime traffic scheduler for MPTCP.

VIII. CONCLUSION

In this work, we derive the GAP-based MPTCP schedulers under heterogeneous path conditions. To inherit a precise and adaptable scheduler, we design a learning-based system, which feeds variable states of TCP subflows into a deep reinforcement learning agent and adjusts the appended GAP-value of each subflow accurately. We implement GAPS in the Linux kernel and evaluate it over both controlled and real network conditions. Our experimental results show that GAPS outperforms state-of-the-art schedulers in diverse congestion controllers and network settings, especially when the path is lossy and the buffer is limit.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D program of China (Grant NO. 2019YFB1802800), the National Science Fund for Distinguished Young Scholars (Grant NO. 61725206), and the Key Projects of National Key R&D program of China (Grant NO. 2018YFF0214706).

REFERENCES
