
Demo: Chaining of Segment Routing aware and
unaware Service Functions

Ahmed Abdelsalam
Gran Sasso Science Institute

Abstract—Segment Routing (SR) is a source routing paradigm
that can benefit from both MPLS and IPv6 data planes to steer
traffic through a set of nodes. It provides a simple and scalable
way to support Service Function Chaining (SFC). In this demo,
we propose an NFV architecture based on SR and implemented
in Linux environment. It allows chaining of both SR-aware and
SR-unaware Service Functions (SFs). In order to include SR-
unaware SFs into SR SFC, we use our SR proxy implementation:
srext, a Linux kernel module that handles the processing of SR
information in behalf of the SR-unaware SFs. As SR-aware SFs,
we use two of our implementation; SERA and SR-aware snort.
SERA is a SEgment Routing Aware Firewall, which extends the
Linux iptables firewall, and capable of applying the iptables
rules to the inner packet of SR encapsulated traffic. SR-aware
snort is an extended version of snort that can apply snort rules
directly to inner packet of SR encapsulated traffic. We show
the interoperability between SR-aware and SR-unaware SFs by
including both of them within the same SFC.

Index Terms—Service Function Chaining, Network Function
Virtualization, Segment Routing, Linux networking

I. INTRODUCTION

Telecommunication networks infrastructures are evolving
at a rate rarely seen since the transformation from analog
to digital [1]. Network functions virtualization (NFV) offers
an agile way to design and deploy networking service [2].
In an NFV infrastructure, network functions are decoupled
from proprietary hardware appliances and moved to virtual
servers so they can run in software modules called Virtual
Network functions (VNFs), which are sometimes referred to
as Service Functions (SFs). This dramatically reduces both
capital expenditures (CAPEX) and operating expenses (OPEX)
[3]. A set of these VNFs (SFs), which can be arbitrarily located
in a distributed virtualization infrastructure, are often required
to deliver an end-to-end service, hence Service Function
Chaining (SFC) comes into play.

SFC denotes the process of forwarding packets through the
sequence of SFs [4]. It requires a steering mechanism to force
packets to go through SFs. These steering mechanisms often
require inserting a new header into packets, which carries the
path information. Network Service Header (NSH) and IPv6
Segment Routing header (SRH) are two examples of those
headers. NSH has been proposed by the IETF SFC Working
Group to support the encapsulation of packets with a header
that specifies the sequence of SFs to be crossed [5]. Using
NSH requires creating a state (per each NFV chain) in the
network fabric, which doesn’t make it the preferred solution
in the recent era of networking, where everything is going

towards stateless and simplicity. On the contrary, using SRH
for SFC doesn’t have the need for those state information.

In this demo, we consider the use of the Segment Routing
(SR) architecture to support SFC. SR is a new network
architecture that leverages the source routing paradigm [6]. It
allows to steer packets through an ordered list of nodes, which
are refereed to as segments. SR can be instantiated over both
MPLS (SR-MPLS) and IPv6 (SRv6) data planes. SRv6 defines
a new IPv6 Routing type, named SRH. It allows including a
list of segments in the IPv6 packet header [7]. Each A segment
is encoded as an IPv6 address and represents function to be
called at a specific location in the network. SR enables SFC in
a simple and scalable manner, by associating each SF with a
segment. Such segments are combined together in a segment
list to achieve SFC.

II. SR-AWARE VS SR-UNAWARE SFS

SFs can be categorized into two types, depending on their
ability to properly process SR encapsulated packets. These
are respectively named SR-aware and SR-unaware SFs [8].
An SR-aware SF is able to correctly process SR-encapsulated
packets it receives, which imply being able to process the
original packet despite the fact that it has been encapsulated
within a SR packet, but also being able to process the SRH.
On the contrary, An SR-unaware SF is not able to correctly
process the SR-encapsulated it receives. It may either drop the
traffic or take erroneous decisions due to the unrecognized SR
information. In order to include SR-unware SFs in an SR SC
policy, it is thus required to remove the SR information as well
as any other encapsulation header before the SF receives the
packet, or to alter it in such a way that the SF can correctly
process the packet. SR proxy is an entity, separate from the
service, that performs these modifications and handle the SR
processing on behalf of a SR-unaware service. Srext [9] is
a Linux kernel module providing advanced SR functions. It
supports different SR proxy behaviours detailed in [8].

