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Abstract—Utilizing information from the production process
is integral to smart factory concepts. In our example use-case,
plastic industry, sensor information from the injection molding
process helps to detect defective parts and provides automated
guidance for process set-up. An enabler for such applications is a
means to wirelessly collect machines’ sensor information in harsh
factory environments, and network coding has been proposed as a
tool to implement suitable network protocols. Using pre-recorded
sensor data from actual injection processes, we study the impact
of network coding on the latency of sensor data collection. In
particular, we show how network coding with prioritization helps
to reduce delays until information becomes usable.

I. INTRODUCTION

Many smart factory use cases strive to automate previously
manual tasks via the utilization of highly detailed process in-
formation. In our example use-case, plastic injection molding,
molten plastic is injected with high pressure and temperature
into a form, termed the “mold.” As the plastic cools down, the
final product hardens out and is finally ejected from the mold.
Here, relevant process information includes material pressure
and temperature measured within the mold. Such information,
in combination with machine learning techniques, allows the
automated detection of a variety of product defects before they
can reach the customer [1], [2].

In order to leverage process information, it has to be
collected quickly from machines throughout the factory. A
centralized server then acts upon results and, for example,
issues alarms to operators should the process become unstable.
Wireless transmission of sensor information is preferable,
because it avoids expensive retrofitting of factories. Wireless
transmission, however, can be difficult due to the harsh factory
environment with metal obstruction and widespread factory
areas that necessitate multi-hop capabilities.

Using network coding in our use case can improve the
throughput, simplify routing decisions, and add robustness
against packet loss. But using random linear network coding
(RLNC) to transmit sensor information may result in intolera-
ble delays due to the “all-or-nothing” property. This property
states that it is highly unlikely that the server can decode parts
of the sensor information before a sufficient number of linear
combinations for, in our case, a complete injection cycle are
received. A number of prioritized network coding schemes
have been proposed to allow early decoding of a subset of a
generation’s information.

We study the impact of two prioritized network coding
techniques – hierarchical network coding (HNC) [3] and

iNsPECt [4] – on delays in sensor data collection. As a third
mechanism, regular RLNC [5] serves as a baseline for our
comparison.

II. ENCODING AND TRANSMISSION SCHEMES

Using regular RLNC as an example, we explain how net-
work coding in general can be applied to our sensor data col-
lection use case. We then briefly introduce the two prioritized
network coding mechanisms used in our comparison.

RLNC splits information into generations of data messages.
In our case, a generation is one production cycle’s worth of
sensor information from a single sensor. Each message is a set
of sensor samples and consists of several symbols over a finite
field. We employ the common finite field F28 , as it combines
efficient byte alignment with sufficient protection from linear
dependency. Each machine generates linear combinations of
one generation’s messages using random coefficients. Each
machine then continually broadcasts these linear combinations
until all neighbors can decode the current generation. Subse-
quently, the next generation is sent.

To apply prioritized network coding techniques to our
industrial use case, we pre-process sensor information such
that it can be divided into different priority layers, as described
in [6], We apply discrete cosine transform (DCT) to each
production cycle’s sensor information and divide its output into
blocks of coefficients. Blocks with low-frequency coefficients
provide an early preview of a complete sensor cycle, whereas
blocks with high-frequency coefficients incrementally increase
precision to enable more demanding detection techniques. We
again use one injection cycle as a generation, but we use
blocks of coefficients as the prioritized network coding mech-
anisms’ prioritization layers. To generate a linear combination
associated with a given priority layer, the prioritized network
coding (PNC) codes combine only messages of equal-or-lower
layers. In our case, this concept translates to only lower-or-
equal frequencies of the DCT-provided spectrum of sensor
information. As the prioritized layers form a linear subspace
in the decoding matrix, they can generally be decoded earlier
and, therefore, reduce delays in data processing.

In our evaluation, we study the impact of HNC [3], a PNC
protocol, on the delay after which information is usable by
the central server. We also study the impact of layer selection,
a central aspect of PNC protocols, on decoding delay. To
that extent, we compare HNC, which selects priority layers at
random, with iNsPECt [4], which employs limited knowledge
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(a) Grid topology with one sink.
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(b) Temperature error.
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(c) Pressure error.

Fig. 1. Topology and average sensor error over time.

on neighboring network nodes’ decoding states to determine
ideal layers.

