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Abstract—Giving tight estimates for output bounds is key to an
accurate network analysis using the stochastic network calculus
(SNC) framework. In order to upper bound the delay for a flow
of interest in the network, one typically has to calculate output
bounds of cross-traffic flows several times. Thus, an improvement
in the output bound calculation pays off considerably. In this
paper, we propose a new output bound calculation in the
SNC framework by making use of Lyapunov’s inequality. We
prove the bound’s validity and also show why it is always
at least as accurate as the state-of-the-art method. Numerical
evaluations demonstrate that even in small heterogeneous two
server topologies, our approach can improve a delay bounds’
violation probability by a factor of 340. For a set of randomly
generated parameters, the bound is still decreased by a factor
of 1.33 on average. Furthermore, our approach can be easily
integrated in existing end-to-end analyses.

I. INTRODUCTION

A. Motivation

Providing delay bounds in packet-switched networks is a
timeless challenge with recent sample applications as, e.g.,
Internet at the speed of light [1], Tactile Internet [2], Internet
of Things [3], or the envisioned cyber-physical systems [4],
which often face real-time requirements.

The Network Calculus (NC) holds the promise to enable
tight end-to-end delay analysis in such advanced applications
building on a modular and uniform mathematical framework
based on min-plus algebra [5]. Starting from the 1990s with
two papers by Cruz [6], [7], NC demonstrated its benefits
providing tight bounds for deterministic worst-case end-to-end
delay bounds. In the following, the Deterministic Network
Calculus (DNC) was further elaborated and mathematically
cast into a min-plus algebra setting [8], [9]. More recently,
NC was generalized into a stochastic setting providing prob-
abilistic worst-case bounds: the Stochastic Network Calculus
(SNC) framework [8], [10]–[13]. SNC’s main features can be
summarized as providing a very general scheduling abstraction
(the service curve) and the ability to enable system-wide end-
to-end analysis (the concatenation theorem) [13].

SNC results can be categorized into different branches
such as tail-bound based [10], [12], [14], moment generating
functions (MGF) based [8], [11], and martingale based [15]
approaches. Recent work evidences its applicability to modern

Fig. 1. Full binary sink tree with seven nodes.

problems, e.g., in the analysis of parallel systems (using the
fork-join pattern) or multi-tenancy [16]–[18].

Typically a DNC/SNC network analysis proceeds along the
following steps:

1) Reducing the network to a tandem of servers traversed
by the flow of interest (foi) by invoking the output
bound calculation to characterize cross-traffic flows at
the servers where they join the foi.

2) Reducing the tandem of servers traversed by the flow of
interest (foi) to a single server representing the whole
system.

3) Calculating the delay bound of the foi at the single server
representing the whole system.

Most of the existing NC literature has mainly focused on
steps 2) and 3). In DNC, step 1) has seen some advanced
treatment recently [19], but in SNC it has been largely
neglected in the sense that no work beyond the standard
output bound calculation was invested. In contrast to this, we
focus on step 1) and, in particular, try to improve the SNC
output bound calculation in this paper. As the output bound
calculation has to be invoked numerous times in step 1), we
believe its accuracy to be key in larger network analyses. For
example: Assume a full binary tree of height h where each
node represents a server and each of these servers has an
arrival flow that is transmitted to the sink; let the foi be starting
from one of the leaf nodes (see also Figure 1), then the number
of output bound calculations is 2h � h� 1, whereas we onlyISBN 978-3-903176-08-9 c� 2018 IFIP



need to invoke the delay bound calculation once (in step 3)).
Thus, any improvement in the output bound calculation pays
off tremendously in larger network analyses.

Yet, how can we improve upon the standard SNC output
bound calculation? The tail bound and MGF SNC analy-
ses have the application of the so-called Union bound or
Boole’s inequality in common. In a series of publications,
[15], [20]–[22], the authors emphasized its poor performance
and suggested an appealing martingale-based approach. It
provides tight single hop lower and upper bounds on the
delay for different scheduling disciplines. Yet, to the best of
our knowledge, so far there is no concatenation result in the
martingale-based SNC and thus step 2) from above cannot be
performed and, thus, an elegant end-to-end analysis remains
elusive. Hence, we decided to remain within the standard SNC
framework and, yet, try to counteract the inherent problems of
the Union bound.

