
Neural Networks for Measurement-based

Bandwidth Estimation

Sukhpreet Kaur Khangura, Markus Fidler, Bodo Rosenhahn

Department of Electrical Engineering and Computer Science, Leibniz Universität Hannover

Abstract—The dispersion that arises when packets traverse
a network carries information that can reveal relevant network
characteristics. Using a fluid-flow model of a bottleneck link with
first-in first-out multiplexing, accepted probing tools measure the
packet dispersion to estimate the available bandwidth, i.e., the
residual capacity that is left over by other traffic. Difficulties
arise, however, if the dispersion is distorted compared to the
model, e.g., by non-fluid traffic, multiple bottlenecks, clustering
of packets due to interrupt coalescing, and inaccurate time-
stamping in general. It is recognized that modeling these effects
is cumbersome if not intractable. This motivates us to explore
the use of machine learning in bandwidth estimation. We train
a neural network using vectors of the packet dispersion that
is characteristic of the available bandwidth. Our testing results
reveal that even a shallow neural network identifies the available
bandwidth with high precision. We also apply the neural network
under a variety of notoriously difficult conditions that have not
been included in the training, such as heavy traffic burstiness,
and multiple bottleneck links. Compared to two state-of-the-art
model-based techniques, the neural network approach shows im-
proved performance. Further, the neural network can effectively
control the estimation procedure in an iterative implementation.

I. INTRODUCTION

The term available bandwidth refers to the residual capacity

of a link or a network path that is left over after the existing

traffic, also referred to as cross traffic, is served. Knowledge of

the available bandwidth benefits rate-adaptive applications and

facilitates, e.g., network monitoring, detection of congested

links, and load balancing. The goal of bandwidth estimation

is to infer the available bandwidth of a network path using

external observations of data packets, only.

Formally, given a link with capacity C and cross traffic

with long-term average rate λ, where λ ∈ [0, C], the available

bandwidth A ∈ [0, C] is defined as A = C − λ [1]. The end-

to-end available bandwidth of a network path is determined

by its tight link, that is the link that has the minimal available

bandwidth [2]. The tight link may differ from the bottleneck

link, i.e., the link with the minimal capacity.

To date, a number of accepted active probing techniques

and corresponding theories for available bandwidth estimation

exist, e.g., [1]–[13]. These techniques use a sender that actively

injects artificial probe traffic with a defined packet size l and

inter packet gap referred to as input gap gin into the network.

At the receiver, the output gap of the received probe gout is

measured to deduce the available bandwidth.

5 10 15 20 25 30 35 40 45 50

Index of Packet Gap

0

100

200

300

400

500

600

In
te

r
P

ac
k

et
 G

ap
 (

s)

g
in

g
out

measured

g
out

model

Fig. 1. Measurements of gin and gout compared to the fluid model. The
network has a single tight link with capacity C = 100 Mbps and exponential
cross traffic with rate λ = 62.5 Mbps. The packet size is l = 1514 byte.

A common assumption in bandwidth estimation is that the

available bandwidth, respectively, the rate of the cross traffic

does not change during a probe. Further, to simplify modeling,

cross traffic is assumed to behave like fluid, i.e., effects that are

due to the packet granularity of the cross traffic are neglected.

Modeling a single tight link as a lossless First-In First-Out

(FIFO) multiplexer of probe and cross traffic, the relation of

gout and gin follows by an intuitive argument [1] as

gout = max

{

gin,
ginλ+ l

C

}

. (1)

The reasoning is that during gin an amount of ginλ of the fluid

cross traffic is inserted between any two packets of the probe

traffic, so that the probe packets may be spaced further apart.

Reordering Eq. (1) gives the characteristic gap response curve

gout
gin

=

{

1 if l
gin

≤ C − λ,
l

ginC
+ λ

C
if l

gin
> C − λ.

(2)

The utility of Eq. (2) is that it shows a clear bend at A = C−λ
that enables estimating the available bandwidth using different

techniques, see Sec. II. We note that the quotient of packet size

and gap is frequently viewed as the data rate of the probe.

For an example, consider a tight link with capacity C =
100 Mbps and cross traffic with average rate λ = 62.5 Mbps.

The packet size is l = 1514 byte, resulting in a transmission

time l/C of about 120 µs. Given an input gap gin = 270 µs,

the output gap follows from Eq. (1) as gout = 290 µs. Now,

assume for the moment that C is known but λ is unknown. An

active probing tool can send probes with, e.g., gin = 270 µs

to measure gout. Noting that gout/gin > 1, Eq. (2) reveals the

unknown λ = (goutC − l)/gin = 62.5 Mbps.ISBN 978-3-903176-08-9 c© 2018 IFIP

In practice, the observations of gout are distorted for various

reasons. For an example, we recorded a measurement trace of

50 pairs of gin and gout in the network testbed in Fig. 3 with a

single tight link and the above parameters C, λ, and l, where

l is the maximal size of Ethernet packets including the header.

The results are shown in Fig. 1. Neglecting the cases where

gout < gin that are not possible in the model and ignoring large

outliers, a range of samples gout of about 360 µs remain that

suggest concluding λ ≈ 90 instead of 62.5 Mbps erroneously.

A. Challenges in Bandwidth Estimation

Relevant reasons for the distortions of gout include de-

viations from the assumptions of the model, i.e., a lossless

FIFO multiplexer with constant, fluid cross traffic as well as

measurement inaccuracies, such as imprecise time-stamping:

Random cross traffic: Eq. (2) is deterministic and hence

it does not define how to deal with the randomness of gout that

is caused by variable bit rate cross traffic. It is shown in [1]

that the problem cannot be easily fixed by using the expected

value E[gout] instead. In brief, this is due to the non-linearity

of Eq. (2) and the fact that the location of the turning point

C − λ fluctuates if the rate of the cross traffic λ is variable.

