
Is There a Case for Parallel Connections
with Modern Web Protocols?

Jawad Manzoor1, Ramin Sadre1, Idilio Drago2, and Llorenç Cerdà-Alabern3

1Université Catholique de Louvain, 2Politecnico di Torino, 3Universitat Politècnica de Catalunya

Abstract—Modern web protocols like HTTP/2 and QUIC aim
to make the web faster by addressing well-known problems of
HTTP/1.1 running on top of TCP. Both HTTP/2 and QUIC are
specified to run on a single connection, in contrast to the usage
of multiple TCP connections in HTTP/1.1. Reducing the number
of open connections brings a positive impact on the network
infrastructure, besides improving fairness among applications.
However, the usage of a single connection may result in poor
application performance in common adverse scenarios, such as
under high packet losses. In this paper we first investigate
these scenarios, confirming that the use of a single connection
sometimes impairs application performance. We then propose
a practical solution (here called H2-Parallel) that implements
multiple TCP connection mechanism for HTTP/2 in Chromium
browser. We compare H2-Parallel with HTTP/1.1 over TCP,
QUIC over UDP, as well as HTTP/2 over Multipath TCP, which
creates parallel connections at the transport layer opaque to the
application layer. Experiments with popular live websites as well
as controlled emulations show that H2-Parallel is simple and
effective. By opening only two connections to load a page with
H2-Parallel, the page load time can be reduced substantially in
adverse network conditions.

Index Terms—HTTP/2, QUIC, MPTCP, Performance, Mea-
surements

I. INTRODUCTION

The web has become an essential part of our daily lives. We
see a continuous trend of migrating traditional applications to
the cloud, e.g., Microsoft Office 365 and Google Apps. As a
result, modern web content has become extremely complex.
This complexity requires efficient web delivery protocols to
maintain users’ experience regardless of the technology they
use to connect to the Internet and despite variations in the
quality of users’ Internet connectivity.

HTTP, which is the de facto standard protocol of the web
was developed in early 1990s as a simple request/response
protocol to deliver content over the Internet. Its first versions,
HTTP/1.0 and HTTP/1.1, have inherent inefficiencies when
dealing with modern web content. For example, they suffer
from head-of-line (HOL) blocking, where responses must
arrive sequentially, following the order of requests. As web
pages were getting more and more complex over the years,
these inefficiencies started to hurt Page Load Time (PLT).1

Despite these limitations, HTTP/1.1 over TCP has maintained
a dominant position for around 20 years due to well-known
challenges in replacing popular Internet protocols.

1Page Load Time is the time from when a user fires a web page request
(e.g., by clicking on a link) until the page is fully loaded by the browser.

Browser vendors have reacted to HTTP/1.1 inefficiencies
throughout the years by deploying ad-hoc optimizations to
speed up PLT. One such optimization is the opening of several
persistent TCP connections towards each web server when
retrieving pages. Browsers can issue requests in parallel in the
multiple connections, reducing the effect of HOL blocking. As
a side effect, they compete for resources with other applica-
tions in the network more aggressively. For example, while the
transfer rate of a single TCP connection is limited by the small
congestion window (cwnd) during TCP slow start, multiple
connections sum up their cwnd, resulting in faster startup
rates. The fierce competition among browser manufacturers
has pushed browsers to open a large number of parallel
connections in an attempt to speed up page rendering [1].

Only recently, with Google’s development of SPDY and
QUIC, new protocols to replace HTTP/1.1 have gained mo-
mentum. The successful deployment of SPDY over TLS has
opened the way for the HTTP evolution, triggering the stan-
dardization of HTTP/2 [2]. HTTP/2 borrows many of SPDY’s
principles and solves several shortcomings of HTTP/1.1. In
particular, HTTP/2 multiplexes requests in a single TCP
connection, eliminating the HOL blocking bottlenecks. This
feature has prompted the IETF to recommend clients to
open a single TCP connection per host-port pair for HTTP/2
transactions [2].

QUIC (Quick UDP Internet Connections) is another promis-
ing protocol developed by Google that provides multiplex-
ing, congestion control and security functionality similar to
HTTP/2, TCP and TLS, respectively, on top of UDP. It
implements several optimizations including 0-RTT connection
establishment, where clients can start repeated sessions with
a known server without a three-way handshake, improved
congestion control and better RTT estimation and loss recovery
mechanism than TCP [3].

Recent studies have tracked the adoption of HTTP/2 and
QUIC, showing not only a manifold increase in their usage,
but also real performance gains [4], [5], [6]. However, both
protocols use a single connection by design, which may result
in poor application performance under adverse network condi-
tions, in particular if different protocols compete for resources.
For example, HTTP/2 is known to be particularly vulnerable
in WiFi networks with high random packet losses. Equally,
whereas QUIC uses a different congestion control strategy that
reduces the effects of random packet losses, the implications

ISBN 978-3-903176-08-9 c© 2018 IFIP



of QUIC’s use of a single connection – e.g., during congestion
in load-balanced links – are not fully understood yet.

In this paper we investigate the performance of browsing
using modern web protocols in some adverse network sce-
narios. We use both active measurements with live websites
and emulations in a testbed. We first confirm that HTTP/2
(and to a lesser extent QUIC) suffers more than HTTP/1.1
with multiple TCP connections in the tested scenarios. The
use of a single connection partly explains the results. We then
test whether adopting multiple TCP connections with HTTP/2
helps in mitigating the problems. We call this practical solution
H2-Parallel, and implement it by modifying the source code of
the Chromium browser. We compare H2-Parallel with HTTP/2
using a single TCP connection, HTTP/1.1 (both cleartext and
encrypted) using multiple TCP connections, QUIC over a
single UDP connection, as well as HTTP/2 over Multipath
TCP (hereafter called H2-MP). The latter creates parallel
connections at the transport layer opaque to the application
layer. Note that HTTP/2 and QUIC always employ encryption
by default.