B. Main Contribution

In this paper, we present a modification of the MGF-based
SNC that mitigates the Union bound’s effect in the output
bound calculation. It consists of the application of Lyapunov’s
inequality just before the invocation of the Union bound
and does not impose any additional assumptions. It is thus
minimally invasive and all existing results and procedures of
the SNC are literally still applicable while, as we see below,
it improves the performance bounds. In fact, we prove this
new bound to be always at least as good as the state-of-the-
art method and show that in a very simple heterogeneous two
server setting, it can improve the delay bound already by a
factor of up to 340.

It comes, however, at the price of an additional parameter
per invocation of Lyapunov’s inequality. Thus, we trade higher
computational effort in the optimization of these parameters
for improved bounds. However, as we also show this effort is
moderate if the optimization is done carefully.

C. Outline

The rest of the paper is structured as follows: In Section II,
we introduce the necessary notations for SNC and its main
results as we need them in this paper. In Section III, we present
our new output bound calculation and prove its validity. A
numerical evaluation is given in Section IV: we compare
output bounds for a single server and delay bounds for a
two server setting as well as a fat tree topology with the
current state of the art method. In Section V, we prove that
Lyapunov’s inequality cannot be applied directly to delay
bounds. Section VI concludes the paper.

II. SNC BACKGROUND AND NOTATION

In this section, we introduce some of the basic terms and
concepts in SNC.

We use the MGF-based SNC in order to calculate per-
flow delay bounds. To be precise, we bound the probability
that the delay exceeds a given value, typically denoted by

T . The connection between probability bounds and MGFs is
established by Chernoff’s bound

P(X > a)  e�✓a E
⇥
e✓X

⇤
, ✓ > 0, (1)

with E
⇥
e✓X

⇤
as the moment-generating function (MGF) of a

random variable X . We define an arrival flow by the stochastic
process A with discrete time space N and continuous state
space R+

0 as A(s, t) :=
Pt

i=s+1 a (i) , with a(i) as the traffic
increment process in time slot i. Network calculus provides
an elegant system-theoretic analysis by employing min-plus
algebra:

Definition 1 (Convolution in Min-Plus Algebra). The min-plus
(de-)convolution of real-valued, bivariate functions x(s, t) and
y(s, t) is defined as

(x⌦ y) (s, t) := min
sit

{x (s, i) + y(i, t)} ,

(x↵ y) (s, t) := max
0is

{x(i, t)� y(i, s)} .
(2)

The characteristics of the service process are captured by
the notion of a dynamic S-server.

Definition 2 (Dynamic S-Server). Assume a service element
has an arrival flow A as its input and the respective output is
denoted by A0. Let S(s, t), 0  s  t, be a stochastic process
that is nonnegative and increasing in t. The service element is
a dynamic S-server iff for all t � 0 it holds that:

A0(0, t) � (A⌦ S) (0, t) = min
0it

{A(0, i) + S(i, t)} .

The analysis in this paper is based on a per-flow perspective.
I.e., we consider a certain flow, the so-called flow of interest
(foi). Throughout this paper, for the sake of simplicity, we
assume the servers’ scheduling to be arbitrary multiplexing
[23]. That is, if flow f2 is prioritized over flow f1, the leftover
service for the corresponding arrival A1 is Sl.o. = [A2 � S]+.
Furthermore, we require the server to be work-conserving.

In the following definition, we introduce (�, ⇢)-constraints
[8] as they enable us to give stationary bounds under stability
conditions.

Definition 3 ((�, ⇢)-Bound). An arrival flow is
(�A(✓), ⇢A(✓))-bounded for some ✓ > 0, if its MGF
exists and for all 0  s  t

E
h
e✓A(s,t)

i
 e✓(⇢A(✓)(t�s)+�A(✓)).

A dynamic S-server is (�S(✓), ⇢S(✓))-bounded for some ✓ >
0, if its MGF exists and for all 0  s  t

E
h
e�✓S(s,t)

i
 e✓(⇢S(✓)(t�s)+�S(✓)).

Definition 4 (Virtual Delay). The virtual delay at time t � 0
is defined as

d(t) := inf {s � 0 : A(0, t)  A0(0, t+ s)} .