The result is a deviation that is maximal at l/gin = C−λ and

causes underestimation of the available bandwidth [1], [14].

Packet interference: Non-conformance with the fluid

model arises due to the interaction of probes with packets of

the cross traffic. In Fig. 1, two relevant examples are identified

by frequent samples of gout in the range of 240 and 360 µs,

respectively. In contrast, the gout of 290 µs, that is predicted

by the fluid model, is observed rarely. To understand this

effect, consider two probe packets with gin = 270 µs and

note that the transmission time of a packet is 120 µs. The

case gout = 360 µs occurs if two cross traffic packets are

inserted between the two probe packets. Instead, if one of the

two cross traffic packets is inserted in front of the probe, it

delays the first probe packet, resulting in gout = 240 µs.

Packet loss: If probe packets are lost, the corresponding

output gaps are void. This causes estimation bias, since packets

that encounter congestion have a higher loss probability. There

are few bandwidth estimation tools that consider loss, e.g., as

an indication that the available bandwidth is exceeded [6].

Multiple tight links: An extensions of Eq. (1) for multiple

links is derived in [3]. Yet, if cross traffic is non-fluid, the

repeated packet interaction at each of the links distorts the

probe gaps. Further, in case of random cross traffic, there

may not be a single tight link, but the tight link may vary

randomly. The consequence is an underestimation of the

available bandwidth [14], [15] that is analyzed in [11], [13].

Measurement inaccuracies: Besides, there exist limita-

tions of the accuracy due to the hardware of the hosts where

measurements are taken. A possible clock offset between

sender and receiver is dealt with by the use of probe gaps.

A problem in high-speed networks is, however, interrupt

coalescing [16], [17]. This technique avoids flooding a host

with too many interrupts by grouping packets received in a

short time together in a single interrupt, which distorts gout.

B. State-of-the-Art Estimation Techniques

To alleviate the observed variability of the samples of gout,
state-of-the-art bandwidth estimation methods perform aver-

aging of several gout samples. These samples can be collected

by repeated probes of two packets, so-called packet pairs [18],

or by packet trains [5], [19] that consist of n consecutive

packets and hence comprise n − 1 gaps. Further, to improve

the available bandwidth estimates, statistical post-processing

techniques are used, such as Kalman filtering [10], [20],

majority decisions [6], averaging of the bandwidth estimates

of repeated experiments [7], [8], or linear regression [4].

These techniques do, however, not overcome the basic

assumptions of the deterministic fluid model in Eq. (1).

While packet trains and statistical postprocessing help reduce

the variability of available bandwidth estimates, they cannot

resolve systematic deviations, such as the underestimation bias

in case of random cross traffic and multiple tight links [1],

[11], [13]. Further, it is difficult to tailor methods to specific

hardware implementations that influence the measurement

accuracy.

These fundamental limitations motivate us to explore the

use of machine learning in available bandwidth estimation.

The machine learning approach has been considered early

in [21], [22] and receives increasing attention in the recent

research [17], [23]. The works differ from each other with

respect to their application: [21] considers the prediction of

the available bandwidth from packet data traces that have been

obtained in passive measurements. In contrast [17], [22], [23]

use active probes to estimate the available bandwidth in NS-2

simulations [22], ultra-high speed 10 Gbps networks [17], and

operational LTE networks [23], respectively.

Common to these active probing methods [17], [22], [23]

is the use of packet chirps [7] that are probes of several

packets sent at an increasing data rate. The rate increase is

achieved either by a geometric reduction of the input gap [22],

by concatenating several packet trains with increasing rates

to a multi-rate probe [17], or by a linear increase of the

packet size [23]. Chirps permit detecting the turning point of

Eq. (2), that coincides with the available bandwidth, using

a single probe. They are, however, susceptible to random

fluctuations [12].

Other than chirps, [22] evaluates packet bursts that are

probes of back-to-back packets and concludes that bursts are

not adequate to estimate the available bandwidth. Also, [17]

considers constant rate packet trains for an iterative search

for the available bandwidth. Here, machine learning solves a

classification problem to estimate whether the rate of a packet

train exceeds the available bandwidth or not. Depending on the

result, the rate of the next packet train is reduced or increased

in a binary search as in [6] until the probe rate approaches

the available bandwidth. The authors of [17] give, however,

preference to chirp probes.

The feature vectors that are used for machine learning are

generally measurements of gout [22], [23] with the exception

that [17] uses the Fourier transform of vectors of gin and gout.

461

Supervised learning is used and [17], [23] take advantage of

today’s availability of different software packages to compare

the utility of state-of-the-art machine learning techniques in

bandwidth estimation.

C. Contributions

In this work, we investigate how to benefit from ma-

chine learning, specifically neural networks, when using stan-

dard packet train probes for available bandwidth estimation.

Compared to packet chirps, that are favored in the related

works [17], [22], [23], packet trains have been reported to be

more robust to random fluctuations. In fact, the implementation

of a chirp as a multi-rate probe, that concatenates several

packet trains with increasing rates, also benefits from this [17].

Different from multi-rate probes, packet trains are typically

used in an iterative procedure that takes advantage of feedback

to adapt the rate of the next packet train. Such a procedure

is also proposed in [17], where machine learning is used to

classify individual packet trains to control a binary search. The

goal is to adapt the probe rate until it approaches the available

bandwidth. In contrast, we use a feature vector that iteratively

includes each additional packet train probe. This additional in-

formation enables estimating the available bandwidth directly,

without the necessity that the probe rate converges to the

available bandwidth. Instead of a binary search, our method

chooses the probe rate next, that is expected to improve the

bandwidth estimate most.