Our experiments with popular live websites as well as con-
trolled emulations show that H2-Parallel has some interesting
advantages. It reduces PLT when compared to HTTP/2 over
a single connection. In a scenario with around 2% of packet
loss, H2-Parallel with only two parallel connections reduces
the average PLT of HTTP/2 by 55%, and practically makes
the performance of HTTP/2 similar to what is obtained by
HTTP/1.1 with several parallel connections. Although QUIC
is not affected by packet losses as severely as HTTP/2 over
TCP thanks to its new congestion control strategy, we show
that QUIC can also benefit from the use of parallel connections
in some scenarios. Finally, H2-Parallel and H2-MP present
similar performance with different practical trade-offs.

We make the following contributions:

• We identify scenarios that challenge HTTP/2 and QUIC
performance, namely (i) packet losses in wireless net-
works and (ii) congestion in ISP networks with load
balancers, a scenario not addressed in prior work yet;

• We implement H2-Parallel, a Chromium-based user agent
that fans out HTTP/2 requests to a destination over
multiple TCP connections;

• We compare H2-Parallel against the major web protocols.
Our results differ from previous works by (i) including
all relevant web protocols, instead of only a subset of
them; (ii) considering real websites and browsers instead
of simplistic downloads or TCP transfers, thus giving a
view on how users perceive performance while browsing;
(iii) testing the latest protocol versions (e.g., QUIC 39).

• We evaluate whether the protocols are fair to one another
when competing for bandwidth and find that H2-Parallel
and QUIC behave similarly for long transfers.

To simplify the terminology, in the remainder of this paper,
we will refer to the non-encrypted (i.e., cleartext) version of
HTTP/1.x as H1C, to HTTP/1.x over TLS as H1, and to
HTTP/2 over TLS as H2.

The rest of the paper is organized as follows. Section II
discusses the related work. In Section III we discuss scenarios
in which H2 and/or QUIC may exhibit poor performance.
We present our measurement methodology in Section IV, and
discuss results in Section V. Section VI concludes the paper.

II. RELATED WORK

Zimmermann et al. [5] investigate H2 adoption. They show
that around 12.5% of Alexa top-million domains provide full
H2 support, with a 66% increase in H2 enabled domains
between Sep 2016 and Jan 2017. They also study H2 perfor-
mance, but in contrast to our work, they focus on the impact
of H2 server push functionality, showing that some websites
profit from the feature to speed up PLT.

Other works characterize the performance of websites ac-
cording to the used HTTP versions. Zarifis et al. [7] explore
the PLT differences between H1 and H2 using data collected
from real users of the Akamai CDN. They find that in around
60% of the time H2 has lower PLT than H1. Varvello et al. [4]
build a measurement platform to actively monitor H2 adoption
by probing Alexa top-million websites. They show that around
80% of the websites adopting H2 improve PLT.

Saxcé et al. [8] compare the performance of H1 and H2.
They clone the Alexa top-20 websites and find that, apart from
network conditions, PLT depends on the website structure and
content. Erman et al. [9] focus on mobile browsing. They
measure PLT for the top-20 Alexa websites using SPDY and
H1 proxies in a 3G network and find that SPDY performs
poorly due to the large number of retransmissions and TCP
backoff. Elkhatib et al. [10] reach similar conclusions by
comparing the performance of SPDY with H1 in simulated
networks. All these works however do not explore possible
solutions for the scenarios where H2 performance degrades.

Wang et al. [11] perform experiments with synthetic pages
and cloned pages (Alexa top-200). They propose a solution for
SPDY inefficiencies by tuning TCP: increasing initial window,
increasing receive window and reducing backoff rate in case of
packet loss. This solution is not practical since making changes
to TCP is hard and can take years to be widely deployed.

Recently, there has been a lot of interest in QUIC. Carlucci
et al. [12] investigate QUIC (v. 21) on emulated network
environments using synthetic pages. They report that QUIC
performs worse than H1, but better than SPDY, with large
web pages and 2% random packet loss rate. Without packet
loss, QUIC performs better than H1 and SPDY for small and
medium web pages, but worse for large pages due to the usage
of only six parallel streams.

Megyesi et al. [13] test QUIC (v. 20) while emulating
different values for bandwidth, delay and packet loss. They
host four synthetic pages having different size and number of
images. They show that, with packet loss, SPDY performs the
worst, followed by QUIC and H1. In case of high bandwidth
and large page size, QUIC’s PLT is three times larger than
H1 and SPDY. Kakhki et al. [14] show the root-cause for the
problem, which prevented slow start threshold update (fixed in
newer QUIC versions). The authors show that QUIC (v. 34)

524



Fig. 1: Congestion on one of the load-balanced paths in ISP network Fig. 2: Random packet losses in WiFi network

always outperforms H2, except with a very large number of
small objects. QUIC (v. 34) is however unfair with other
protocols, taking more than 50% of the bottleneck bandwidth
when competing with 2 or even 4 TCP connections, a result
that we will revisit with the newest version of QUIC.

In our prior work [15] we showed that some browsers
arbitrarily create up to 6 connections towards a destination
when using H2, but this was due to an issue only recently
discovered by the developers [16] (fixed in Chromium v. 61),
and not a performance improvement feature. In this paper we
implement such a solution for H2 (i.e., H2-Parallel) and show
its effectiveness.

Other studies have investigated the use of newer trans-
port protocols such as MPTCP to alleviate the performance
degradation of H2 and SPDY in presence of packet losses.
Han et al. [17] provide the first measurement study of mobile
web performance over MPTCP using SPDY and H1. They
download 25 websites from Alexa top-100 list and measure
PLT by combining LTE and WiFi with MPTCP. They show
that MPTCP helps in mitigating performance penalties of
SPDY under packet loss. In [18] the same authors provide
a cost-benefit analysis of MPTCP in terms of improved user
experience and energy consumption on mobile devices. The
assumption in these studies is that clients are multi-homed –
e.g., WiFi and LTE can be used simultaneously. Our work has
a different scope: we check whether MPTCP has an impact on
H2 performance even on single-homed devices, e.g., laptops
or PCs with WiFi only. We will show that MPTCP can create
multiple TCP connections and help in reducing the impact of
packet losses and congestion in the network.

