
MUCA: New Routing for Named Data Networking
Chavoosh Ghasemi1, Hamed Yousefi2, Kang G. Shin2, and Beichuan Zhang1

1Department of Computer Science, The University of Arizona
2Department of Electrical Engineering and Computer Science, The University of Michigan

Abstract—Named Data Networking (NDN) is a fundamental
paradigm shift from host-centric to data-centric Internet ar-
chitecture. Among its numerous benefits, in-network caching
and multipath forwarding are two prominent features that can
significantly improve the performance and resiliency of networks
and applications. The current NDN routing protocols, however,
still focus on the traditional problem of forwarding content
requests to content producers, without explicit or efficient support
of in-network caching and multipath forwarding, which will limit
NDN’s potential and benefits to applications.

In this paper, we propose a new intra-domain name-based
routing protocol to provide simple and scalable support for
MUltipath forwarding and in-network CAching (MUCA). While
MUCA collects the network topology and computes the shortest
paths to content producers in the same fashion as link-state
routing protocols, it also learns multiple alternative paths from
neighboring routers similar to distance-vector routing protocols.
Moreover, by labeling each route update at the entry point
into a network, internal routers select the same border router
for the same name prefix, which enhances the hit ratio of
cached contents. Our in-depth simulations demonstrate MUCA’s
effectiveness in reducing content retrieval delay and improving
network resiliency while lowering the routing protocol overhead.

I. INTRODUCTION

Named Data Networking (NDN) is a clean-slate future
Internet architecture and also an important representative of
Information Centric Networking (ICN) [22], [23]. In NDN,
content is identified by a hierarchical name, and both the
requests (i.e., Interests) and the responses (i.e., Data) carry the
content name rather than a source/destination address. Among
the various benefits of the NDN architecture, in-network
caching and multipath forwarding are two major features that
can significantly improve network performance and resiliency.
Since each network packet carries a unique name that identifies
its content, intermediate routers can cache Data in its returning
path to the requester(s) to serve future network Interests, i.e.,
NDN enables native in-network caching. Moreover, as pointed
in [21], NDN’s forwarding plane can detect routing loops by
itself and choose a different next-hop if loop happens. This
allows NDN routers to make use of multiple next-hops and
adapt the choice based on content retrieval performance.

Full realization of the potential of in-network caching and
multipath forwarding needs support from the underlying rout-
ing protocol. (Note that the routing plane in NDN is decoupled
from the forwarding plane as discussed in Section II.A.) At the
heart of NDN, the forwarding engine needs a routing protocol
to efficiently compute and install proper forwarding entries in
order to forward Interests towards the corresponding content

ISBN 978-3-903176-08-9 c©2018 IFIP

provider(s). While some studies have been done on NDN
routing protocols [10], [17] or similar content-centric routing
protocols [8], [9], they all focus on the traditional problem
of computing the shortest path towards a content producer,
without explicit or efficient support of in-network caching and
multipath forwarding.

To increase cache hit ratio in network caches, requests for
the same content but generated by different consumers should
merge as early as possible in the network, i.e., their forwarding
paths merge before they reach the content producer. Traditional
shortest-path computation does not take this into consideration,
thus the result is opportunistic for caching. To alleviate this
deficiency, MUCA labels each routing announcement/update
in border routers such that all the internal routers will select the
same border router for the same name prefix. This guarantees
that requests for the same content will always merge before
they go out of the network while improving the chance of
their merge even before reaching the border router. Not only
does this feature increase the efficiency of in-network caching,
but also reduces the transport cost incurred by traffic between
networks.

To take advantage of the NDN’s capability of multipath
forwarding, the routing protocol is expected to provide the
forwarding plane with multiple next-hops for each name
prefix. Traditional routing protocols only compute a single
best path. NLSR [17], a name-based link state routing protocol
currently used in the NDN testbed, computes a list of ranked
next-hops by running Dijkstra algorithm in a router for each of
its active interfaces, which can incur significant computational
overhead, especially for routers with high connectivity. To
address this issue, MUCA—as a link-state routing protocol—
borrows a distance-vector mechanism, retrieving routing tables
from neighboring routers instead of computing them. From
these retrieved routing tables, one can easily figure out the
ranked list of possible next-hops and save CPU cycles for the
local router.

In addition to explicit support of caching and efficient sup-
port for multipath, MUCA employs a simpler mechanism than
NLSR to propagate incremental routing updates. NLSR treats
the routing update propagation problem as a data synchro-
nization problem, and adopts ChronoSync [25] to synchronize
the link state database (LSDB) between neighboring routers.
MUCA simply notifies the neighbor router that a routing
update is available, and expects the neighbors to retrieve this
incremental update. Thus, it effectively reduces the routing
overheads.

We have conducted extensive simulations to demonstrate

..

CS PIT
FIBInterest packet

Routing Plane

Forwarding Plane

Strategy
Module

Forward
Interest packet

Data packet
Forward

Data packet

Fig. 1: Forwarding and routing planes in an NDN router

Discard
Interest

Forward Interest
Add PIT
recordAdd incoming

interface
Return Data

..