It can briefly be described as the time it takes for the cu-
mulated departures to “catch up with” the cumulated arrivals.
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Theorem 5 (Output and Delay Bound). [11] [24] Consider
an arrival process A(s, t) with dynamic S-server S(s, t).

The departure process A0 is upper bounded for any 0 
s  t according to

A0(s, t)  (A↵ S) (s, t).

The delay at t � 0 is upper bounded by

d(t)  inf {s � 0 : (A↵ S) (t+ s, t)  0} .

We focus on the analogue of Theorem 5 for moment
generating functions:

Theorem 6 (Output and Delay MGF-Bound). [11] [24] For
the assumptions as in Theorem 5, we obtain:

The MGF of the departure process A0 is upper bounded for
any 0  s  t according to

E
h
e✓A

0(s,t)
i
 E

h
e✓(A↵S) (s,t)

i
. (3)

The violation probability of a given stochastic delay bound T
at time t is bounded by

P(d(t) > T )  E
h
e✓(A↵S) (t+T,t)

i
. (4)

III. NEW OUTPUT BOUND CALCULATION

In this section, we derive our new approach to compute
the MGF-output bound. Furthermore, we apply this idea to
(�(✓), ⇢(✓))-bounded arrivals and service.

A. Insertion of Lyapunov’s Inequality
The most intuitive way to bound (3) is to continue with

E
h
e✓(A↵S) (s,t)

i
(2)
= E

h
e✓max0is{A(i,t)�S(i,s)}

i


sX

i=0

E
h
e✓(A(i,t)�S(i,s))

i
, (5)

where the max is always less than or equal to the sum since
we have only non-negative terms. Inequality (5) is similar to
the application of the Union bound1,

P

✓
max

i=1,...,n
Xi > a

◆


nX

i=1

P(Xi > a) . (6)

It has been shown to often perform poorly, in particular for
correlated increments. The authors of [25] suggested instead a
martingale-based approach that allows for significantly more
accurate delay bounds. To the best of our knowledge, however,
achieving a concatenation property to enable an end-to-end
analysis remains an elusive goal in the martingale-based
approach.

1For probability bounds such as the backlog or the delay, it is even
equivalent to the Union bound, as

P

✓
max

i=1,...,n
Xi > a

◆
(6)


nX

i=1

P(Xi > a)
(1)
 e�✓a

nX

i=1

E
h
e✓Xi

i

,P

✓
max

i=1,...,n
Xi > a

◆
(1)
 e�✓a E


max

i=1,...,n
e✓Xi

�
(5)
 e�✓a

nX

i=1

E
h
e✓Xi

i

Therefore, we call inequality (5) in the following “quasi-Union bound.”

In this paper, we use Lyapunov’s inequality to mitigate the
Union bound’s effect. Yet, as we see in Subsection III-B,
existing end-to-end analyses are still applicable.

Proposition 7 (Lyapunov Inequality). Let X � 0 be in Ll

with l � 1. Then it holds that

E[X] 
�
E
⇥
X l
⇤� 1

l . (7)

Remark 8. Proposition 7 is a special case of Jensen’s inequal-
ity [26]:

h(E[X])  E[h(X)] , (8)

where h is a differentiable convex function on R. The fact that
X must be in Ll has a negligible effect since l = 1 should
always be feasible, i.e., E[X] exists. As the random variables
of our interest have existing MGF bounds, this should be a
very mild assumption.

Since l = 1 is feasible for X 2 L1, (7) can be rewritten as

E[X] = inf
l�1

n�
E
⇥
X l
⇤� 1

l

o
. (9)

Using (9) one step before the quasi-Union bound’s invoca-
tion (5) leads to

E
h
e✓A

0(s,t)
i
E

h
emax0is{A(i,t)�S(i,s)}

i

(9)
= inf

l�1

⇢⇣
E
h
el✓max0is{A(i,t)�S(i,s)}

i⌘ 1
l

�

(5)
 inf

l�1

8
<

:

 
sX

i=0

E
h
el✓(A(i,t)�S(i,s))

i! 1
l

9
=

; . (10)

This new bound is obviously always at least as accurate as
the quasi-Union bound (5), since l = 1 is feasible. The
reason why this can improve over previous estimation lies in
the subadditivity of the root function. It yields the following
relation:

inf
l�1

8
<

:

 
sX

i=0

E
h
el✓(A(i,t)�S(i,s))

i! 1
l

9
=

;

 inf
l�1

(
sX

i=0

⇣
E
h
el✓(A(i,t)�S(i,s))

i⌘ 1
l

)
.