III. CONSIDERED SCENARIOS

We consider real-world scenarios where H2 and QUIC may
perform poorly. These scenarios are described in the following
and investigated in the next sections.

A. Random packet losses in WiFi networks

Random packet losses in WiFi networks are common under
real-world conditions due to various factors like noise and
the distance from clients to the access point. The impact of
packet loss on the performance of H1, SPDY and H2 has
been thoroughly studied in prior work [10], [11], [8], [17].
There is a consensus that H2 performs poorly compared to
H1 when there is high packet loss rate. We investigate the

extent to which other protocols suffer from similar problems,
and propose a practical solution applicable to regular H2 over
TCP.

B. Load balancers and congestion in ISP networks

A large percentage of the Internet traffic between source-
destination pairs traverses multiple paths due to deployment
of load-balancing routers [19], [20] in ISP networks. These
routers split packets across multiple paths using techniques
like Equal-Cost Multipath Routing (ECMP). Since traditional
Internet measurement tools like traceroute may fail to identify
these paths, alternative tools such as Paris traceroute have
been developed to quantify multipath routing in the Internet.
Augustin et al. [21] performed a large scale measurement using
over 68 thousand destinations and showed that around 70% of
paths between source and destination networks traverse a load
balancer.

Three different load-balancing schemes exist: packet-based,
destination-based and flow-based. Packet-based algorithms
distribute all incoming packets evenly on all network paths,
e.g., in a round robin fashion. Since different paths can have
different delay, this approach may result in massive packet
reordering and hence out-of-order delivery of the packets [22].
Therefore it is rarely used in practice. The destination-based
scheme routes all traffic destined to the same host over the
same path. This scheme can lead to uneven traffic distribution.
The flow-based scheme is more popular. It defines a flow
using different fields in the packet header, such as source
and destination IP addresses, port numbers and protocol.
All packets belonging to the flow according to the chosen
definition are sent over the same path.

However, optimal load balancing is hard. Figure 1 shows
a load-balancing headend router with two equal-cost paths in
an ISP network where one of the paths is shared by traffic
from other nodes. Despite evenly distributing traffic using
ECMP on the headend router, the shared link may become
overloaded and cause congestion. A number of large scale
measurements [23], [24], [25], [26] show that congestion pre-
dominantly occurs in ISP networks and the described scenario
happens quite often. In such a scenario H2 and QUIC may
perform poorly as the browser will open a single connection,
and that connection may be routed over the congested path.
Hence they cannot exploit the underlying path diversity of

525



the network. H1 on the other hand establishes multiple con-
nections which may be distributed across the available paths
by the load-balancing routers. Therefore, the performance is
not significantly affected while downloading pages with H1
in such a scenario. This is an important scenario, yet it has
not been investigated in prior studies. To quantify the extent
of severity of this scenario by performing experiments in the
Internet is an interesting topic for future work, but is out of
scope for this paper.

C. Fairness among competing connections

In the recent years the traffic share of H2 and QUIC has
rapidly increased and today, connections belonging to H1,
H2 and QUIC co-exist in web traffic. These connections
essentially compete for the bottleneck bandwidth. Maintaining
fairness is very important for the network as unfairly taking
bandwidth share from other protocols may lead to substantial
performance degradation for some applications. While it is
clear that H1 is unfair to H2 because of its aggressive use of
connections, it is more interesting to see how QUIC competes
with H1 and H2. In a recent study [14] on QUIC (v. 34) it
was shown that QUIC is unfair to 2 and even 4 competing
TCP connections. Since QUIC is evolving rapidly with major
changes and improvements in each new version, we want
to observe whether this behavior has changed in the most
recent version (v. 39). Moreover, we want to verify how QUIC
compares to our H2-Parallel implementation.

IV. METHODOLOGY

We now explain the design of H2-Parallel and H2-MP, our
testbed, and measurement of PLT and cwnd of TCP and QUIC.

A. H2-Parallel

H2-Parallel is our Chromium-based user agent that fans
out H2 requests over parallel TCP connections to mitigate
the negative impact of a single connection on H2 PLT. Our
objective is to verify that allowing the user agent to open
parallel TCP connections for H2, similar to what most user
agents do for H1, would improve the PLT.

Chromium browser maintains a single H2 session per do-
main, in accordance with the H2 specification. H2 sessions
are tracked by a key consisting of the destination host–port
pair. Each H2 session goes on a separate socket. In order to
allow two TCP connections per domain, we have modified
Chromium such that it stores two keys for each host-port pair.
When issuing a new request, the state of the H2 session is
controlled. First we check if we already have two keys for
destination host-port pair of the current request. If not, we
create a session with the new key and initialize the TCP
connection. For each subsequent request, we call a function
that returns one of the two available connections and use it
for the request.

To keep the modifications as straightforward as possible, we
have implemented a basic scheduler that assigns requests in a
round robin fashion to one of the two connections. Note that
requests assigned to the same connection are still multiplexed

TABLE I: Statistics of cloned web pages. The columns HTML,
CSS, etc. show the number of objects of that respective type.