Remove
PIT entry

Forward
Data

Drop
Data

Data (Return) Path

Interest Path

CS PIT FIB

PITCS

Interest packet

Data packet

Lookup
Miss

 Lookup
Hit

Fig. 2: Interest/Data processing in the forwarding plane

MUCA’s benefits for multipath routing, in-network caching,
and LSDB synchronization. Compared to the last version
of NLSR, as the current de facto routing protocol of NDN
testbed, MUCA enables multipath routing with 94% less traffic
overhead, 26% faster content retrieval (by explicit support of
in-network caching), 27% less overall cache space usage, and
22% less engaged routers for caching a specific content. At
the same time, MUCA achieves fast reaction to failures due
to quick routing update propagation and multipath support.

The remainder of this paper is organized as follows. Section
II describes how routing and forwarding planes are decoupled
in NDN and motivates our study. The design and operation of
MUCA are detailed in Section III. The simulation results are
presented in Section IV. Section V discusses the related work,
and finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Routing vs. Forwarding

IP forwarding plane is neither adaptive nor intelligent, as
it strictly follows the routing plane [21]. NDN implies a
substantial re-engineering of the forwarding plane and changes
the role of routing plane from a directive to a consultant
[10]. Thus, the routing plane is a second-class citizen in
NDN. Actually, the routing plane only computes the route(s)
towards each producer and provides the forwarding plane
with this information. Instead, a forwarding strategy module
is responsible for controlling all forwarding decisions (i.e.,
whether, where, and when to forward an Interest). Thus, unlike
in IP, the forwarding table is not under control of the routing
protocol and continuously updated according to forwarding
plane performance measurements and administrative policies.
This intelligent and adaptive forwarding plane enables ex-
ploring more radical and scalable routing schemes that are
not possible in IP networks. Fig. 1 shows the forwarding
and routing planes in an NDN router. It is worth noting that
our main focus in this paper is on the routing plane. The
way the paths are used by the strategy module depends on
administrative decisions and the adopted forwarding strategies,
which is beyond the scope of this paper.

In the NDN’s request-driven (pull-based) communication
model, a node requests a named content using an Interest
packet. The intermediate neighbor nodes remember the in-
terface from which this packet was received, and forward
it by consulting their forwarding tables. Any node receiving
the Interest packet and having the requested content simply

responds with the corresponding Data packet. Unlike IP-based
networks, not all of the packets need to be routed in NDN.
Only the Interest packets are routed and the corresponding
Data packets are returned based on the state information set
up by the Interest packets in intermediate nodes (symmetric
Interest-Data exchange).

As shown in Fig. 1, along with the strategy module,
NDN has three main tables in its forwarding plane [23]: (1)
CS (Content Store), a cache memory, that stores previously
retrieved Data packets, (2) PIT (Pending Interest Table) that
stores unsatisfied Interests as well as the interfaces through
which they have been received, and (3) FIB (Forwarding
Information Base) that serves as the forwarding table to direct
the Interests towards the potential provider(s) of matching
Data. Fig. 2 shows how Interest/Data packets are processed
in the NDN tables in both sending and returning paths. Upon
arrival of an Interest packet at a router, CS is searched for the
requested name. If the desired content is found, then a Data
packet is returned else PIT is searched. If the name matches
a PIT entry, meaning that an Interest for this data has already
been forwarded upstream, we just add the incoming interface
to the related entry in PIT and wait for the response Data.
Otherwise, after assigning a new entry to the requested name
in PIT, the Interest is forwarded to the next hop(s) based on
the forwarding strategy looking at FIB. If multiple next-hops
exist in a FIB entry, the forwarding strategy determines how to
use the multiple routes for forwarding Interests. On the return
path, if the desired content arrives after its expiration time, it
will be discarded; otherwise, after caching the content in CS,
it will be sent through the interfaces listed in the matching
PIT entry.

In-network caching is a gift from CS. Thanks to this built-
in opportunity, all the NDN routers can act as temporary
providers, thus unneeding to traverse the entire network for a
desired content. Multipath support is a gift from PIT. Actually,
PIT makes the NDN forwarding plane stateful, thus ensuring
loop-free forwarding. This brings the opportunity of sending
an Interest out through multiple interfaces in each router.

B. Motivation

In-network caching and multipath forwarding support are
two prominent features of NDN. However, state-of-the-art
studies still focus on the traditional problem of forwarding
content requests to content producers, without explicit or
efficient support of these two built-in opportunities in NDN,

290

BP (NLSR)

R1 R2

Area Producer NDN Router

R3

MUCA

R1 R2

R3

Fig. 3: MUCA merges the forwarding
paths for the same content as early as
possible (in the worst case, at the same
border router). (The areas simply follow
the network partitioning in OSPF.)

MPP

BP

SBP_1

SBP_2

SBP_3

..

….

BP

BP_2

BP_3

BP_4

BP_5

..

….