III. SR/SFC TESTBED

In order to showcase the SFC of SR-aware and SR-unaware
SFs, we built the testbed shown in Figure 1, which consists of
six nodes (R1-R6), implemented as Linux VMs and represent
our SR domain. This SR domain is used to connect two
branches (BR1 and BR2) of an enterprise to an external
network (Ext). All nodes, except R4, support SRv6. Nodes
R1 and R6 respectively represent the ingress and egress nodes,
while nodes R2, R3 and R5 are used as NFV nodes of our

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-3



SRv6 based SFC scenario. Node R4 is a normal IPv6 Linux
router. Service Functions (F1-F3), Branches (BR1 and BR2),
and external network (Ext) are deployed as Linux network
namespaces. F1 is an SR-aware Linux iptables firewall, F2 is
SR-unaware snort, and F3 is an extended SR-aware version
of snort. Nodes R1, and R4-R6 are running kernel 4.14 and
have iproute2 v4.14 installed. Node R2 is running compiled
Linux kernel 4.15-rc2 with SRv6 enabled and SERA firewall
included [10]. Node R3 has the srext [9] kernel module
installed. The links between any two nodes Rx and Ry
are assigned IPv6 addresses in the form fc00:xy::x/64
and fc00:xy::y/64. For example, the two interfaces of
the link between R1 and R2 are assigned the addresses
fc00:12::1/64 and fc00:12::2/64. Each node owns
an IPv6 prefix to be used for SRv6 local SID allocation,
which is in the form fc00:n::/64, where n represents
the node number. As an example, R2 owns the IPv6 prefix
fc00:2::/64. SFs are instantiated on an SR SID of form
fc00:n::fk:/112 where n represents the node hosting
the SF and k is the SF number. For example, F1 which is
running in node R2 is given the prefix fc00:2::f1:/112.
BR1, BR2, and Ext are respectively assigned the IPv6 prefixes
fc00:b1::/64, fc00:b2::/64, and fc00:e::/64.

IV. SR/SFC POLICIES

The testbed in Figure 1 supports two different path, with
different bandwidth and security guarantees, towards Ext. Path
p1 (R1 ! R4 ! R5 ! R6) provides high bandwidth. Path
p2 (R1 ! R2 ! R3 ! R6) has lower bandwidth, but more
security guarantees. Going through p1 implies crossing F1 and
F2. The same way, going through p2 implies crossing F3. BR1
and BR2 have different traffic requirements; BR2 traffic is
very delay-sensitive, while BR1 traffic is highly confidential,
but less delay sensitive. We exploit p1 and p2 to satisfy those
traffic requirement. BR1 traffic is steered through p1, and BR2
traffic is steered through p2. At the ingress node (R1), we
configured two different SR SFC policies (CP1 and CP2) that
steer traffic through p1 and p1. Policy Based Routing (PBR)
is used to classify traffic coming form BR1 and BR2, which
respectively go through CP1 and CP2.