III. FACTORY NETWORK MODEL AND EVALUATION

We use a wireless network model in which nodes broadcast
their messages. Our topology, given in Figure 1a, represents a
typical factory layout with rows of machines in a regular grid
and node distances of 30 m. The fifteen nodes, N1 to N15,
represent the machines where the sensor data is measured.
One sink node, S, is the factory’s central server system. We
consider a single sensor for each machine. More sensors in
machines bring a constant factor for the amount of required
transmissions, analogous to a higher sample rate.

We evaluate using the discrete event network simulator ns-3
(version 3.25) with YANS Wifi model, 802.11g MAC, and 2.4
GHz PHY using log-distance propagation loss model (� = 3.0,
which is in line with a range modern factory environments [7])
combined with Rayleigh fast fading. We use real, pre-recorded
sensor information from the injection molding process. Our
sensor information stems from a 25 s long production cycle
that was sampled at 500 Hz rate. Each measured sample is
a 4 B floating-point number. We split frequency components
into five priority layers with a generation size of 53 frequency
components to limit each data message’s size to 1008 B. For
the PNC-iNsPECt variant, we set the data-feedback ratio to
1 : 2. Each sample shown in the following is the average over
five simulation runs of 200 s simulated duration each, using
different sub-streams of ns-3’s PRNG. Error bars depict 95%
confidence intervals (assuming normal distribution), but might
not be visible if the error is negligible. During each run, several
production cycles are transmitted to the sink.

Figures 1b and 1c show the simulation results for temper-
ature error over time and pressure error over time. The time
measurement starts with the first message being transmitted,
which explains the initially very high average error that results
from production cycles without any frequency components
decodable at the server. Generally, it can be seen that the
preview provided by the PNC scheme iNsPECt quickly gains
precision and is virtually indistinguishable from the original

sensor information much earlier than RLNC can provide any
information. HNC also gains precision more quickly on aver-
age than RLNC. The overhead of the HNC scheme, however,
results in RLNC providing the full picture before HNC can
lower the remaining error below 1 K or 1 bar. In contrast,
PNC achieves such a low average error approximately four
times as fast as RLNC for both temperature and pressure
readings. The maximum time until each production cycle was
available with full precision was 8.40 s with our baseline
RLNC. As a result of the principal message overhead imposed
by PNC schemes, iNsPECt and HNC required up to 9.20 s and
17.80 s, respectively, until the preview reached full precision.
Especially with iNsPECt, however, the error is extremely low
during the time after which RLNC finished transmission.

IV. CONCLUSION

We studied the impact of prioritized network coding for
smart factory use-cases using real sensor information from
plastic industry. Our results suggest that iNsPECt provides
significant benefits over non-prioritized RLNC, whereas HNC
can only provide a coarse preview before RLNC provides the
full picture.

REFERENCES
[1] B. Ozcelik and T. Erzurumlu, “Comparison of the warpage optimization

in the plastic injection molding using ANOVA, neural network model
and genetic algorithm,” Feb. 1, 2006.

[2] H. Oktem, T. Erzurumlu, and I. Uzman, “Application of Taguchi
optimization technique in determining plastic injection molding process
parameters for a thin-shell part,” 2007.

[3] K. Nguyen, T. Nguyen, and S. c Cheung, “Peer-to-peer streaming with
hierarchical network coding,” in 2007 IEEE International Conference
on Multimedia and Expo, Jul. 2007.

[4] M. Schaeffer, R. Naumann, S. Dietzel, et al., “Hierarchical Layer
Selection with Low Overhead in Prioritized Network Coding,” in 2018
IFIP Networking Conference (IFIP Networking), 2018.

[5] T. Ho, R. Koetter, M. Medard, et al., “The benefits of coding over
routing in a randomized setting,” 2003.

[6] R. Naumann, S. Dietzel, and B. Scheuermann, “INFLATE: Incremental
wireless transmission for sensor information in industrial environments,”
in 2015 IEEE International Conference on Advanced Networks and
Telecommuncations Systems (ANTS), Dec. 2015.

[7] S. Phaiboon, “Space Diversity Path Loss in a Modern Factory at
frequency of 2.4 GHz,” WSEAS Transactions on Communications, 2014.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-12


	D3-Nguyen.pdf
	Introduction
	Adaptive Task-oriented Message Template
	Integration of ATMT with Google Nearby
	Scenario and Demonstration
	References