The infimum on the right hand side is achieved at l = 1,
which proves again that Lyapunov’s inequality cannot worsen
the bound’s tightness. Yet, the subadditivity also implies that
the insertion of Lyapunov’s inequality can mitigate the effect
of the quasi-Union bound (5), since we take the root outside
of the sum. As our numerical evaluation in Section IV shows,
in some cases a significant improvement for the output bound
is achieved despite this method’s minimal invasiveness.

B. Application to (�, ⇢)-Bounds
The bounds in (5) and (10) give an estimate for the min-plus

operators in Theorem 6, but are computationally infeasible for
larger networks. Since the number of sums in these calcula-
tions typically scales linearly with the number of invoked min-
plus operators, one usually seeks for stationary closed-form

408



Fig. 2. One server topology.

solutions. Using (�, ⇢)-bounds (Definition 3) conveniently
solves this problem by letting these sums converge, as the
next proposition together with its corresponding remark show.

Proposition 9. [24] Consider a (�A(✓), ⇢A(✓))-bounded ar-
rival process A(s, t) with (�S(✓), ⇢S(✓))-bounded dynamic
S-server S(s, t). If the stability condition ⇢A(✓) < �⇢S(✓)
holds, then the output A0 is (�A0(✓), ⇢A0(✓))-bounded with

�A0(✓) =�A(✓) + �S(✓)�
1

✓
log
⇣
1� e✓(⇢A(✓)+⇢S(✓))

⌘
,

⇢A0(✓) =⇢A(✓).

Remark 10. The computational advantage can be observed as
follows:
The quasi-Union bound yields E

h
e✓A

0(s,t)
i (5)


Ps

i=0 E
⇥
e✓(A(i,t)�S(i,s))

⇤
, i.e., we have to compute a

sum with s+1 summands. With the additional assumption of
(�, ⇢)-constraints, the output can be bounded by the closed
form e✓(⇢A(✓)(t�s)+�A(✓)+�S(✓))

1�e✓(⇢A(✓)+⇢S(✓)) (see Subsection (III-C) for
details).

By an analogous calculation, we obtain for our new output
bound the following result:

Proposition 11. Under the same assumptions as in Propo-
sition 9, under the stability condition ⇢A(l✓) < �⇢S(l✓) we
obtain that the output A0 is (�A0(✓), ⇢A0(✓))-bounded with

�A0(✓) =�A(l✓) + �S(l✓)�
1

l✓
log
⇣
1� el✓(⇢A(l✓)+⇢S(l✓))

⌘
,

⇢A0(✓) =⇢A(l✓),

where l � 1.

Proof: See Appendix A.
Thus, this new output bound can be also used within (�, ⇢)-

constraints. I.e., it can easily be integrated in existing end-to-
end analyses.

C. Single Server Example
Assume a single flow - single server setting as in Figure 2.

We have already deduced that

E
h
e✓(A

0(s,t))
i (3)
E

h
e✓(A↵S) (s,t)

i

(5)


sX

i=0

E
h
e✓(A(i,t)�S(i,s))

i
.

Given that the arrivals and the service have (�, ⇢)-constraints,
for ⇢A(✓) < �⇢S(✓) we continue with

E
h
e✓(A

0(s,t))
i


sX

i=0

E
h
e✓(A(i,t)�S(i,s))

i

Fig. 3. MMOO Model.

=
sX

i=0

E
h
e✓A(i,t)

i
E
h
e�✓S(i,s)

i


sX

i=0

e✓⇢A(✓)(t�i)+✓�A(✓)e✓⇢S(✓)(s�i)+✓�S(✓)

=e✓(⇢A(✓)(t�s)+�A(✓)+�S(✓))

·
sX

j=0

e✓(⇢A(✓)+⇢S(✓))j

e✓(⇢A(✓)(t�s)+�A(✓)+�S(✓))

1� e✓(⇢A(✓)+⇢S(✓))
, (11)

where we have used the independence of arrivals and service
in the second line, (�, ⇢)-bounds in the third line and the
convergence of the geometric series in the last line.