We evaluate our method in controlled experiments in a

network testbed. We specifically target topologies where the

assumptions of the deterministic fluid model in Eq. 1 are not

satisfied, such as bursty cross traffic, and multiple tight links.

For a reference, we implement two state-of-the-art model-

based methods to use the same data set as our neural network-

based approach.

The remainder of this paper is structured as follows. In

Sec. II, we introduce the reference implementation of model-

based estimation techniques. We present our neural network-

based method, describe the training, and show testing results

in Sec. III. In Sec. IV, we consider the estimation of available

bandwidth and capacity for different tight link capacities. Our

iterative neural network-based method that selects the probe

rates itself is presented in Sec. V. In Sec. VI, we give brief

conclusions.

II. MODEL-BASED REFERENCE IMPLEMENTATIONS

The methods for available bandwidth estimation that are

based on the fluid model of Eq. (1) essentially fall into two

different categories: iterative probing and direct probing. For

each of the two categories, we implement a bandwidth esti-

mation technique that is representative of the state-of-the-art.

While available bandwidth estimation tools differ significantly

regarding the selection and the amount of probe traffic, our

implementations are tailored to use the same database so that

they provide a reference for the neural network-based method.

To reduce the variability of the measurements, a common

approach is the use of constant rate packet train probes. A

1

A=C - λ rin

iterative

direct

1

C

r
in

 /
r

o
u

t

~

Fig. 2. Rate response curve. The turning point marks the available bandwidth.

packet train of n packets comprises n−1 gaps. At the receiver,

the gaps are defined as gout(j) = tout(j + 1) − tout(j) for

j = 1 . . . n−1, where tout(j) is the receive time-stamp of

packet j. Considering the output rate of a packet train defined

as

rout =
(n− 1)l

tout(n)− tout(1)
(3)

implies averaging of the output gaps since by definition of

gout(j), Eq. (3) can be rewritten as

rout =
l

1

n−1

∑n−1

j=1
gout(j)

.

In case of long packet trains, stationarity, and ergodicity, the

denominator converges to the mean gout. Further, for the

deterministic fluid model, gout(j) = gout for j = 1 . . . n − 1
so that rout = l/gout. Similarly, the input rate for a defined

gin is rin = l/gin and by insertion into Eq. (2) the equivalent

rate response curve of the fluid model is obtained as

rin
rout

=

{

1 if rin ≤ C − λ,
rin+λ

C
if rin > C − λ.

(4)

The characteristic shape of Eq. (4) is shown in Fig. 2.

A. Iterative probing

In brief, iterative probing techniques search for the turning

point of the rate response curve by sending repeated probes

at increasing rates, as long as rin = rout. When rin reaches

C−λ, the available bandwidth is saturated and increasing the

probe rate rin further results in self-induced congestion, so that

rin > rout. This implies queueing at the tight link and hence

increasing one way delays can be observed at the receiver.

Established iterative probing tools are, e.g., Pathload [6] and

IGI/PTR [9]. Pathload adaptively varies the rates of successive

packet trains rin in a binary search until rin converges to

the available bandwidth. It uses feedback from the receiver

that reports whether rin exceeds the available bandwidth or

not. The decision is made based on two statistical tests that

detect increasing trends of the one way delay. For comparison,

IGI/PTR tests whether (rin − rout)/rin > ∆th, where the

threshold value ∆th is set to 0.1, to detect whether the

probe rate exceeds the available bandwidth. Regarding the

variability of the available bandwidth, Pathload reports an

462

available bandwidth range that is determined by the largest

probe rate that did not cause self-induced congestion and the

smallest rate that did cause congestion, respectively.

In our experiments, we use a dataset of equidistantly spaced

rin and corresponding rout. We process these entries iteratively

in increasing order of rin and apply the threshold test of

IGI/PTR [9] (rin − rout)/rin > ∆th to determine whether rin
exceeds the available bandwidth. We denote rthin the largest rate

before the test detects that the available bandwidth is exceeded

for the first time and report rthin as the available bandwidth

estimate. We note that there may, however, exist rin > rthin ,

where the test fails again. This may occur, for example, due

to the burstiness of the cross traffic that causes fluctuations of

the available bandwidth.

B. Direct probing

Instead of searching for the turning point of the rate

response curve, direct probing techniques seek to estimate

the parameters of the upward line segment for rin > C − λ.

The line is determined by C and λ. If C is known, a single

probe rin = C yields a measurement of rout that is sufficient

to estimate λ = C(C/rout − 1) from Eq. (4). Spruce [8]

implements this approach. If C is also unknown, a minimum

of two different probe rates rin > C−λ are needed to estimate

the two unknown parameters of the upward line segment of the

rate response curve. This approach is taken, e.g., by TOPP [3],

DietTOPP [4], and BART [10].

To implement the direct probing technique, we combine

it with a threshold test to select relevant probe rates. Direct

probing techniques require that rin > C−λ where C and λ are

unknown. We adapt a criterion from DietTOPP [4] to deter-

mine a minimum threshold rmin
in that satisfies rmin

in > C−λ and

use only the probe rates rin ≥ rmin
in . We use the maximal input

rate in the measurement data denoted by rmax
in and extract the

corresponding output rate rmax
out . If rmax

in > rmax
out , it can be seen

from Eq. (4) that both rmax
in > C−λ as well as rmax

out > C−λ.