MUCANLSR
Fig. 4: MUCA vs. NLSR: a ranked
list of routes (BP (Best Path), SBP
(Semi Best Path), and MPP (Most
Probable Path))

R0R1R0

R2 R4

R3

R3 R2

1

1

2

23

3

4

4

5

5
4

a/b/c
server

A2

A1 1 2

1 2
3

1
2

3

Fig. 5: Update dissemination after adding the /a/b/c
server

which will limit the NDN’s potential and benefits to applica-
tions. To alleviate this deficiency, while also improving scal-
ability in terms of both computational and traffic overheads,
we propose a new routing protocol which (1) mimics cache-
awareness to the routing plane, and (2) computes multiple
paths efficiently.

Caching: For any satisfied Interest, the response is cached
in all nodes on its returning path to the requester. The story
of routing in NDN is deficient without caring the caching
capability in the routing plane. Simply enjoying this capa-
bility in the forwarding plane without explicitly exploiting
in-network caching, as NLSR does, can degrade the perfor-
mance in terms of both content retrieval delay and traffic
(Interest/Data) overheads. Fig. 3 shows a simple example,
where three nodes (R1, R2, and R3) request the same content.
Ignoring the in-network caching capability in the state-of-the-
art—which relies on the shortest paths—can cause forwarding
the Interests through late, even never, merging paths (R3&R2
and R1&R2, respectively). Our idea is to label incoming
route announcements and updates (advertised in the case of
both topology and name prefix changes) at border routers
such that all the internal routers will select the same border
router for the same name prefix. This not only guarantees
that requests for the same content will always merge before
going out of the network (see R1&R2&R3’s paths), but also
improves the chance that they merge even before reaching
the border router (see R1&R2’s paths). Thus, MUCA equips
the forwarding plane with a new path (referred to as MPP),
explicitly exploiting in-network caching in NDN.

Multipath: Traditional routing protocols only compute a
single best path. To implement multipath routing, NLSR
provides a ranked list of all possible paths towards each
producer. In this line, as a Link State (LS) routing protocol,
it has no way except to run the Dijkstra algorithm from
every single interface’s point of view. This approach incurs
high computational overhead, especially for routers with high
connectivity. To address this issue, our general idea is to run
Dijkstra only once in each router—this surely provides the

best path (referred to as BP) towards each producer—and
then ask for help from neighbors using their precomputed
paths. This way, MUCA borrows a Distance Vector (DV)
mechanism, realizing a cooperative routing for NDN. Thus,
MUCA provides a list of alternative paths (referred to as SBPs)
for each BP in much lower complexity in the price of a little
more communication overhead.

In conclusion, as shown in Fig. 4, MUCA provides the for-
warding plane with a new list of forwarding paths—including
MPP, BP, and a dynamic list of SBPs as discussed later—while
effectively utilizing caching and multipath in the routing plane.

III. MUCA DESIGN

This section describes our design and its essential parts—
multipath routing and LSDB synchronization. We simply
follow the network partitioning in OSPF [1] and use
a general hierarchical naming model, where each router
takes a unique name /<1-st Area ID>/<2-nd Area
ID>/. . ./<n-th Area ID>/<Router ID> in ascending
order of the areas in which it resides. For example, in Fig. 5,
internal router R0 in A1 and border router R4 in both A1 and
A2 are simply named 1/0 and 1/2/4, respectively.

A. Multipath Routing

MUCA comes with three different characterized paths: (1)
Best Path (BP), provided by Link State (LS) face; (2) Semi
Best Path(s) (SBPs), provided by Distance Vector (DV) face;
and (3) Most Probable Path (MPP), provided by effectively
exploiting the caching opportunity built in NDN. As the only
characteristic in common, all of these three paths route the
packets towards the content producers (i.e., original providers).
While BP and SBPs ignore the in-network caching capability,
MPP tries to meet the network caches as early as possible on
its way to the producer.

To describe different paths, Fig. 5 shows an example in
which a new /a/b/c server announces the content it serves
(i.e., /a/b/c) by disseminating a routing update in the
network. Each sequential step of dissemination is shown as a
number next to each link. The shape changes to pentagon and

291

triangle when the update packet passes border routers 1/2/1
and 1/2/4, respectively.

1) Scalable Multipath Support:
BP: It is the shortest path between every pair of routers, and

used to deliver an Interest packet to its associated producer(s)
with a minimum cost. BPs are calculated by the LS face,
which runs Dijkstra algorithm in each router, having the global
information of its area(s).

After synchronizing LSDBs in an area (see Section III.B),
the MUCA’s LS face determines BPs and builds the routing
table (a.k.a. Routing Information Base (RIB)) for each router
to all the others in that area. (For a router, its routing table,
RIB, is populated with the costs to reach the other routers
within its area.) Fig. 6 shows the RIBs of routers R2, R3, and
R4 in area A1 in Fig. 5 after determining BPs, where all link
costs are assumed to be 1 for simplicity. To differentiate the
interfaces of a router, there is a number next to each link (as
also shown in Fig. 5). BP cost and BP interface at each router
are associated with the shortest-path cost and the interface
through which the path reaches another router within the same
area. For example, BP interface and BP cost in R3’s RIB
towards R0 in A1 are 1 and 2, respectively.