If we used Lyapunov inequality instead, we would obtain
in comparison

E
h
e✓A

0(s,t)
i

 inf
l�1

(✓
el✓(⇢A(l✓)(t�s)+�A(l✓)+�S(l✓))

1� el✓(⇢A(l✓)+⇢S(l✓))

◆ 1
l
)

 inf
l�1

8
<

:
e✓(⇢A(l✓)(t�s)+�A(l✓)+�S(l✓))

�
1� el✓(⇢A(l✓)+⇢S(l✓))

� 1
l

9
=

; . (12)

IV. EVALUATION

In this section, we investigate the increased accuracy of
our new output bound introduced in Section III. That is, we
evaluate the gain of the output bound calculation in a single
server setting in conjunction with the delay bound for a two
server topology and a fat tree. The improvement factor is
measured by calculating

Bound standard approach
Bound new method

,

where clearly larger values are desirable.
The formulae are implemented in the general-purpose pro-

gramming language Java2, version 8.
The arrivals are either exponentially distributed with param-

eter �, i.e.,

E
h
e✓A(s,t)

i
=

✓
�

�� ✓

◆t�s

, 0 < ✓ < �,

or follow the Markov-Modulated On-Off (MMOO) traffic
model. That is, it consists of a continuous-time Markov chain
with two states, 0 and 1, together with transition rates µ and

2https://java.com
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(d) MMOO with µ = 4, � = 12, b = 3, service rate r = 1.5

Fig. 4. Output bound comparison in the single server setting.

�. If it is in state 0, it means that no traffic arrives, whereas
in state 1, data with burst rate b are sent (see Figure 3). It has
been shown in [27] that, for this arrival model, the MGF can
be bounded by

E
h
e✓A(s,t)

i
 e✓!(✓)·(t�s), ✓ > 0,

where !(✓) =
�d+

p
d2+4µ✓b
2✓ and d = µ+��✓b. The service

is always chosen to be work-conserving and of constant rate.
If not stated otherwise, ✓ and the Lyapunov parameters li

are optimized by a naive grid search, i.e, we define points
along a grid for each parameter, calculate the bound for each
combination, and take the one with the best objective value.

With each application of this new inequality, an additional
parameter has to be optimized. On the other hand, since
the costs of incorporating Lyapunov’s inequality in a given
implementation are rather moderate, it gives us convenient
new options: Either we prioritize accuracy and optimize all
li (at the cost of higher computational effort), or focus more
on speed setting many li = 1 (setting all li equal to 1 would
yield the old approach). Hence, we gain more flexibility while
being minimally invasive at the same time.

A. Single Server
For the single hop topology (Figure 2), we calculated

the bounds in (11) and (12). For exponentially distributed

Distribution Average gain Maximum gain
Exponential 1.30 1025.0

MMOO 1.34 381.9

Distribution Average gain Maximum gain
Exponential 1.23 233.7

MMOO 1.62 3449.9

TABLE I
OUTPUT BOUND IMPROVEMENT FOR A SINGLE SERVER (ABOVE: UNIFORM

SAMPLING, BELOW: EXPONENTIAL SAMPLING).

Fig. 5. Two server topology.

arrivals and Markov-Modulated On-Off (MMOO) traffic, two
examples for each distribution are depicted in Figure 4. As
we can observe from these examples, the actual gain from our
new output bound calculation can vary strongly depending
on the scenarios’ parameters. For that reason, we decided
to systematically sample the parameter spaces in a Monte
Carlo-type fashion. That is, we took samples from a uniform
distribution as well as an exponential distribution (since the
parameter space is only lower bounded) and computed the
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(b) Exponential arrivals with (�1,�2) = (0.4, 3.5), service rates (r1, r2)
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(d) MMOO with (µ1, µ2) = (1.0, 3.6), (�1,�2) = (2.2, 1.6), (b1, b2) =
(3.4, 0.4), service rates (r1, r2) = (2.0, 0.3)

Fig. 6. Delay bound comparison in the two server setting.

average and largest improvement. The results are given in
Table I.