Hence, we use rmin
in = rmax

out as a threshold to filter out all

rin ≤ rmin
in . Once we have selected samples that certainly

fulfill rin > C − λ, we use linear regression like [3], [4] to

determine the upward segment of the rate response curve. The

available bandwidth estimate is determined from Eq. (4) as

the x-axis intercept where the regression line intersects with

the horizontal line at 1, see Fig. 2.

If the assumptions of the fluid model do not hold, e.g.,

in case of random cross-traffic, the regression technique may

occasionally fail. We filter out bandwidth estimates that can

be classified as infeasible. This is the case if the slope of the

regression line is so small that the intersection with 1 is on

the negative rin axis, implying the contradiction A < 0, or if

the slope of the regression line is negative, implying C < 0.

III. NEURAL NETWORK-BASED METHOD

In this section, we present our neural network-based imple-

mentation of bandwidth estimation, describe the training data

sets, and show a comparison of available bandwidth estimates

for a range of different network parameters.

A. Scale-invariant Implementation

We use a neural network that takes a k-dimensional vec-

tor of values rin/rout as input. The corresponding rin are

equidistantly spaced with an increment δr. Hence, rin is in

[δr, 2δr, . . . , kδr] that is fully defined by the parameters k and

δr that determine the measurement resolution. Since the actual

values of rin do not provide additional information, they are

not input to the neural network. Instead, the neural network

refers to values of rin/rout only by their index i ∈ [1, k]. The

output of the neural network is the tuple of bottleneck capacity

and available bandwidth that are also normalized with respect

to δr, i.e., we use C/δr and A/δr, respectively. While C/δr
and A/δr are not necessarily integer, they can be thought of as

the index iC and iA where rin saturates the bottleneck capacity

or the available bandwidth, respectively. To obtain the actual

capacity and the available bandwidth, the output of the neural

network has to be multiplied by δr.

The normalization by δr achieves a neural network that is

scale-invariant, since the division by δr replaces the units, e.g.,

Mbps or Gbps, by indices. Considering the fluid model in

Eq. (4), the normalization of all quantities rin, rout, C, and λ
by δr results in

rin
rout

=

{

1 if i ≤ iC − iλ,
i+iλ
iC

if i > iC − iλ.
(5)

where we used the indices i = rin/δr, iC = C/δr, iλ = λ/δr,

and iA = A/δr = iC − iλ. Eq. (5) confirms that the shape of

rin/rout is independent of the scale, e.g., sampling a 100 Mbps

network in increments of δr = 10 Mbps or a 1 Gbps network

in increments of δr = 0.1 Gbps reveals the same characteristic

shape. The advantage of the scale-invariant representation is

that the neural network requires less additional training. We

note that the identity is derived under the assumptions of the

fluid model and does not consider effects that are not scale-

invariant such as the impact of the packet size or interrupt

coalescing.

For implementation we use a k = 20-dimensional input vec-

tor of equidistantly sampled values of rin/rout. We decided for

a shallow neural network consisting of one hidden layer with

40 neurons. Thus, the network comprises a 20-dimensional

input vector, 40 hidden neurons and two output neurons. The

output neutrons encode C/δr and A/δr.

We also explored the use of deeper networks with more

hidden layers, convlayers and residual networks. However, in

our setting different variants of networks did not improve the

quality in our experiments. We belief, that the main reason

is overfitting which is caused from the sparse amount of data

used for training. When using more data or more complex set-

tings these variants might become interesting again. Methods

based on metric [24] or incremental learning [25] will also be

explored in future works.

B. Training Data: Exponential Cross Traffic, Single Tight Link

We generate different data sets for training and for eval-

uation using a controlled network testbed. The testbed is

463

Probe

Sender

Cross Traffic

Sender 1

Cross Traffic

Multi Rate Probes

Tight link

A

Probe

Receiver

B

Cross Traffic

Sender 2

Cross Traffic

Receiver 1

Tight link

Cross Traffic

Receiver 2

Cross Traffic

Sender 3

Tight link

Cross Traffic

Receiver n

Cross Traffic Cross Traffic

Fig. 3. Dumbbell topology set up using the Emulab and MoonGen software. A varying number of tight links with single hop-persistent cross traffic are
configured. Probe-traffic is path-persistent to estimate the end-to-end available bandwidth from measurements at points A and B.

located at Leibniz Universität Hannover and comprises about

80 machines that are each connected by a minimum of 4

Ethernet links of 1 Gbps and 10 Gbps capacity via VLAN

switches. The testbed is managed by the Emulab software [26]

that configures the machines as hosts and routers and connects

them using VLANs to implement the desired topology. We

use a dumbbell topology with multiple tight links as shown

in Fig. 3. To emulate the characteristics of the links, such

as capacity, delay, and packet loss, additional machines are

employed by Emulab. We use the MoonGen software [27]

for emulation of link capacities that differ from the native

Ethernet capacity. To achieve an accurate spacing of packets

that matches the emulated capacity, MoonGen fills the gaps

between packets by dummy frames that are discarded at the

output of the link. We use the forward rate Lua script for the

MoonGen API to achieve the desired forwarding rate for the

transmission and reception ports of MoonGen.

Cross traffic of different types and intensities is generated

using D-ITG [28]. The cross traffic is single hop-persistent,

i.e., at each link fresh cross traffic is multiplexed. The probe

traffic is path-persistent, i.e., it travels along the entire network

path, to estimate the end-to-end available bandwidth. We use

RUDE & CRUDE [29] to generate UDP probe streams. A

probe stream consists of a series of k packet trains of n packets

each. The k packet trains correspond to k different probe rates

with a constant rate increment of δr between successive trains.