V. DEPLOYMENT AND TESTING

We built our testbed by using VirtualBox [11] as hyper-
visor and Vagrant [12] as VM manager. This makes it easy
to replicate the demo on any commodity hardware. Scripts
required to deploy the demo are open source and can be found
at [13]. To verify the deployment of the demo, we use iperf

[14] to generate traffic from BR1 and BR2. BR1 traffic should
cross both F1 and F2. F1 is configured with iptables rules,
which are applied by SERA firewall directly to inner packet
of received SR traffic. F2 is an SR-unaware snort, which can’t
correctly processes SR packets. We used srext to remove SR
encapsulation from packets before being handed to F2. The
removed SR encapsulation is re-added again to packets after
being processed. F3 is the only SF crossed by BR2 traffic.
It’s an SR-aware snort that can apply configured snort rules

BR1

BR2

R1

R2

R4 SR3

R6

srext

F5

F4
F1 F2

F3

Ext

R3

Fig. 1: Testbed for SR/SFC demo

directly to inner packet. To make sure that BR1 and BR2 traffic
follows the exact path in both upstream and downstream, we
configure two SR SFC policies on the egress node (R6) for the
reverse path. This guarantees that SFs get the traffic in both
directions.

VI. CONCLUSIONS

In this demo, we introduce a Linux NFV infrastructure that
support SFC of both SR-aware and SR-unaware SFs. We used
our SR proxy implementation (srext) to include those SR-
unaware SFs in an SR SFC. As SR-aware SFs, we provided
two implementations of SR-aware SFs. SR-aware and SR-
unaware SFs have been included in the same SFC to show their
inter-operability. We provided an open source implementation
for the SR/SFC testbed been used.

REFERENCES

[1] B. Thekkedath, Network Functions Virtualization For Dummies. Wiley,
2016.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE

Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.
[3] R. Mijumbi et al., “Network function virtualization: State-of-the-art

and research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, 2015.

[4] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Ar-
chitecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
October 2015.

[5] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header
(NSH),” Internet-Draft, November 2017. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-sfc-nsh

[6] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The Segment Routing Architecture,” in 2015 IEEE Global Communi-

cations Conference (GLOBECOM). IEEE, 2015, pp. 1–6.
[7] S. Previdi (ed.) et al., “IPv6 Segment Routing Header (SRH),”

Internet-Draft, September 2016. [Online]. Available: http://tools.ietf.
org/html/draft-ietf-6man-segment-routing-header-02

[8] F. Clad et al., “Segment Routing for Service Chaining,” Internet-
Draft, October 2017. [Online]. Available: https://tools.ietf.org/html/
draft-clad-spring-segment-routing-service-chaining-00

[9] “srext - a Linux kernel module implementing SRv6 Network
Programming model,” Web site. [Online]. Available: https://github.com/
netgroup/SRv6-net-prog/

[10] “SERA - SEgment Routing Aware Firewall,” Web site. [Online].
Available: https://github.com/SRouting/SERA

[11] “VirtualBox home page,” Web site. [Online]. Available: http:
//www.virtualbox.org/

[12] “Vagrant home page,” Web site. [Online]. Available: http://www.
vagrantup.com/

[13] “SRv6 SFC demo,” Web site. [Online]. Available: https://github.com/
SRouting/sr-sfc-demo

[14] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,” Web
site. [Online]. Available: http://iperf.fr

Annex to ISBN 978-3-903176-08-9 © 2018 IFIP A-4

http://tools.ietf.org/html/draft-ietf-sfc-nsh
http://tools.ietf.org/html/draft-ietf-sfc-nsh
http://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-02
http://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-02
https://tools.ietf.org/html/draft-clad-spring-segment-routing-service-chaining-00
https://tools.ietf.org/html/draft-clad-spring-segment-routing-service-chaining-00
https://github.com/netgroup/SRv6-net-prog/
https://github.com/netgroup/SRv6-net-prog/
https://github.com/SRouting/SERA
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.vagrantup.com/
http://www.vagrantup.com/
https://github.com/SRouting/sr-sfc-demo
https://github.com/SRouting/sr-sfc-demo
http://iperf.fr

	D3-Nguyen.pdf
	Introduction
	Adaptive Task-oriented Message Template
	Integration of ATMT with Google Nearby
	Scenario and Demonstration
	References