SBP: We propose using SBP as a supporting/alternative
path for BP. We exploit the potential for cooperation between
neighbors offered from the DV face of MUCA. Although DV
is unsuitable for large wide-area networks, we borrow its main
concept (i.e., querying only the neighbors) to use their “pre-
computed” routing tables for finding the Semi Best Paths—
called SBPs. It is worth noting that having the complete
routing information of neighbors in a router, the number
of SBPs towards a provider can be dynamically adjusted
according to the administrative policies. Thus, unlike for BP
(and MPP), MUCA can provide the forwarding engine with a
ranked list of SBPs. However, for simplicity, we only present
it as a single path in this paper. SBP can be exploited not only
as a backup path for fault-tolerant routing but also for other
purposes, such as load-balancing. However, how the strategy
module uses this path is beyond the scope of this paper which
focuses on the routing plane.

After determining BPs, the DV face resolves SBPs for
each router to all the others within the area. To this end,
each router sends a query to all of its neighbors and asks
for their RIBs. This query is an Interest packet with name
</InterestSBP>, and each router replies with its RIB
(which includes its BP to each destination Y). Then, the SBP
to Y passes through the BP of a directly connected neighbor
providing the minimum cost. Note that SBP from a router
X to a router Y needs to satisfy two conditions to ensure a
loop-free routing: (1) SBP cannot go through the same X’s
interface as BP towards Y , and (2) BP to Y from the neighbor
cannot cross X again. Fig. 6 shows the packets exchanged to
resolve SBPs for R3. For example, as Figs. 6 and 7 show,
R3 chooses R2 as its SBP next-hop to R4, while satisfying
two conditions (1) BP and SBP to R4 go through different
interfaces, and (2) R3 is not on R4’s BP to R2. Moreover, the
SBP interface and SBP cost in R3’s RIB towards destination

R4 are 1 and 2, respectively, since R2’s BP to R4 has cost 1
and R3 reaches R2 through interface 1 just in one hop.

One may argue that as BP and SBP from a source router are
not necessarily disjoint paths, our approach is not fault-tolerant
enough. However, note that, unlike IP’s end-to-end packet
delivery model, the NDN forwarding policies are applied in a
hop-by-hop manner. Thus, in the case of a link/node failure
along the BP, its immediate neighbor quickly replaces the
forwarding path by SBP (i.e., a part of BP is replaced by
another path towards the producer). From the source router’s
point of view, the current forwarding path is not the best
until it becomes aware of the failure and updates its RIB and
FIB. Thus, the synchronization time (called the convergence
time for fault-tolerant routing) is key to the performance of a
multipath routing (see Section III.B).

Finally, note that SBP is equal to the NLSR’s second best
path (except in case that the second best path goes through
the same interface as BP). Thus, it offers almost the same
performance by incurring much lower computational overhead.

2) In-network Caching Support:
MPP: As mentioned earlier, MUCA also equips the for-

warding plane with another path—called Most Probable Path
(MPP)—through which an Interest will likely meet the desired
content before reaching the producer(s). By using MPPs, we
try to forward similar traffic (Interests) via the same (even
partly) path to maximize utilizing built-in caching in NDN.
To this end, we send all the requests which target the same
name prefix through the same border router. We consider the
case where routing announcements/updates are received in an
area through multiple border routers. Then, the entry points
(i.e., border routers) simply update a field Modified Time
in receiving announcements/updates—this is referred to as
labeling process. Finally, the internal routers choose the border
router informed of a new name prefix before the others (i.e.,
that with the least Modified Time) and use their BPs (and SBPs)
towards this border router to forward their similar requests.
The same scenario applies sequentially in other areas. Finally,
from a given router’s point of view, there is a path (maybe
longer than BP) which eventually reaches the producer(s),
but with a higher probability of satisfying its request by an
intermediate router.

For example, from the vantage point of router R3 in A1
in Fig. 5, its MPP to /a/b/c server goes through router
1/2/1 (R1). This is because the advertisement of this name
prefix has been received by router 1/2/1 at the second
hop, and propagated into the network (follow pentagon-shaped
updates) before router 1/2/4 (follow triangle-shaped update)
receiving the update at the third hop. Finally, BP and MPP
towards /a/b/c server are [1/3-1/2/4-2/3-2/2] and
[1/3-1/2-1/0-1/2/1-2/0], respectively. Note that the
resolved MPP in a router towards /a/b/c server may be
the same as BP or SBP (e.g., for routers 1/0 and 1/2), or
different (as described for router 1/3). Thus, although MPPs
may take longer paths than BPs, they can effectively reduce
content retrieval delay. This is because MPPs from all internal
routers for /a/b/c are directed to the same border router in

292

SBP calculation and Filling the xRIB for R4

Fig 2

R3
R4

Data (RIB)