The packet size of the probe traffic and the cross traffic is

l = 1514 byte including the Ethernet header.

Packet timestamps at the probe sender and receiver are

generated at points A and B, respectively, using libpcap at

the hosts. We also use a specific endace DAG measurement

card to obtain accurate reference timestamps. The timestamps

are used to compute rin and rout for each packet train.

We generate two training data sets for a single tight link with

exponential cross traffic. In data set (i) the capacity of the tight

link and the access links is C = 100 Mbps. Exponential cross

traffic with an average rate of λ = 25, 50, and 75 Mbps is

used to generate different available bandwidths. In data set (ii)

the capacity of the tight link is set to C = 50 Mbps and the

exponential cross traffic has an average rate of λ = 12.5, 25,

and 37.5 Mbps, respectively. In both cases the probe streams

comprise packet trains of n = 100 packets sent at k = 20
different rates with rate increment δr = 5 Mbps. For each

configuration 100 repeated experiments are performed.

For training of the neural network, we first implement

an autoencoder for each layer separately and then fine-tune

the network using scaled conjugate gradient (scg). Given

a regression network, we optimize the L2-error requiring

approximately 1000 epochs until convergence is achieved.

Training of the network (using Matlab) takes approximately

30 seconds. Due to the limited amount of training data (600

experiments overall in both training data sets), the shallow

network with a small amount of hidden neurons allows training

without much overfitting.

C. Evaluation: Exponential Cross Traffic, Single Tight Link

We train the neural network using the two training data

sets and generate additional data sets for testing. The test

data is generated for the same network configuration as the

training data set (i), i.e., using exponential cross traffic of

25, 50, and 75 Mbps at a single tight link of 100 Mbps

capacity. We also consider other cross traffic rates of 12.5,

37.5, 62.5, and 87.5 Mbps that have not been included in

the training data set (i) to see how well the neural network

interpolates and extrapolates. We repeat each experiment 100

times so that we obtain 100 bandwidth estimates for each

configuration. We compare the performance of the neural

network-based method with the two model-based reference

implementations of an iterative and a direct estimation method.

All three methods generate available bandwidth estimates from

the same measurement data.

1) Testing: The testing results of the neural network-based

method are summarized in Fig. 4(a) compared to the results

of the direct and the iterative method. We show the average of

the available bandwidth estimates with error bars that depict

the standard deviation of the estimates. The variability of the

available bandwidth estimates is due to a number of reasons as

discussed in Sec. I-A. Particularly, the exponential cross traffic

deviates from the fluid model and causes random fluctuations

of the measurements of rout.
The variability of the available bandwidth estimates of the

direct method is comparably large and the average under-

464

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

75 50 25

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps)

Direct

Iterative

Neural Network

(a) Testing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

62.5 37.5

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps)

Direct

Iterative

Neural Network

(b) Interpolation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

87.5 12.5

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps)

Direct

Iterative

Neural Network

(c) Extrapolation

Fig. 4. Bandwidth estimates for different cross traffic rates that have been included in the training data set (testing), that fall into the range of the training
data set (interpolation), and that fall outside the range of the training data set (extrapolation). The neural network-based method provides available bandwidth
estimates that exhibit little variation and have an average that matches the true available bandwidth.

estimates the true available bandwidth. The iterative method

shows less variability but tends to overestimate the available

bandwidth. This is a consequence of the threshold test, where

a lower threshold increases the responsiveness of the test but

makes it more sensitive to random fluctuations. The neural

network-based method improves the bandwidth estimates sig-

nificantly. The average matches the true available bandwidth

and the variability is low. The good performance of the neural

network is not unexpected as it has been trained for the same

network parameters.

2) Interpolation: Next, we consider cross traffic of the

same type, i.e., exponential, however, with a different rate that

has not been included in the training data. First, we consider

cross traffic rates of 37.5 and 62.5 Mbps that fall into the range

of rates 25, 50, and 75 Mbps that have been used for training,

hence the neural network has to interpolate. The results in

Fig. 4(b) show that the available bandwidth estimates of the

neural network-based method are consistent also in this case.

3) Extrapolation: Fig. 4(c) depicts available bandwidth

estimates for cross traffic rates of 12.5 and 87.5 Mbps. These

rates fall outside the range of rates that have been included

in the training data set so that the neural network has to

extrapolate. The results of the neural network-based method

are nevertheless highly accurate, with a noticeable underesti-

mation of 5 Mbps on average only in case of a true available

bandwidth of 87.5 Mbps. A reason for the lower accuracy

that is observed when the available bandwidth approaches the

capacity is that fewer measurements are on the characteristic

upward line segment, see Fig. 2 that is also used for estimation

by the direct method.

D. Network Parameter Variation Beyond the Training Data

We investigate the sensitivity of the neural network with

respect to a variation of network parameters that differ sub-

stantially from the training data set. Specifically, we investigate

two cases that are known to be hard in bandwidth estimation.

These are cross traffic with high burstiness, and networks with

multiple tight links.

1) Burstiness of Cross Traffic: To evaluate how the neural

network-based method performs in the presence of cross traffic

with an unknown burstiness, we consider three different types

of cross traffic: constant bit rate (CBR) that has no burstiness

as assumed by the probe rate model, moderate burstiness due

to exponential packet inter-arrival times, and heavy burstiness

due to Pareto inter-arrival times with infinite variance, caused

by a shape parameter of α = 1.5. The average rate of the cross

traffic is λ = 50 Mbps in all cases. As before, the tight link

capacity and the access links capacities are C = 100 Mbps.

