
DEMO: Controlling software router resource
sharing by fair packet dropping
Vamsi Addanki, Leonardo Linguaglossa, Jim Roberts, Dario Rossi

Telecom ParisTech, Paris

Abstract—We demonstrate a practical way to achieve multi-

resource sharing in a software router, where both bandwidth and

CPU resources may be bottlenecks. Our main idea (published in a

same-titled paper in this year IFIP Networking conference [1]),

is to realize per-flow max-min fair sharing of these resources

by wisely taking drop decisions according to the state of a

shadow system. We implement our FairDrop proposed algorithm

in Vector Packet Processor (VPP), a novel high-speed software

router architecture. We demonstrate FairDrop is capable of fairly

sharing CPU cycles among flows with heterogeneous computing

workload, at 10Gbps on a single core.

I. INTRODUCTION

Controlling how bandwidth is shared between concurrent
flows is a classical issue in networking, and the advantages
of imposing fairness have been repeatedly discussed since
Nagle’s pioneering work [2]. More recently, the blending of
networking and computing raise new challenges [3] in terms
of resource contention and sharing – however, simple mech-
anisms that are capable of handling heterogeneous resources
have yet to appear. In emerging high-speed software routers,
flow throughput may additionally be impeded by network
capacity limitations as well as other resources, such as the
amount of available CPU cycles to process packets of any
given flow: in this case, it would be desirable in this case to
impose per-flow fair throughput expressed in cycle/s[4].

As in[4], we advocate that flexible dropping algorithms
are an attractive solution to control resource sharing, be
it cycles of a multi-core CPU or network bandwidth. We
implement a simple and practical algorithm, which we refer to
as FairDrop (FD), that realizes max-min fair flow rates while
retaining the network interface card (NIC) and server code
optimizations that are necessary to keep up with line speeds
of 10 Gbps on a single CPU core. These optimizations notably
require packets to be batched for both I/O and processing
making implementation of classical scheduling algorithms like
DRR [5] problematic if not impossible, as argued in [3].

Our proposal is then to realize fairness via a shadow system.
Briefly, suppose packets are handled simultaneous by two
service systems, one the actual buffer management system
implemented in the router (e.g., a DPDK circular ring), the
other a shadow system implementing a more sophisticated
scheduler (e.g., per-flow FQ). Packets that are dropped in one
system are also dropped by the other so that both systems yield
exactly the same rate over the lifetime of a flow. The shadow
system in our proposal is virtual and makes dropping decisions
based on a measure of per-flow virtual queue occupancy.
This measure is depleted between packet arrivals, at a rate

that varies depending on the number of active flows, and
incremented by packet length on the arrival of every batch.
In particular, if the shadow system implements per-flow head-
of-line processor sharing, the long-term flow rates will be max-
min fair.

We implement the above proposal in Vector Packet Pro-
cessor (VPP), an software router released as open source
in the context of the FD.io Linux foundation project. For
a detailed explanation of our FairDrop (FD) algorithm we
refer the interested reader to a same-titled paper in this year
IFIP Networking conference [1]. In this extended abstract we
instead describe the experimental environment and scenarios
that we will demonstrate, contrasting results achieved under
simple buffer management policies (such as FIFO or NIC ring
buffers). More information about the project, as well as our
implementation, is available at [6].

II. FAIRDROP IMPLEMENTATION AND DEMONSTRATION

In a software router, a CPU core becomes a bottleneck when
flows emit packets too fast yielding a compute load greater
than the CPU capacity, leading to packet drops. High-speed
software routers are intrinsically flow-aware: flow-awareness is
facilitated by NICs implementing receive side scaling (RSS),
that hashes the 5-tuple and maps packets to distinct virtual
queues, mainly for the purpose of load balancing over multiple
CPU cores. Individual threads of packet processing appli-
cations are bound to a CPU core and, using kernel-bypass
stacks such as DPDK, threads consume independent streams
of packets, each from a different RSS queue. Additionally,
high-speed software routers and their NICs generally deal
with packets in batches rather than individually, which reduces
interrupt pressure and that is a necessary optimization for line-
speed packet processing. Software routers typically polls for
available packets in the NIC circular buffer, grabbing and
processing the whole batch before the next poll. FairDrop
operates over packet batches at the router ingress.