/InterestSBP/InterestSBP

Ti
m

e

Data (RIB)

Calculation of SBPs

1/0 2 1
1/2

1/2/4
1/2/1

1 1
1 2
3 1

Node
name BP cost BP

Interface

RIB of R3

12 2 2

1

3

3

1

1/0 2 1
1/2
1/3

1/2/1

1 1
1 2
3 1

Node
name BP cost BP

Interface
1/0 1 1
1/3

1/2/4
1/2/1

1 2
1 3
2 1

Node
name BP cost BP

Interface

RIB of R2 RIB of R4

3 2
2 2
2 1
4 2

- -
2 3
2 2
- -

SBP cost SBP
Interface

3 2
2 2
2 1
4 2

SBP cost SBP
Interface

SBP cost SBP
Interface

R2

Fig. 6: RIB (routing table) update and SBP calculation by exploiting
the distance-vector face of MUCA

R0R1R0
a/b/c

server

A2

A1

SBP MPPBP

R4 R3 R2R2

R3

Fig. 7: BP, SBP, and MPP
from R3 to retrieve /a/b/c

2/31/2

/InterestChange/1/2/4/$n

/InterestRequest/1/2/InterestChange/1/2/4/$n

Data (UpdateContent)

Data (UpdateContent)

/InterestRequest/1/2/4/InterestChange/2/3/$n

/InterestChange/2/3/$n

Ti
m

e

1/2/4

Fig. 8: Notifying the neigh-
bor routers to synchronize
their LSDBs

an area, which not only guarantees that the paths merge before
going out of the area, but also improves their chance to merge
even before reaching the border router.

To realize MPP, we define MUCA header, including three
fields Area ID, Border Router, and Modified Time augmented
with NDN Data header. These fields experience no change in
the return path while passing internal routers. However, upon
arrival at a border router, they are updated according to the
current area, border router, and arrival time.

By presenting MPP, we prevent scattered caching and
forwarding Interests through improper paths or towards depre-
cated copies of contents. Moreover, by avoiding sending sev-
eral similar Interests throughout the network, MPPs reinforce
the role of PIT, as one of the NDN main design principles.
This way, we save more network bandwidth and decrease the
possibility of congesting the intermediate links/routers, and
reduce the transport cost incurred by traffic between networks.
By receiving fewer Interest packets at the producers, the
servers’ load will also be reduced.

Note that MUCA can support multipath routing not only
for a single content producer by leveraging BP, SBP, and MPP
(Fig. 7 depicts BP, SBP, and MPP from router 1/3 to /a/b/c
server), but also for multiple producers (in case there are more
/a/b/c servers in the network).

B. LSDB Synchronization

As part of any LS routing protocol, to synchronize all the
LSDBs (Link State Databases), each router needs to detect
a new update in the case of both topology and name prefix
changes and disseminate it throughout the network. (The
LSDB at each router contains information on reachability to
both routers and name prefixes.) In this line, the latest version
of NLSR [17] uses ChronoSync [25]. Considering the routing
update propagation problem as a synchronization problem,
two neighbors need to periodically inform each other about
the state of their LSDBs (even if there is no changes in the
network). Although there are some benefits with ChronoSync,
especially in highly dynamic and unreliable scenarios, it is
not a perfect fit to NDN routing protocol synchronization, so
incurring high message overhead. To address this problem,
MUCA suggests that each router simply notifies its neighbors
that a routing update is available, and expects the neighbors
to retrieve this incremental update. This mimics a push-based

Scattered caching may waste and improperly leverage cache capacity.

notification of the exact changes in heart of the NDN pull-
based communication model, which effectively reduces not
only the convergence time but also many unnecessary periodic
control packets to detect the updates and difference between
LSDBs, if any.

Implementing LSDB Synchronization: The currently adopted
update model in NDN is request-driven, requiring all the
routers to pull the updates. To implement our approach, in
the case of any update in a node, it sends an InterestChange
to its neighbors and they respond by returning InterestRequests
to pull new changes (as a Data packet UpdateContent). Upon
receiving the changes at a neighbor, it updates its LSDB and
notifies its neighbors. This procedure is repeated hop-by-hop
until all the routers in the associated area are informed of any
update. Names /InterestChange/<origin router
name>/<nonce> and /InterestRequest/<sender
router name>/InterestChange/<origin router
name>/<nonce> are used for InterestChange and Intere-
stRequest packets, respectively, where the suffix of InterestRe-
quest is identical to its associated InterestChange. Here, origin
router name and sender router name refer to the routers from
which InterestChange and InterestRequest are transmitted,
respectively, and Nonce is a random integer. Fig. 8 shows
LSDB synchronization process for routers 2/3, 1/2/4, and
1/2 in Fig. 5, where $n is a Nonce. After receiving the routing
update at router 1/2/4 from router 2/3, it updates its LSDB
and then sends InterestChange to its neighbor (i.e., router
1/2). Upon receiving this packet, router 1/2 requests an
update by returning an InterestRequest. Finally, router 1/2/4
generates an UpdateContent by which router 1/2 can update
its LSDB and inform its neighbor of this new change.