We observe the possible gain to vary strongly with a
maximum ratio Standard Bound / New Bound of three orders
of magnitude. The overall average improvement factor is about
1.37, where exponentially distributed samples lead to larger
improvements than the uniform ones.

B. Two Server Topology

In the previous subsection, we show that vast improvement
on the output bound is possible in some cases. Next, we
investigate the effect on the delay bound. Therefore, we extend
the previous setting by an additional server (Figure 5). Here,
a cross flow f2 enters server S2 and its output ( (A2↵S2))
is prioritized over the flow of interest f1 at server S1. The
improved output bound impacts the delay by being more
accurate in terms of the foi’s leftover service. Mathemati-
cally speaking, this leftover service at S1 is described by
S1,l.o. = [S1 � (A2↵S2)]

+. In this topology, we calculate the
delay bound (4) but take the new output bound invocation into
account. Again, we display exponentially distributed arrivals
and MMOO traffic. The plot is complemented by delay
measurements in a packet-level simulation. Here, the violation
probability is estimated by the empirical distribution comput-

Distribution Average gain Maximum gain
Exponential 1.14 255.2

MMOO 1.23 100.7

Distribution Average gain Maximum gain
Exponential 1.76 85.5

MMOO 1.81 342.0

TABLE II
IMPROVEMENT OF THE DELAY’S VIOLATION PROBABILITY FOR THE TWO
SERVER SETTING (ABOVE: UNIFORM SAMPLING, BELOW: EXPONENTIAL

SAMPLING).

ing the average number of occurred delays. All parameters are
again randomly sampled by the Monte-Carlo type approach
from the previous subsection.

As for the output bound, we often observe an improved
delay bound, as one can see in the examples of Figure 6.
It shows that even in the delay space (the difference in the
delay bound for a given probability), the difference is up
to 50%. Depending on the parameters, the gap between the
simulation results and the analytically derived bounds can be
closed considerably. Average behavior on the other hand is
less significant. Table II indicates a highly non-linear behavior
where some violation probabilities are improved by a factor
of 342.0, whereas average gain is moderate with a total mean
of 1.33.
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Fig. 7. Fat tree topology.
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C. Fat Tree

Starting off with the two server topology in Figure 5, we
investigate the delay bound’s scaling behavior for multiple
invocations of Lyapunov’s inequality. We now take a look
at n flows, where n � 1 are cross flows with corresponding
server and their outputs jointly enter server S1 (see Figure 7).
The flow of interest is again, due to arbitrary multiplexing,
assumed to be served after the cross traffic. In terms of
leftover service provided for the foi, this means S1,l.o. =
[S1 �

Pn
i=2 (Ai↵Si)]

+
.

We calculated the delay’s violation probability for the
following setting: The foi is exponentially distributed with
parameter �1 = 0.5 and enters server S1 with rate 4.5. The
n� 1 cross flows are also exponentially distributed, but with
parameters �i = 8, i = 2, . . . , n and corresponding servers
Si with rates ri = 2, i = 2, . . . , n. The accuracy gain for
different numbers of servers is depicted in Figure 8.

We observe that the ratio increases quickly to 25.6 in the
case of 8 servers, even though only an improvement of 1.59
was achieved for the two server setting. This shows that the
Lyapunov approach can fully develop its strengths in larger
networks, when more output bound calculations have to be
invoked.
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Fig. 9. Computation time comparison for the state-of-the-art and Lyapunov
approach.

D. Runtime

So far, we focused on the Lyapunov bound’s accuracy gain
and observed favorable outcomes. Yet, the other side of the
coin is the computational effort the new output bound cal-
culation must invest to optimize over the higher-dimensional
parameter space. To investigate this in more detail, we ran
104 experiments for exponentially distributed arrivals as well
as MMOO-traffic in the two server topology (Figure 5) and
the fat tree (Figure 7) with 2, 4, . . . , 12 flows. In this scenario,
the aforementioned naive grid optimization runs quickly into
computational problems, as a computation for 4 flows already
took approximately a day. Therefore, we implemented the so
called Pattern Search [28]. Here, a function is minimized by
changing arguments only in a single direction. If multiple
modifications lead to a descent, a step in the direction of all
successful intermediate steps is attempted. The results of the
ratio

Computation time new method
Computation time standard approach

for these experiments are depicted in Figure 9.
Under Pattern Search, we observe that computational over-

head scales only linearly with the number of invocations of
the Lyapunov inequality. This indicates that a good trade-
off between cost and accuracy gain can be achieved, if
optimization is done carefully.