Website HTML CSS JS Image Other Total Size
(kB)

Baidu 1 1 1 6 1 10 50
Google 2 1 3 5 1 12 56

Live 2 2 2 2 0 8 262
Twitter 6 1 4 2 3 16 421

Wikipedia 1 1 2 20 1 25 441
Reddit 4 2 5 26 2 39 470
Yahoo 16 13 5 48 4 86 839

VK 4 1 14 3 1 23 920
Taobao 2 2 7 38 4 53 1 320

Instagram 3 1 7 25 1 37 1 409
QQ 15 6 19 115 6 161 1 728

Sohu 13 11 33 167 4 228 2 056
YouTube 8 3 5 113 20 149 2 911
Facebook 1 1 8 123 1 134 3 560
Amazon 5 2 14 41 2 64 3 723

TABLE II: Statistics of the pages in live websites

Website Objects Size Domains Connections
(kB) H2 H2-Parallel H1

Google 17 286 1 1 2 4
Bing 32 421 1 1 2 2

Wikipedia 36 882 2 2 4 4
Mozilla 37 931 2 2 4 8
Poloniex 19 1 028 2 2 4 7
Paypal 64 1 415 2 2 4 12

Instagram 35 1 785 3 3 6 14
Blogger 61 2 061 2 2 4 11
Twitter 18 2 429 2 2 4 5

Facebook 86 4 266 2 2 4 12

by H2. For the server, the two connections look like two
regular H2 sessions from the same source IP. Despite this
approach being simple, it distributes the requests fairly equally
over the two connections.

B. H2-MP

H2-MP uses MPTCP to create parallel subflows to the
servers to load a web page. We use H2-MP to compare
the performance of creating parallel connections at transport
layer versus application layer(as implemented by H2-Parallel).
MPTCP is an enhancement of TCP that allows bandwidth
aggregation and improved reliability by utilizing multiple
paths simultaneously. It provides the same socket interface
as TCP and spreads the data across several subflows without
requiring applications or upper-layer protocols to be aware of
the multiple paths. An MPTCP connection is initiated with
the usual TCP 3-way handshake over one path. The handshake
however includes a MP_CAPABLE message in the options field
of the SYN, SYN/ACK and ACK packets. Further (sub-)flows
can be added to the MPTCP session by sending MP_JOIN in
the option field of additional 3-way handshakes regardless of
the path used to open the flow.

526



We use stable release v0.91 of MPTCP and use the ndiff-
ports path manager with the number of subflows set to 2,
which creates two subflows between the same pair of IP-
addresses by modifying the source port. We set the default
scheduler which starts by sending data on the subflow with the
lowest RTT. When its cwnd is full, it sends data on the subflow
with the next lowest RTT. This is the recommended scheduler
as it is known to provide the best performance. Hence two TCP
connections are established between client and server without
any modification of the browsing applications and having a
complete view of the state of the connections at the transport
layer. However, it requires MPTCP-compatible network stacks
in the client and in the server.

C. Mininet testbed setup

We use Mininet [27] version 2.3 to emulate the three
scenarios described in Section III. Mininet emulates a large
network comprising multiple hosts, links and switches running
real kernel and application code. We run Ubuntu Linux kernel
4.1.38 with the stable release v0.91 of MPTCP on the client
and server and use Cubic congestion controller on both sides.
We use Chromium browser version 60 on the client which
supports H1, H2 and QUIC(v. 39). The server node hosts H2O
web server2 which provides an open-source implementation
of H2, and quic-go web server which is an implementation
of the QUIC protocol in Go3. We use Linux’s Traffic Control
(tc) and Network Emulation tools to configure network path
characteristics such as bandwidth, delay and packet loss.

1) Emulating ECMP and congestion: For the scenario of
ECMP with congestion, we emulate a typical home network
shown in Figure 1 where a client’s home router is connected
to the headend router of an ISP with a 10 Mbps link [28]. The
link from the ISP to the web server is configured with 1 Gbps
bandwidth capacity. The headend router at the ISP performs
load balancing using two paths. We emulate the congested
bottleneck link in the lower path by generating traffic on it with
90% of its bandwidth capacity using iPerf with 8 connections.

We use flow-based routing in the load-balancing router for
the reasons explained in Section III-B. Flow-based ECMP
routing is not available in the latest MPTCP-capable Linux
kernel that we use in our experiments. Therefore, we build
a custom Linux kernel and implement a flow-based routing
algorithm where the next hop is selected by hashing the flow
5-tuple, i.e., source address (SA), destination address (DA),
source port (SP), destination port (DP), and protocol type (PT)
of a connection. Our hash function H is defined as

H = SA⊕DA⊕ SP ⊕DP ⊕ PT

where ⊕ is the bitwise XOR function. We calculate H mod 2
to select either the first path or the second path.

This design avoids any informed decision at the router on
how the multiple flows of a single H1, H2-Parallel or MPTCP
session are routed through the paths. For instance, the MPTCP

2https://h2o.examp1e.net/
3https://github.com/lucas-clemente/quic-go

or H2-Parallel flows may all take the congested or the non-
congested paths during emulations. Obviously, each protocol
will react to path choices differently. For instance, MPTCP is
able to detect congestion and move traffic to non-congested
paths, if at least one subflow is routed to the non-congested
path. H2-Parallel instead will blindly schedule requests on the
multiple connections.

2) Emulating random losses in WiFi: We emulate the net-
work shown in Figure 2. The WiFi link has 7 Mbps bandwidth
and 50 ms delay representing realistic network conditions
based on large-scale measurement study [29] and also used
in prior studies [17], [18]. We perform tests without and with
packet loss in the WiFi link. For the latter, we inject random
packet losses using netem. We use 2% packet loss rate as
suggested in prior work [11], [12], [13]. We also perform
experiments using other loss rates but the results are not shown
due to space limitation.

D. Measuring page load time

We have selected 15 websites from Alexa’s top 100 list and
downloaded their landing pages or other publicly available
pages onto the H2O server. The selected websites are a mix
of social networking, online shopping, news and search. The
main characteristics of the cloned pages are summarized in
Table I. Chromium browser is used on the client to load the
pages from the server. We configure dnsmasq 4 on the client
to ensure that all hostnames resolve to the IP address of the
server and do not leave the testbed. We have also selected
10 popular H2 enabled websites for live experiments listed in
Table II. The key requirement for this selection is that all of
the content must be delivered by the server using H2.