IV. EVALUATION

In this section, we evaluate the performance of MUCA
via extensive simulations using ndnSIM, which is the de
facto simulator of NDN. The results are compared to the
last version of NLSR [17], as the current de facto routing
protocol of NDN testbed, to demonstrate MUCA’s benefits
for multipath routing, LSDB synchronization, and in-network
caching utilization. The simulation parameters are set to their
default values in ndnSIM [3]. The topology generator aSHIIP
v.3 [2] and the GLP model [4] are also employed to generate
random networks. The results are the average of 10 runs.

293

0 20 40 60 80 100 120

0

100

200

300

Time(s)

#
Sa

tis
fie

d
In

te
re

st
s

SBP+BP BP

(a)

0 20 40 60 80 100 120
10−1

100

101

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
) SBP+BP BP

(b)
Fig. 9: The benefits of multipath routing in a node failure scenario: (a) number of satisfied Interests and (b) content retrieval delay

0 20 40 60 80 100 120
10−1

100

101

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
) MUCA NLSR

Fig. 10: Semi Best Path (SBP) in MUCA achieves the performance
of second Best Path in NLSR with much lower routing overheads

A. Multipath Support

We answer three questions on the performance of our
proposed multipath routing protocol exploiting LS and DV
faces: (1) what are the benefits of employing multipath? (2)
how MUCA and NLSR outperform each other during a failure
scenario?, and (3) what is the cost of resolving SBPs in terms
of traffic overhead?

To answer the first question, Fig. 9 compares two modes,
BPs alone and BPs & SBPs together, in terms of number
of satisfied Interests and consumer-perceived response time
(a.k.a. content retrieval delay) in case of node failure. The
retrieval delay is the time duration between sending an Interest
and receiving its corresponding Data, including the time for
retransmissions. We capture network events during a period
of 120 seconds, where two randomly selected nodes act as
the producer and consumer residing in two sides of a 100-
node network partitioned into four areas. After computing and
populating the LSDBs in all the routers, at the 10-th second,
we brought down a node on the consumer’s BP towards
the producer. In MUCA with only a single path, the node
failure triggers the Dijkstra algorithm to calculate the new
BP and resolve the desired content. As shown in Fig. 9(a)

This is long enough for warming up and testing the behavior of network
in terms of convergence time.

and (b), it takes about 60 seconds to detect the node failure
and then to converge (thus, using only BPs, no Data returns
during this period). This figure clears the importance of using
multipath, as using a single path (i.e., BP) drastically increases
packet drop rate (see Fig. 9(a)) and content retrieval delay (see
Fig. 9(b)), during convergence time. However, providing the
forwarding plane with SBPs lets it forward Interests on another
path almost immediately from the failed node’s neighbor,
until the network converges and the consumer updates its BP
(around the 70-th second). Finally, at the 100-th second, when
the failed node is recovered, the traffic is switched back on the
old path. Fig. 9 thus illustrates the benefit of employing SBPs
along with BP, and its vital effect on overall performance of
the network.

To answer the second question, Fig. 10 compares MUCA
with NLSR in the same scenario except that the failed node
is not brought back up. Both MUCA and NLSR enable the
forwarding plane to quickly switch to the alternative paths
(SBP and the second best path, respectively) and continue
transmission of packets with a larger retrieval delay. After de-
tecting the node failure (around the 70-th second as mentioned
earlier), both MUCA and NLSR daemons start propagating
this change throughout the network and updating LSDB of the
routers consequently. As evident from the figure, both proto-
cols perform almost the same, though MUCA could converge
a little faster due to its update propagation mechanism. After
convergence time, both protocols switch to a new BP with
a relatively longer delay than the initial one. In conclusion,
using SBP, MUCA can achieve the performance of NLSR
only by incurring little traffic overhead to the network, while
drastically reducing the computational overhead of NLSR.

Finally, to answer the third question, Fig. 11 shows a com-
plete analysis of traffic overhead of resolving SBPs. To give a
broader view, we consider different sizes of the network, i.e.,
50, 80, 100, and 150 nodes. (We attempted to cover medium to
large networks (as the AT&T core network topology has 154
nodes [9].)) We also change parameter p in the GLP model to

As in OSPF, tracking the network connectivity is handled by sending Hello
packets to neighbor nodes. Usually after hearing nothing from a neighbor
within three continuous Hello packet interval, the neighbor is determined as
dead.