The burstiness of the cross traffic can cause queueing at the

tight link even if the probe rate is below the average available

bandwidth, i.e., if rin < C − λ. This effect is not captured

by the fluid model. It causes a deviation from the ideal rate

response curve as depicted in Fig. 2 that is maximal at C −λ
and blurs the bend that marks the available bandwidth. The

result is an increase of the variability of available bandwidth

estimates as well as an underestimation bias in both direct and

iterative bandwidth estimation techniques [1], [14].

Fig. 5 shows the mean and the standard deviation of 100

repeated experiments using the direct and iterative probing

techniques and the neural network-based method. The average

of the estimates shows a slight underestimation bias compared

to the true available bandwidth if the cross traffic burstiness

is increased. More pronounced is the effect of the cross

traffic burstiness on the standard deviation of the bandwidth

estimates. While for CBR cross traffic the estimates are close

to deterministic, the variability of the estimates increases sig-

nificantly if the cross traffic is bursty. The neural network, that

has been trained for exponential cross traffic only, performs

almost perfectly in case of CBR cross traffic and shows good

results with less variability compared to the direct and iterative

techniques also for the case of Pareto cross traffic.

2) Multiple Tight Links: To test the neural network with

multiple tight links, we extend our network from single-hop

to multi-hop as shown in Fig. 3. The path-persistent probe

streams experience single hop-persistent exponential cross-

traffic with average rate λ = 50 Mbps while traversing

465

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

CBR Exponential Pareto

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

Burstiness of Cross Traffic with 50 Mbps Intensity

Direct

Iterative

Neural Network

Fig. 5. Bandwidth estimates for different types of cross traffic burstiness.
An increase of the burstiness causes a higher variability of the bandwidth
estimates as well as an underestimation bias.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

1 2 3 4

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

of Tight Links

Direct

Iterative

Neural Network

Fig. 6. Multiple tight links with capacity C = 100 Mbps in the presence
of single hop-persistent exponential cross traffic with an average rate λ =

50 Mbps. All methods tend to underestimate the available bandwidth in case
of multiple tight links.

multiple tight links of capacity C = 100 Mbps. The capacity

of the access links is 1 Gbps.

In case of multiple tight links, the probe stream has a

constant rate rin with a defined input gap gin only at the first

link. For the following links, the input gaps have a random

structure as they are the output gaps from the preceding links.

At each additional link the probe stream interacts with new,

bursty cross traffic. This causes lower probe output rates and

results in underestimation of the available bandwidth in multi-

hop networks [1], [13], [14].

In Fig. 6 we show the results from 100 repeated measure-

ments for networks with 1 up to 4 tight links. The model-based

methods, direct and iterative, as well as the neural network-

based method underestimate the available bandwidth with

increasing number of tight links. The reason is that the model

as well as the training of the neural network consider only a

single tight link. Training the neural network for multiple tight

links is an interesting topic for future research. The estimates

of the neural network show the least variability.

IV. VARIATION OF THE TIGHT LINK CAPACITY

So far, we used test data sets that cover a tight link capacity

of C = 100 Mbps sampled with equidistantly spaced probe

rates rin with an increment of δr = 5 Mbps. Since our

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

25 and 50 25 and 100

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps) and Tight Link Capacity (Mbps)

Direct

Iterative

Neural Network

Fig. 7. Available bandwidth estimates for tight links with different capacities
of C = 50 and 100 Mbps, respectively, and A = 25 Mbps available
bandwidth.

implementation of the neural network-based method is scale-

invariant (within the limits of the fluid model), we expect that

the method can perform bandwidth estimation also, e.g., in

case of a tight link with C = 50 Mbps sampled at increments

of δr = 2.5 Mbps. If the capacity is, however, unknown, the

increment δr cannot be adequately scaled and the measurement

data will differ fundamentally. For this reason we include the

training data set (ii) that is obtained for a single tight link

with C = 50 Mbps sampled at increments of δr = 5 Mbps.

We test the neural network with data sets for C = 50, 100,

and 200 Mbps.

A. Estimation of Available Bandwidth and Capacity

We perform testing using measurement data obtained for

probe rates rin with increments of δr = 5 Mbps. The network

has a single tight link with unknown available bandwidth A
and unknown capacity C. In the evaluation we consider C =
50 and 100 Mbps and exponential cross trafic with rates λ =
0.25C, 0.5C, and 0.75C, respectively. We use the neural

network to estimate both A and C.

In Fig. 7 we compare the available bandwidth estimates

for A = C − λ = 25 Mbps. The results confirm that the

neural network estimates the available bandwidth correctly,

regardless of the capacity of the tight link. We omit further

results for reasons of space and note that the neural network

also estimates the capacity, i.e., 50 or 100 Mbps, with little

error.

B. Capacity and Parameter Scaling

Next, we consider a proportional scaling of the network and

probing parameters. In detail, the network has a single tight

link with capacity C = 50, 100, or 200 Mbps with expo-

nential cross traffic with rate λ = 0.25C, 0.5C, or 0.75C.

The probing is performed at rate increments of δr = 2.5,

5, and 10 Mbps, respectively. We note that only the case

C = 100 Mbps and δr = 5 Mbps is included in the training

data set whereas the others are not. The available bandwidth

estimates for λ = 0.5C are presented in Fig. 8. The results

confirm the utility of the scale-invariant implementation of the

neural network-based method that achieves precise estimates

466

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

25 50 100

A
v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

True Available Bandwidth (Mbps)

Direct

Iterative

Neural Network

Fig. 8. Parameter scaling. Available bandwidth estimates for tight links with
different capacities of C = 50, 100, and 200 Mbps, respectively, and A =

0.5C available bandwidth.

in all cases. We omit showing results of the capacity estimation

that was generally successful with little estimation error.