To automate the page loading we create a script that uses
Chrome-HAR-capturer5 to connect to the browser via its
remote debugging API and load each page multiple times with
cold cache. When the experiment ends, an HTTP Archive
(HAR) file is created, containing detailed performance data.
Our script parses the HAR file, extracts PLT for each of each
run and calculates the arithmetic mean of all runs. We load
the web pages using H1C, H1, H2, H2-Parallel, H2-MP and
QUIC.

E. Measuring cwnd changes

We monitor the changes in the cwnd size for TCP using the
tcpprobe6 module. In case of H1 we calculate the sum of the
cwnd sizes of all individual connections. In case of QUIC we
instrument the source code of quic-go web server to collect
logs that allow tracking of the cwnd size on each ACK.

V. MEASUREMENT RESULTS

A. Impact of packet loss on single connection

We start our experiments by determining the impact of
packet losses on the performance of various protocols by
monitoring changes in cwnd size while loading a web page.

4http://www.thekelleys.org.uk/dnsmasq/doc.html
5https://github.com/cyrus-and/chrome-har-capturer
6https://wiki.linuxfoundation.org/networking/tcpprobe

527



	0

	20

	40

	60

	80

	100

	120

	140

	0 	1 	2 	3 	4 	5

cw
nd

	(
K
B
)

Time	(s)

H1
H2

H2-Parallel
H2-MP
QUIC

(a) Comparison of cwnd of all protocols

	0

	5

	10

	15

	20

	25

	30

	35

	2 	2.5 	3 	3.5 	4 	4.5 	5

c
w
n
d
	(
K
B
)

Time	(s)

H2
QUIC

(b) 3-second zoom comparing cwnd of H2 and QUIC

Fig. 3: Timeline showing the impact of packet losses on
congestion window size during a page load

We perform an experiment where we host a static web
page comprising several JPG images on our web server and
load it on the client using Chromium browser via H1, H2,
H2-Parallel, H2-MP and QUIC. We configure the bottleneck
link with 7 Mbps bandwidth, 50ms RTT, 45 kB buffer size and
inject 2% random packet losses into the network path using
tc and netem. We log the changes in cwnd sizes.

Figure 3a shows a 5-second zoom of the cwnd size compar-
ison of the protocols. We can see that H1 has a much higher
cumulative cwnd size than others. This is because browsers
usually maintain up to 6 parallel connections to each server
for H1 transfers and only some connections may be affected
by random losses at a time. So the sum of cwnd size of
all individual connections remains high. On the other hand,
since browsers establish only one connection to the server
when using H2, the same connection keeps experiencing the
losses resulting in continuous reduction of cwnd. This limits
the cwnd to a very small size which in turn results in very
low throughput and long page load time. We can also see that
QUIC has almost twice the size of cwnd as compared to H2
although both use a single connection and face the same rate of
packet losses. There are several reasons for this behavior. First,
note that the initial window size in QUIC is around 45 kB (32
segments) while for H2 (and others based on TCP) the size is
around 15 kB (10 segments). Second, QUIC has an advantage
over H2 because it uses its congestion controller to emulate the
behavior of two TCP connections over UDP (in QUIC version
39). In other words, in the event of packet loss the cwnd is
reduced at half the rate of H2, depicted by red double-headed
arrows in Figure 3b. Finally, QUIC recovers more quickly
from packet losses than H2, which can be observed by a steep
upslope as shown by green arrows in Figure 3b.

In case congestion in network with load-balancers, the
packet losses are dynamic, however, the results that we observe
are almost the same and are not shown here. In such a scenario,
the single connection of H2 and that of QUIC suffers losses
when it is on the congested path, while H1, H2-Parallel and
H2-MP are able to use the non-congested path simultaneously
for part of their traffic.

B. Impact of packet loss in WiFi networks

1) Packet loss in live websites: When visiting a live web-
site, several aspects influence the PLT perceived by the user,
e.g., delays of DNS queries or of server-side operations to
prepare the content. Furthermore, a live website might consist
of objects coming from different domains (e.g., due to domain
sharding) that are not delivered from the same host.

We study the performance of H1, H2 and H2-Parallel with
live websites. We do not perform experiments with MPTCP
since none of the top websites support it at the server side. We
also skip QUIC as it is only available for Google services and
we cannot compare it with other websites. The only parameter
that we will vary in our experiments with live websites is
the random packet loss rate. To this end, we have selected
10 H2 enabled websites. The page characteristics are shown
in Table II, where we give the number of objects per tested
page, the total size in kBytes and the number of domains
delivering the objects. The latter determines the number of
TCP connections opened by the browser (also shown in the
table). For each domain Chromium opens one TCP connection
with H2, two with our H2-Parallel implementation, and up to
six connections with H1. Note that the pages loaded from live
websites are not exactly identical to those we cloned onto our
testbed.

The RTT to the web servers is in the 15–165 ms range. We
load each page 15 times with an empty cache. Figure 4 shows
the average PLT (and its standard deviation) when using H1,
H2 and H2-Parallel without packet loss and with 2% packet
loss.

Focusing on Figure 4a, we notice how the performance
of H2 is mostly better than H1. Whereas differences are not
extremely large, these results are significant if we consider the
number of TCP connections opened by the browser for each
protocol (see Table II). Our implementation of H2-Parallel
achieves similar performance as H2 when network conditions
are good, although a small overhead for opening and managing
the extra TCP connections are visible in some cases.

Obviously, the PLT increases significantly when packet loss
is introduced – see Figure 4b (note the different scale of
the y-axes). However, the increase of PLT with H1 is less
pronounced than with H2, thanks to the use of multiple TCP
connections by the former. H2 suffers severely under the
packet loss. We notice how the PLT for Facebook reaches
almost 12 s on average for H2, whereas it is around 8.5 s for
H1 with 2% packet loss. The figure also shows that H2-Parallel
achieves similar performance to H1 thanks to its second TCP
connection. We are able to achieve 53% reduction in PLT on
average for all websites by using H2-Parallel.