294

0.15 0.35 0.55 0.75 0.95
0

10

20

30

p

Pe
r

N
od

e
Pa

ck
et

O
ve

rh
ea

d 50 80 100 150

Fig. 11: Average “per-node” packet over-
head to resolve SBPs for different network
sizes (50, 80, 100, and 150 nodes) and
node degrees (p)

0.15 0.35 0.55 0.75 0.95

0.9

0.95

1

p

Tr
af

fic
O

ve
rh

ea
d

R
ed

uc
tio

n
R

at
io

50 80 100 150

Fig. 12: MUCA vs. NLSR: MUCA effec-
tively reduces traffic overhead by utilizing
a new LSDB synchronization mechanism

1

3

0
4

8
9

5 6

10

11

2 7

13 14 15 16

17 18 19 20

21 22 23 24

25
26

2827

29

33

36 32

37

38

41

39

42

4035

31

34

30

A1

A2

A3

12

Border Router

Consumer

Fig. 13: Network topology to evaluate the
MPP performance

create different node degrees, ranging from very sparse to very
dense deployments, where p (1−p) specifies the probability of
adding a predefined number of new links (a new node) to the
network at each time-step. The results show that this overhead
is negligible. For example, when there are 80 routers in the
network and the density is normal (i.e., p = 0.5, which means
the network is neither fully mesh nor sparse), less than 10
packets per node is needed to resolve SBPs.

B. LSDB Synchronization

We now evaluate the performance of MUCA against NLSR
in terms of synchronization overhead. In each scenario, a
random router is informed of a new name prefix and updates its
LSDB. Then, the number of transmitted packets (including all
periodic and non-periodic ones) are measured. Fig. 12 shows
the traffic overhead reduction ratio provided by MUCA to
synchronize all the LSDBs in the network. MUCA is shown to
significantly outperform NLSR, especially in larger networks.
Moreover, by increasing p, the number of links grows, so
more periodic packets will be exchanged by NLSR. This figure
casts doubt on using ChronoSync (or similar algorithms) as it
performs poorly compared with a straightforward approach.
Instead, by blocking many unnecessary packets (e.g., those
exchanged for finding differences between LSDBs), our ap-
proach reduces the traffic overhead on average by 94% in the
network.

C. In-Network Caching Support

As mentioned earlier and also shown in Fig. 4, MUCA
provides the forwarding plane with a new ranked list of
the candidate paths, giving priority to MPPs. In this section,
we compare the NDN forwarding based on MPP versus BP
(NLSR approach) to see whether MUCA’s ranking rubric
outperforms NLSR. Moreover, to fully demonstrate the pros
and cons of MPP-based forwarding, we also compare it with
“flooding” (as the simplest de facto forwarding strategy in
NDN). All three schemes follow regular caching of Data
packets at intermediate nodes and use LFU as their replace-
ment policy [14]. The performance of in-network caching is

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0.2

0.3

0.4

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
)

29 41

(a) BPs (NLSR)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0

0.1

0.2

0.3

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
)

29 41

(b) MPPs

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

0.1

0.2

0.3

Time(s)

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
)

29 41

(c) Flood
Fig. 14: Content retrieval delay in nodes 29 and 41 using different
forwarding schemes

evaluated in terms of: (i) content retrieval delay, (ii) overall
cache memory usage, and (iii) number of nodes engaged in
caching.

Fig. 13 illustrates a network of 44 nodes partitioned into

295

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0

10

20

30

Time(s)

C
um

ul
at

iv
e

C
on

te
nt

R
et

ri
ev

al
D

el
ay

(s
)

BP(NLSR) MPP Flood

Fig. 15: Cumulative content retrieval delay using different forwarding
schemes

three areas, where four consumers request 20 name prefixes
served by one server (at the top). The location of each
consumer is also denoted by double-dotted circles. In order to
test the network operation, each time step is randomly chosen
between 0 and 4 seconds, in which each of four consumers
requests one of the prefixes. At the end of simulation that
lasts for 50 seconds, each node has requested at least a half of
the existing name prefixes. Thus, it is highly possible that a
content is repeatedly requested by different consumers (time-
locality principle). Although each content in CS is valid only
for a short while in reality, we enjoy the caching opportunity
built in NDN.

Fig. 14(a)-(c) shows the content retrieval delay for nodes 29
and 41 (two of four consumers) in A3 for all three forwarding
schemes. This delay for the nodes under the MPP-based
scheme is shown to be higher than that under the flooding
scheme, while smaller than that under the BP-based one.
Indeed, although leveraging only BPs can result in the same or
even better performance under a special condition (when the
content requisition does not follow the time locality principle),
MPPs can, in general, reduce the retrieval delay. As evident
from the figure, nodes 29 and 41 have relatively opposite
retrieval delay trends (i.e., high vs. low). This verifies that
by leveraging in-network caching, if a node needs a content
which has already been requested, it will meet a cached version
with high probability. For example, as evident from the 22-nd
till the 28-th second in Fig. 14(b), node 41 retrieves a desired
content very quickly as it has been already consumed by node
29. For the majority of time, the content can be retrieved in less
than 0.2 second in Figs. 14(b) and (c), while this is reversed
in Fig. 14(a).

Fig. 15 illustrates the cumulative retrieval delay for all con-
sumers using different forwarding schemes. As evident from
the figure, the MPP-based forwarding scheme performs close
to flooding which is our lower bound—flooding minimizes the
delay in the cost of incurring the maximum traffic overheads
to the network. Actually, the MPP-based scheme outperforms
the BP-based one on average by 26% in this scenario, while
flooding reduces the retrieval delay on average by 34% and
12% compared to BP- and MPP-based schemes, respectively.