V. DIRECT APPLICATION TO DELAY BOUNDS

At first glance, it is tempting to apply Lyapunov’s inequality
to the delay bound calculation as well. That is, we would
modify the computation of the delay’s violation probability as
follows:

P(d(t) > T )
(4)
E

h
e✓(A↵S) (t+T,t)

i

(2)
=E

h
e✓max0it+T {A(i,t)�S(i,t+T )}

i

=E
h
e✓max0it{A(i,t)�S(i,t+T )}

i
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(9)
= inf

l�1

⇢⇣
E
h
el✓max0it{A(i,t)�S(i,t+T )}

i⌘ 1
l

�

(5)
 inf

l�1

8
<

:

 
tX

i=0

E
h
el✓(A(i,t)�S(i,t+T ))

i!
1
l

9
=

; ,

(13)

where we used that A(s, t) = 0 for s � t in the third line
and the quasi-Union bound in the last inequality. Owing to
the fact that this estimates a probability, only values below
1 are of interest for (13). Disappointingly for this case, no
improvement can be obtained, as the next theorem states.

Theorem 12. Let a delay bound T according to (13) exist
such that

tX

i=0

E
h
el✓(A(i,t)�S(i,t+T ))

i
< 1. (14)

If l and ✓ are optimized (denoted by l⇤ and ✓⇤), then l⇤ = 1,
i.e., no improvement can be achieved.

Proof: Assume that l⇤ and ✓⇤ are the optimal parameters
for (13) and that l⇤ > 1. This means that there exist 1  l0 < l⇤

and ✓0 > ✓⇤ such that l0✓0 = l⇤✓⇤. But this means
 

tX

i=0

E
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el
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1
l⇤

=

 
tX
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1
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tX

i=0

E
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1
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,

where we inserted l⇤✓⇤ = l0✓0 in the second line. In the third
line, we used that x

1
l⇤ > x

1
l0 holds for all x 2 (0, 1) and

l⇤ > l0 � 1. Clearly, this is a contradiction to our assumption
that we had an optimal solution. Thus, the optimal l⇤ must be
equal to 1.

As a consequence, the Lyapunov approach can only indi-
rectly decrease delay bounds via the output bound calculation.
The same holds for the backlog bound (the proof follows along
the same lines).

VI. CONCLUSION

In this paper, we proposed a novel approach to improve
the MGF output bound calculation in the Stochastic Network
Calculus using Lyapunov’s inequality. We also gave a proof
that shows why this is a valid bound and that it is always
at least as accurate as the state-of-the-art method. It is also
shown in comprehensive numerical evaluations that the delay’s
violation probability can be improved for two server topologies
as well as fat trees. Our evaluation indicated a significant gain
in some cases while leading to more moderate improvements
on average. For a fat tree, we observed a very high gain as
the number of cross flows is increased. These gains come
conceptually for free, as no additional constraints have to
be imposed, thus making our approach minimally invasive.

Yet, from a computational perspective the gain comes at the
price of a higher-dimensional optimization in the last stage of
computing the bounds. Fortunately, our experiments indicate
that the computational overhead only scales linearly with
the invocations of the Lyapunov inequality under a carefully
chosen optimization method.

Taking into account the crucial role of the output bound,
we believe that we have made a significant contribution to
the SNC network analysis. On the other hand, there are still
many open challenges in the analysis of larger and more
complex networks, e.g., dealing effectively with correlations
in the traffic flows, which are left for future work.
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APPENDIX

A. Proof of Proposition 11
We have already seen in Subsection III-A that
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which can be continued with
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where we, again, used the independence of arrivals and service
in the second line and the (�(✓), ⇢(✓))-constraints for arrivals
and service in the third line.

Since we assume that ⇢A(l✓) < �⇢S(l✓), we obtain by
convergence of the geometric series
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This finishes the proof, as this is equal to

· · · = inf
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which yields
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as the theorem states.
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