528



	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

Go
og

le
Bi
ng

W
iki

pe
dia

Moz
illa

Po
lon

eix

Pa
yp

al

In
sta

gr
am

Bl
og

ge
r

Tw
itt
er

Fa
ce

bo
ok

PL
T	

(s
ec

)
H1 H2 H2-Parallel

(a) Average PLT and std dev without
packet loss

	0

	2

	4

	6

	8

	10

	12

	14

Go
og
le
Bi
ng

W
iki
pe
dia

Mo
zil
la

Po
lon
eix

Pa
yp
al

In
sta
gr
am

Bl
og
ge
r

Tw
itt
er

Fa
ce
bo
ok

PL
T	
(s
ec
)

H1 H2 H2-Parallel

(b) Average PLT and std dev with 2%
packet loss

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

H
2

H
2
P

G
oo

gl
e

Bin
g

W
ik
ip
ed

ia

M
oz

illa

Pol
on

ie
x

Pay
pa

l

In
st
ag

ra
m

Blo
gg

er

Tw
itt
er

Fac
eb

oo
k

0

25

50

75

100

by
te

s
(%

)

(c) Percentage of data transferred on each
connection with H2 and H2-Parallel (H2P)

Fig. 4: Performance comparison of live websites with and without packet loss

	0

	1

	2

	3

	4

	5

	6

	7

H1
C H1 H2

H2
-P
ar
all
el

H2
-M
P
QU
IC

PL
T	
(s
ec
)

o

o
o o o

o

(a) WiFi with 0% packet loss rate

	0
	2
	4
	6
	8
	10
	12
	14
	16
	18

H1
C H1 H2

H2
-P
ar
all
el

H2
-M
P
QU
IC

PL
T	
(s
ec
)

o
o

o

o o o

(b) WiFi with 2% packet loss rate

-1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

Ba
idu

Go
og
le
Liv
e

Tw
itt
er

W
iki
pe
dia

Re
dd
it

Ya
ho
o Vk

Ta
ob
ao

In
sta
gr
am QQ

So
hu

Yo
ut
ub
e

Fa
ce
bo
ok

Am
az
on

H
2	
S
pe
ed
up
	(
se
c)

H2-Parallel,	2%	packet	loss
H2-MP,	2%	packet	loss

H2-Parallel,	no	packet	loss
H2-MP,	no	packet	loss

(c) H2 speedup against a single connection

Fig. 5: Emulation of WiFi network. Note differences in y-axes.

	0

	0.5

	1

	1.5

	2

	2.5

	3

	3.5

	4

H1
C H1 H2

H2
-P
ar
all
el

H2
-M
P
QU
IC

PL
T	
(s
ec
)

o

o
o o o

o

(a) No congestion on any path

	0

	2

	4

	6

	8

	10

	12

H1
C H1 H2

H2
-P
ar
all
el

H2
-M
P
QU
IC

PL
T	
(s
ec
)

o
o

o

o o
o

(b) Congestion on one path

-1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

Ba
idu

Go
og
le
Liv
e

Tw
itt
er

W
iki
pe
dia

Re
dd
it

Ya
ho
o Vk

Ta
ob
ao

In
sta
gr
am QQ

So
hu

Yo
ut
ub
e

Fa
ce
bo
ok

Am
az
on

H
2	
S
pe
ed
up
	(
se
c)

H2-Parallel,	congestion
H2-MP,	congestion

H2-Parallel,	no	congestion
H2-MP,	no	congestion

(c) H2 speedup against a single connection

Fig. 6: Emulation of ECMP routing in the network. Note differences in y-axes.

Figure 4c shows the number of connections established with
the server to load a website (depicted with different colors)
and the percentage of bytes transferred with each connection
(depicted by the size of the bar of each color) using H2 and
H2-Parallel. We can see that with H2, while in some cases
multiple connections are established due to multiple domains
on the server side, most of the data (83% on average for all
tested websites) is still transferred using only one connection.
In case of H2-Parallel, a single connection carries 52% of
traffic on average, thus distributing the load more evenly across
multiple connections and reducing the probability of a single
connection experiencing packet losses repeatedly.

2) Packet losses in emulated environment: We perform
emulations in a controlled mininet environment for repro-
ducibility of results. In this experiment we measure the effect
of random packet losses on the performance of the different
web protocols using cloned web pages. Since the web server
is under our control we can test QUIC and MPTCP and
compare them with other protocols for the same pages, which
was not possible with live websites. We load each page 30
times with empty cache using automated scripts. Note that the
performance of H1 and H2 in scenarios with packet losses in
WiFi networks has been studied in [10], [8], [9], [11], [17].
We confirm results from the previous works and evaluate to
what extent H2-Parallel and H2-MP improve performance.

529



	0
	1
	2
	3
	4
	5
	6
	7
	8

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90

Th
ro
ug
hp
ut
	(
M
bp
s)

Time	(s)

QUIC H2

(a) QUIC competing with H2

	0
	1
	2
	3
	4
	5
	6
	7
	8

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

Th
ro
ug
hp
ut
	(
M
bp
s)

Time	(s)

QUIC H2-Parallel

(b) QUIC competing with H2-Parallel

	0
	1
	2
	3
	4
	5
	6
	7
	8

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90

Th
ro
ug
hp
ut
	(
M
bp
s)

Time	(s)

QUIC H1

(c) QUIC competing with H1

Fig. 7: Comparison of fairness of bandwidth share among competing connections of different protocols

In the following, box-whisker plots show the arithmetic
mean (small circle), the median (middle horizontal line), the
first and third quartiles (upper and lower box edges) and the
minimum and maximum (whiskers) of the PLT over all 15
web pages. In our experiments, minimum and maximum will
typically be several seconds apart. This is due to the large
difference in characteristics of the selected web pages, i.e.,
small web pages like Google have very small PLT (represented
by the lower end of the whisker) while large web pages like
Facebook or Amazon have very large PLT (represented by the
upper end of the whisker).