V. ITERATIVE NEURAL NETWORK-BASED METHOD

State-of-the-art iterative probing methods perform a search

for the available bandwidth by varying the probe rate rin
until rin converges to the available bandwidth. Pathload [6]

uses statistical tests to determine whether rin exceeds the

available bandwidth or not and performs a binary search to

adapt rin iteratively. The recent method [17] adopts Pathload’s

binary search algorithm but uses machine learning instead of

statistical tests to determine whether rin exceeds the available

bandwidth or not.

We propose an iterative neural network-based method that

differs from [17] in several respects. Most importantly our

method (a) determines the next probe rate by a neural network,

that is trained to select the probe rate that improves the

bandwidth estimate most, instead of using the binary search

algorithm, and (b) it includes the information of all previous

probe rates to estimate the available bandwidth instead of

considering only the current probe rate. Our implementation

comprises two parts. First, we train the neural network to

cope with input vectors that are not fully populated. Second,

we create another neural network that recommends the most

beneficial probe rates.

A. Partly Populated Input Vectors

An iterative method will only use a limited set of probe

rates. Correspondingly, we mark the entries of the input vector

that have not been measured as invalid by setting rin/rout = 0.

To obtain a neural network that can deal with such partly

populated input vectors, we perform training using the training

data sets (i) and (ii) where we repeatedly erase a random

number of entries at random positions. When testing the neural

network we erase entries in the same way.

In Fig. 9 we show the absolute error of the available

bandwidth estimates that are obtained by the neural network

if m ∈ [1, k] randomly selected entries of the k-dimensional

input vector are given. The bars show the average error and the

standard deviation of the error. The data set used for testing

 0

 5

 10

 15

 20

 25

1 3 5 7 9 11 13 15 17 19

E
rr

o
r

in
 A

v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

of Probe Rates [m]

Fig. 9. Error of the available bandwidth estimates obtained for a set of m
randomly selected probe rates.

is the same as the one used for Fig. 4(a) previously, i.e.,

C = 100 Mbps and A ∈ [25, 50, 75] Mbps. We show the

combined results for all values of A. The average error shows

a clear improvement with increasing m whereas the standard

deviation first grows slightly up to m = 5 before it eventually

starts to improve. The reason is that for m = 1 the information

is not sufficient to identify the two unknown parameters

capacity and available bandwidth. Hence, the neural network

first reports conservative estimates in the middle range. For

comparison, by guessing 50 Mbps in all cases the average

error is 16.6 Mbps for the given test data set. With increas-

ing m the neural network starts to distinguish the range of

A ∈ [25, 50, 75] Mbps but tends to frequent misclassifications

that can cause large errors. These misclassifications are mostly

resolved when increasing m further. We observe the same

trend also for the error of the capacity estimates that shows

a high correlation with the error of the available bandwidth

estimates. Hence, we omit showing the results.

B. Recommender Network for Probe Rate Selection

When adding entries to the partly populated input vector

of the neural network, the average estimation error improves.

The amount of the improvement depends, however, on the

position of the a priori unknown entry that is added, as well

as on the m entries that are already given, i.e., their position

and value. We use a second neural network that learns this

interrelation. Using this knowledge, the neural network acts

as a recommender that given a partly populated input vector

selects the next probe rate, i.e., the next entry, that is expected

to improve the accuracy of the bandwidth estimate most. The

recommender network takes the k = 20-dimensional input

vector of values rin/rout, has 80 hidden neurons, and generates

a k-dimensional output vector of estimation errors that apply

if the entry rin/rout is added at the respective position. Given

the output vector, the rate rin that minimizes the estimation

error is selected for probing next.

Fig. 10 shows how the recommender network improves the

error of the bandwidth estimates compared to the random

selection of probe rates in Fig. 9. Starting at 5 selected probe

rates, the average estimation error as well as the standard

deviation of the error are small and adding further probe

467

 0

 5

 10

 15

 20

 25

1 3 5 7 9 11 13 15 17 19

E
rr

o
r

in
 A

v
ai

la
b
le

 B
an

d
w

id
th

 E
st

im
at

es
 (

M
b
p
s)

of Probe Rates [m]

Fig. 10. Error of the available bandwidth estimates obtained for a set of m
recommended probe rates.

rates improves the estimate only marginally. The reason is

that certain probe rates, e.g., those on the horizontal line at

rin/rout = 1 in Fig. 2, provide little additional information.

We conclude that the recommender can effectively control the

selection of probe rates to avoid those rates that contribute

little. In this way, the recommender can save a considerable

amount of probe traffic.

VI. CONCLUSION

We investigated how neural networks can be used to ben-

efit measurement-based available bandwidth estimation. We

proposed a method that is motivated by the characteristic

rate response curve of a network. Our method takes a vector

of ratios of equidistantly spaced probe rates at the sender

and at the receiver rin/rout as input to a neural network to

estimate the available bandwidth and the bottleneck capacity.

We use ratios of data rates and a suitable normalization to

achieve an implementation that is scale-invariant with respect

to the network capacity. We conducted a comprehensive mea-

surement study in a controlled network testbed. Our results

showed that neural networks can significantly improve avail-

able bandwidth estimates by reducing bias and variability. This

holds true also for network configurations that have not been

included in the training data set, such as different types and

intensities of cross-traffic, multiple tight links, and different

bottleneck capacities. To reduce the amount of probe traffic,

we implemented an iterative method that varies the probe rate

adaptively. The selection of probe rates is performed by a

neural network that acts as a recommender. The recommender

effectively selects the probe rates that reduce the estimation

error most quickly.