We demonstrate FairDrop with a scenario where N flows
share a C=10Gbps link and are processed by a single CPU
core clocked at 2.6GHz. Particularly, flows have equal input
rate C/N but different treatment cost. For the sake of simplic-
ity, in the demonstration we consider only two flow classes: the
majority of the flows belong to the light-weight class CL (e.g.,
Ethernet switching or IPv4 forwarding), whereas few flows
belong to a heavy-weight treatment class CH (e.g., IPsec or
stateful L4 operation). In particular, we select functions whose
CH/CL ⇡10 so that a single packet of an heavy-weight flow

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-9

FIFO/Ring buffer FairDrop

2.0
.
10

6

4.0
.
10

6

6.0
.
10

6

F
lo

w
 r

at
e

[p
p
s]

2.0
.
10

6

4.0
.
10

6

6.0
.
10

6

1.0
.
10

9

2.0
.
10

9

3.0
.
10

9

 10 20 30 40

F
lo

w
 c

o
st

[c
y
cl

es
]

Time (s)

1.0
.
10

9

2.0
.
10

9

3.0
.
10

9

 10 20 30 40

Time (s)

Fig. 1. Illustration of Classical (left column) vs FairDrop (right column) operations. Top part reports sankey diagrams of the rate at the Traffic Generator
(TGS) and at the System Under Test (SUT). Lower part depicts the time evolution of the flow rate (in Mpps, middle) and the flow ccost (in cycles, bottom).

requires as many CPU cycles as about 10 packets of light-
weight flows. We additionally fix NH = 2 and NL = 18 so
that out of the total N = 20 flows, the NH flows of class CH

requires as many processing cycles as the NL flows of class
CL. Needless to say, 64B packets are sent to the maximum
rate of 14.88Mpps, so that not all flows can be processed with
the CPU budget.

We represent experimental results of the demo with the
visual layout of Fig.1, where plots in the left column represent
the case of traditional buffer management, and plots in the
right column report the FairDrop case. In particular, the top
plots report a sankey visualization of the experiments, whereas
the bottom plots report the individual flow rate (in packets per
second) and the individual flow cost (in cycles per second).
The two heavy-weight flows are represented in red, and the
18 light-weight flows in blue.

In the traditional case, since the CPU budget is not enough
to process packet of all flows, about 74% of packets are lost
at the NIC before entering the VPP router. Given that flows
have equal rates, there is no loss differentiation at the NIC, so
that only about 3.86Mpps exit the VPP router, consuming the
2.6Gcycles/sec budget of our CPU. Notice that each flow have
equal rate, but that a single heavy-weight flow alone consumes
25% of the CPU budget.

Conversely, the FairDrop mechanism preferentially drops
packets of the heavy-weight flows to reinstate fairness (at
a rate approximately 10 times higher). Dropping decisions

have a cost (i.e., the packets need to be fetched from the
NIC, the queue in the shadow system is updated, etc.) and
FairDrop consumes 0.17Gcycles/sec. The net result of fair
dropping decisions, more light-weight packets are processed in
the router: this increases the overall throughput at 5.95Mpps
(top right plot), reducing the drops at the NIC buffer, and
reinstates per-flow fairness in terms of the number of cycles
(bottom right plot).

The demonstration will allow to interact with the VPP router
configuration (e.g., FairDrop vs classical ring management)
and altering the scenario parameters (e.g., number of flows,
relative cost, etc.) to contrast the key performance indicators
under both approaches.

ACKNOWLEDGMENTS

This work was funded by NewNet@Paris, Cisco’s Chair
“NETWORKS FOR THE FUTURE” at Telecom ParisTech.

REFERENCES

[1] V. Addanki, L. Linguaglossa, J. Roberts, and D. Rossi, “Controlling
software router resource sharing by fair packet dropping,” in IFIP
Networking, 2018.

[2] J. Nagle, “On packet switches with infinite storage,” RFC 970, 1985.
[3] K. To, D. Firestone, G. Varghese, and J. Padhye, “Measurement based

fair queuing for allocating bandwidth to virtual machines,” in ACM
HotMiddlebox, 2016.

[4] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate fairness
through differential dropping,” ACM SIGCOMM Comput. Commun. Rev.

[5] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” SIGCOMM Comput. Commun. Rev.

[6] https://newnet.telecom-paristech.fr/index.php/fairdrop/.

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-10

	D3-Nguyen.pdf
	Introduction
	Adaptive Task-oriented Message Template
	Integration of ATMT with Google Nearby
	Scenario and Demonstration
	References