Figures 5a and 5b show plots of the PLT measured over all
web pages without and with 2% packet loss, respectively. As
expected, H2 performs better than H1 when there is no packet
loss, and H2-Parallel and H2-MP do not show significant dif-
ferences under good network condition. However, with packet
loss, H2’s PLT increases greatly while the other protocols see
only a moderate increase by around 20%. Again, H2 is affected
the most due to the use of a single TCP connection by the
browser. Another disadvantage using H2 is that when there is
a packet loss event, all streams get stalled until packet recovery
due to the in-order delivery guarantee of TCP. Using QUIC,
only the stream related to that packet gets blocked while others
keep functioning normally. QUIC also maintains larger cwnd
size as compared to H2 as shown in Figure 3a. Due to these
reasons its performance is not affected as severely as H2.

Both H2-Parallel and H2-MP are able to reduce the per-
formance penalty of packet losses and achieve a performance
similar to H1 by increasing the cumulative cwnd size.

Figure 5c shows the average speedup (in seconds) that
H2-MP and H2-Parallel achieve relative to regular H2 for each
tested website (sorted by their size, with the smallest on the
left). It can be seen that the speedup relative to regular H2 with
packet loss is particularly pronounced for large web pages.

C. ECMP and network congestion in emulated environment

We now emulate the ECMP scenario with Mininet using
H1C, H1, H2, H2-Parallel, H2-MP and QUIC. For each con-
sidered protocol, the client loads each web page 30 times with
an empty cache. Remember that we do not actively control
how the multiple flows are load-balanced in the available paths
to emulate realistic scenarios. That is, in some experiment
rounds, the multiple MPTCP or H2-Parallel flows may both
take the congested or the non-congested path by chance. We
can see in Figure 6a that, without congestion, H2 performs

slightly better than H1 thanks to its various optimizations and
new features. Not a surprise, H1C is faster than H1 because
of the TLS overhead in the latter. Using two connections
(H2-Parallel and H2-MP) in good network conditions brings
no noticeable advantage while QUIC performs slightly better
than others in the mean and median case.

However, the situation changes drastically in the presence
of congestion. H2’s PLT shoots up, with some pages taking
as much as 12 s on average and up to 20 s in the worst
case (not shown) to be fully loaded. H1C, H1, H2-Parallel
and H2-MP are only slightly affected thanks to the parallel
connections, which may be routed in the two available paths.
In fact H2-MP performs the best as it can route the traffic away
from the congested path on the fly and move it to the good
path, which is not possible with any other protocol. QUIC is
not affected as severely as H2 because its congestion controller
reduces the cwnd size less aggressively when dealing with
packet losses due to congestion. However, it still performs
worse than H2-Parallel and H2-MP because in many cases
it cannot take advantage of the non-congested path due to
the use of a single connection. QUIC is 34% slower than
H2-Parallel and H2-MP on average for medium and large
websites but the situation is different in case of small websites.
QUIC loads small websites quite fast due to 0-RTT connection
establishment, and even with a single connection it performs
slightly better than H2-Parallel and H2-MP. In fact for small
websites creating parallel connections doesn’t provide much
benefit because most of the data is already transferred on the
first connection before the second connection gets its turn.

Finally, in Figure 6c we can see that there is no speedup
using H2-Parallel and moderate speedup using MPTCP when
both network paths are congestion-free. When congestion is
created on one path, both H2-Parallel and MPTCP achieve
impressive speedups particularly for large pages.

Among the tested protocols, QUIC looks the most promis-
ing. Although it does suffer from performance degradation
in the above scenario, we believe that using two connections
with QUIC (similar to H2-Parallel) instead of emulating two
connections using the congestion controller could improve
QUIC performance in this scenario.

D. Fairness comparison

So far we have measured PLT of various protocols while
running in isolation. Now we investigate their behavior while
competing with one another. For this experiment we use two

530



clients connected to two servers using the same 7 Mbps
bottleneck link. We host a synthetic web page with large
JPG images on the web servers and both clients load the
web page at the same time, but using a different protocol.
H2 and QUIC use a single connection, H2-Parallel uses two
connections while H1 uses four connections to load the page.
We measure the throughput of each protocol using tcpdump.
Figure 7 shows the bandwidth share of competing connections
per protocol pair.

In Figure 7a we can see that QUIC gets twice as much band-
width share as compared to H2 as it emulates two connections
using its congestion controller. It has been shown in a recent
study [14] that QUIC version 34 is unfair to TCP even when
competing against 2 or even 4 TCP connections. However, we
do not observe such behavior in our experiments with QUIC
version 39. Figure 7b clearly shows that H2-Parallel using 2
TCP connections and QUIC version 39 get an equal share of
bandwidth, as expected from QUIC’s congestion controller.
Figure 7c shows that H1 using 4 TCP connections is more
aggressive than QUIC and thus has an unfair advantage when
competing with both H2 and QUIC.

VI. CONCLUSION

We presented a performance evaluation of modern web
protocols in adverse real-world scenarios. We confirmed that
H2 exhibits suboptimal performance in such scenarios and
suffers from unfairness when competing with other protocols
due to its use of a single TCP connection. Results showed
that QUIC is not as severely affected, because it implements a
congestion controller that emulates the behavior of two TCP
connections over UDP.