REFERENCES

[1] X. Liu, K. Ravindran, and D. Loguinov, “A queueing-theoretic founda-
tion of available bandwidth estimation: single-hop analysis,” IEEE/ACM

Transactions on Networking, vol. 15, no. 4, pp. 918–931, 2007.
[2] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement

methodology, dynamics, and relation with TCP throughput,” IEEE/ACM

Transactions on Networking, vol. 11, no. 4, pp. 537–549, 2003.
[3] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end

probing and analysis method for estimating bandwidth bottlenecks,” in
IEEE Globecom, 2000, pp. 415–420.

[4] A. Johnsson, B. Melander, and M. Björkman, “Diettopp: A first im-
plementation and evaluation of a simplified bandwidth measurement
method,” in Swedish National Computer Networking Workshop, 2004.

[5] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion
techniques measure?” in IEEE INFOCOM, 2001, pp. 905–914.

[6] M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-end
available bandwidth,” in Passive and Active Measurement Workshop,
2002.

[7] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient available bandwidth estimation for network paths,”
in Passive and Active Measurement Workshop, 2003.

[8] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” in ACM Internet Measurement

Conference, 2003, pp. 39–44.
[9] N. Hu and P. Steenkiste, “Evaluation and characterization of available

bandwidth probing techniques,” IEEE Journal on Selected Areas in

Communications, vol. 21, no. 6, pp. 879–894, 2003.
[10] S. Ekelin, M. Nilsson, E. Hartikainen, A. Johnsson, J.-E. Mangs,

B. Melander, and M. Bjorkman, “Real-time measurement of end-to-
end available bandwidth using Kalman filtering,” in IEEE/IFIP Network

Operations and Management Symposium (NOMS), 2006, pp. 73–84.
[11] X. Liu, K. Ravindran, and D. Loguinov, “A stochastic foundation of

available bandwidth estimation: Multi-hop analysis,” IEEE/ACM Trans-

action on Networking, vol. 16, no. 1, pp. 130–143, 2008.
[12] J. Liebeherr, M. Fidler, and S. Valaee, “A system theoretic approach to

bandwidth estimation,” IEEE/ACM Transactions on Networking, vol. 18,
no. 4, pp. 1040–1053, 2010.

[13] R. Lübben, M. Fidler, and J. Liebeherr, “Stochastic bandwidth estimation
in networks with random service,” IEEE/ACM Transactions on Network-

ing, vol. 22, no. 2, pp. 484–497, 2014.
[14] M. Jain and C. Dovrolis, “Ten fallacies and pitfalls on end-to-end avail-

able bandwidth estimation,” in ACM Internet Measurement Conference,
2004, pp. 272–277.

[15] L. Lao, C. Dovrolis, and M. Sanadidi, “The probe gap model can under-
estimate the available bandwidth of multihop paths,” ACM SIGCOMM

Computer Communication Review, vol. 36, no. 5, pp. 29–34, 2006.
[16] R. Prasad, M. Jain, and C. Dovrolis, “Effects of interrupt coalescence on

network measurements,” in Passive and Active Measurement Workshop,
2004, pp. 247–256.

[17] Q. Yin and J. Kaur, “Can machine learning benefit bandwidth estimation
at ultra-high speeds?” in Passive and Active Measurement Conference,
2016, pp. 397–411.

[18] S. Keshav, “A control-theoretic approach to flow control,” in Proc. ACM

SIGCOMM, Sep. 1991, pp. 3–15.
[19] V. Paxson, “End-to-end internet packet dynamics,” IEEE/ACM Transac-

tions on Networking, vol. 7, no. 3, pp. 277–292, 1999.
[20] Z. Bozakov and M. Bredel, “Online estimation of available bandwidth

and fair share using Kalman filtering,” in IFIP Networking, 2009.
[21] A. Eswaradass, X.-H. Sun, and M. Wu, “A neural network based pre-

dictive mechanism for available bandwidth,” in Parallel and Distributed

Processing Symposium, 2005.
[22] L.-J. Chen, “A machine learning-based approach for estimating available

bandwidth,” in TENCON, 2007, pp. 1–4.
[23] N. Sato, T. Oshiba, K. Nogami, A. Sawabe, and K. Satoda, “Ex-

perimental comparison of machine learning-based available bandwidth
estimation methods over operational LTE networks,” in IEEE Symposium

on Computers and Communications (ISCC), 2017, pp. 339–346.
[24] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Sigal, “Exploiting

view-specific appearance similarities across classes for zero-shot pose
prediction: A metric learning approach,” Conference on Artificial Intel-

ligence (AAAI), Feb. 2016.
[25] ——, “Expanding object detector’s horizon: Incremental learning frame-

work for object detection in videos,” IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Jun. 2015.
[26] D. S. Anderson, M. Hibler, L. Stoller, T. Stack, and J. Lepreau, “Auto-

matic online validation of network configuration in the emulab network
testbed,” in IEEE International Conference on Autonomic Computing,
2006, pp. 134–142.

[27] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in ACM Inter-

net Measurement Conference, Oct. 2015.
[28] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-

ITG distributed internet traffic generator,” in Quantitative Evaluation of

Systems, 2004, pp. 316–317.
[29] J. Laine, S. Saaristo, and R. Prior, “Real-time udp data emitter

(rude) and collector for rude (crude),” 2000. [Online]. Available:
https://sourceforge.net/projects/rude/

468