We implemented and evaluated a solution to improve H2
performance, called H2-Parallel, which lets browsers open
multiple TCP connections for H2 as they usually do for H1.
We compared H2-Parallel with QUIC, H1, H2 and H2-MP,
which relies on MPTCP to open parallel subflows. H2-Parallel
has interesting advantages: it presents performance similar to
QUIC, profits from parallel Internet paths similar to H2-MP,
and requires changes only in the client browser thus easing
deployment. Our experiments show that using only two con-
nections with H2-Parallel provides significantly better perfor-
mance than regular H2 in the tested scenarios, hence it avoids
overloading the network with large number of connections like
H1.

REFERENCES

[1] B. Thomas, R. Jurdak, and I. Atkinson, “SPDYing Up the Web,”
Commun. ACM, vol. 55, no. 12, pp. 64–73, 2012.

[2] M. Belsche, R. Peon, and M. Thomson, “RFC 7540 - Hypertext
Transfer Protocol Version 2 (HTTP/2),” 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7540

[3] A. Langley et al., “The quic transport protocol: Design and internet-scale
deployment,” in Proceedings of the SIGCOMM, 2017, pp. 183–196.

[4] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, A. Finamore, and
K. Papagiannaki, “Is the Web HTTP/2 Yet?” in Proceedings of the PAM
Conference, 2016, pp. 218–232.

[5] T. Zimmermann, J. Rüth, B. Wolters, and O. Hohlfeld, “How HTTP/2
Pushes the Web: An Empirical Study of HTTP/2 Server Push,” in
Proceedings of the IFIP Networking Conference, 2017.

[6] J. Manzoor, I. Drago, and R. Sadre, “How HTTP/2 is Changing Web
Traffic and How to Detect It,” in Proceedings of the TMA Conference,
2017.

[7] K. Zarifis, M. Holland, M. Jain, E. Katz-Bassett, and R. Govindan,
“Modeling HTTP/2 Speed from HTTP/1 Traces,” in Proceedings of the
PAM Conference, 2016, pp. 233–247.

[8] H. de Saxcé, I. Oprescu, and Y. Chen, “Is HTTP/2 Really Faster
than HTTP/1.1?” in Proceedings of the IEEE Conference on Computer
Communications Workshops, 2015, pp. 293–299.

[9] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan, “To-
wards a SPDY’ier Mobile Web?” IEEE/ACM Transactions on Network-
ing, vol. 23, no. 6, pp. 2010–2023, 2015.

[10] Y. Elkhatib, G. Tyson, and M. Welzl, “Can SPDY Really Make the Web
Faster?” in Proceedings of the IFIP Networking Conference, 2014, pp.
1–9.

[11] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“How Speedy is SPDY?” in Proceedings of the NSDI, 2014, pp. 387–
399.

[12] G. Carlucci, L. De Cicco, and S. Mascolo, “Http over udp: an experi-
mental investigation of quic,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing, 2015, pp. 609–614.

[13] P. Megyesi, Z. Krämer, and S. Molnár, “How quick is quic?” in
Proceedings of the ICC, 2016, pp. 1–6.

[14] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,
“Taking a long look at quic,” 2017.

[15] J. Manzoor, I. Drago, and R. Sadre, “The Curious Case of Parallel
Connections in HTTP/2,” in Proceedings of the CNSM, 2016, pp. 174–
180.

[16] (2017) Chrome opening up to 6 connections with H2. [Online]. Avail-
able: https://bugs.chromium.org/p/chromium/issues/detail?id=718576

[17] B. Han, F. Qian, S. Hao, and L. Ji, “An Anatomy of Mobile Web
Performance over Multipath TCP,” in Proceedings of the ACM CoNEXT,
2015, pp. 5:1–5:7.

[18] B. Han, F. Qian, and L. Ji, “When Should We Surf the Mobile Web
Using Both Wifi and Cellular?” in Proceedings of the 5th Workshop on
All Things Cellular: Operations, Applications and Challenges (ATC),
2016, pp. 7–12.

[19] Cisco. (2017) BGP Best Path Selection Algorithm.
[Online]. Available: https://www.cisco.com/c/en/us/support/docs/ip/
border-gateway-protocol-bgp/13753-25.html

[20] Juniper. (2017) Understanding BGP Multipath. [Online].
Available: https://www.juniper.net/documentation/en US/junos/topics/
concept/bgp-multipath-understanding.html

[21] B. Augustin, T. Friedman, and R. Teixeira, “Measuring Multipath Rout-
ing in the Internet,” IEEE/ACM Transactions on Networking, vol. 19,
no. 3, pp. 830–840, 2011.

[22] J. Bellardo and S. Savage, “Measuring packet reordering,” in Proceed-
ings of the 2nd ACM SIGCOMM Workshop on Internet measurment,
2002, pp. 97–105.

[23] Z. Cataltepe and P. Moghe, “Characterizing Nature and Location of Con-
gestion on the Public Internet,” in Proceedings of the ISCC Symposium,
2003, pp. 741–746.

[24] A. Akella, S. Seshan, and A. Shaikh, “An Empirical Evaluation of Wide-
Area Internet Bottlenecks,” in Proceedings of the IMC, 2003, pp. 101–
114.

[25] A. Tachibana, A. Shigehiro, T. Hasegawa, M. Tsuru, and O. Yuji,
“Locating Congested Segments over the Internet Based on Multiple End-
To-End Path Measurements,” IEICE Transactions on Communications,
vol. 89, no. 4, pp. 1099–1109, 2006.

[26] J. Zhang, K. Xi, L. Zhang, and H. J. Chao, “Optimizing Network
Performance using Weighted Multipath Routing,” in Proceedings of the
ICCCN Conference, 2012, pp. 1–7.

[27] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in Proceedings of the
Hotnets Workshop, 2010, pp. 19:1–19:6.

[28] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè, “Broadband Internet Performance: A View from The
Gateway,” in Proceedings of the SIGCOMM, 2011, pp. 134–145.

[29] J. Sommers and P. Barford, “Cell vs. WiFi: On the Performance of
Metro area Mobile Connections,” in Proceedings of the IMC, 2012, pp.
301–314.

531