Fig. 16 shows the cumulative cache memory usage by each
scheme in terms of the number of cached packets at the
network nodes. As evident from the figure, the MPP-based

BP(NLSR) MPP Flood

1,000

2,000

3,000

4,000

Forwarding Scheme

#
C

ac
he

d
Pa

ck
et

s

Fig. 16: Number of packets
cached in the network using
different forwarding schemes

BP(NLSR) MPP Flood

20

30

40

Forwarding Scheme

#
E

ng
ag

ed
N

od
es

in
C

ac
hi

ng

Fig. 17: Number of nodes en-
gaged in caching using differ-
ent forwarding schemes

scheme decreases the overall CS space usage on average by
27% and 64% compared with BP-based and flooding schemes,
respectively. Besides, as shown in Fig. 17, forwarding the
Interests over MPPs can reduce the number of nodes engaged
in caching a specific content on average by 22% and 64%
compared to BP-based and flooding schemes. Obviously, fewer
engaged nodes mean less scattered caching, while also pro-
viding a lower retrieval delay by using MPP compared to the
BP-based scheme. In general, scattering the content between
more network nodes (as flooding does) results in a greater
opportunity to reduce the retrieval delay. However, we did
not follow this to avoid caching redundant contents. Finally,
the MPP-based scheme consumes CS space very efficiently
while also performing very close to flooding. Based on these
observations, we can make a trade-off between the content
retrieval delay and the CS space usage by choosing MPPs or
flooding.

Knowing the benefits of using MPP over BP in different
aspects, we can reject adopting the assumption of several
studies (like NLSR) which imply using path cost as a metric
to rank the available paths. Instead, we believe that the paths
with higher probability to meet the cached content have higher
priority over the shortest paths towards the provider(s) in
NDN. That is why MUCA gives MPP a higher priority than
BP and SBPs in its ranked list of paths as shown in Fig. 4.

V. RELATED WORK

There exists several studies on routing in NDN. OSPFN
[18], as an extended version of OSPF [1], is the first NDN rout-
ing protocol for rapid prototyping of name-based forwarding
in the NDN testbed. However, it suffers from several critical
drawbacks such as IP dependency, employing GRE tunnels,
and disregarding multipath forwarding. The two-layer routing
protocol in [6] uses OSPF to resolve topology and calculate
the shortest-spanning trees. However, it relies on flooding
for update dissemination and does not yet support multipath
routing towards a single producer. To mitigate these problems
and allow for new topology-discovery methods, a named-data
link state routing protocol (NLSR) was proposed in [10], [17].
However, it—as the current de facto routing protocol of NDN

296

testbed—suffers from high computational and traffic over-
heads. A controller-based routing scheme (CRoS) for NDN
was also proposed in [15], which uses multiple controllers
to achieve scalability. However, it incurs high traffic overhead
due to flooding of Interests to search for controllers. LSCR [9]
proposed a name-based link-state routing protocol which aims
to provide forwarding plane with permanent loop-free paths.
DCR [8] is the first name-based content routing which does
not require any information about physical topology and works
solely based on distance information. However, both LSCR
and DCR refuse to provide the network with information of
all available providers, while none of them explicitly employ
in-network caching capability, as well. Bloom Filters (BF)
are used in [5], [11], [12], [20] to digest FIB and exchange
information about content availability, but they incur high
signaling overheads. The stateful BF is also used in [16], but it
only leverages the passive mode of prefix announcements, thus
flooding the network multiple times. Although BF can reduce
the space complexity, it suffers from false positives (collisions)
which, in turn, degrade performance. Besides, Wang et al. [19]
and Zhang et al. [24] attempted to utilize in-network caching
by adding new data structures or modifying the existing ones.
However, they preserve the relationship with IP-based routing,
which does not meet the NDN’s goal of departing from IP [10].

There have also been other efforts [7], [13] focusing on
“inter-domain” routing and leveraging the concept of BGP
which are beyond the scope of this paper.

VI. CONCLUSION

Explicit support of in-network caching and multipath for-
warding from routing protocol is key to realize NDN. This
paper proposed MUCA as a stand-alone intra-domain routing
protocol for NDN and highlighted its important features. It
makes three main contributions: (1) a combination of link-
state and distance-vector routing protocol classes to efficiently
support multipath routing, (2) a new path, different from the
regular forwarding paths, to effectively exploit built-in caching
opportunity in NDN, and (3) a new mechanism for LSDB
synchronization, where the incremental routing updates are
simply notified to the neighbor routers. Finally, MUCA equips
the forwarding plane with a new ranked list of forwarding
paths. Our in-depth evaluation demonstrates the benefits of
MUCA and its superiority over NLSR, the current de facto
routing protocol of NDN testbed.

We expect that MUCA will play a key role in NDN,
as what OSPF has done in IP-based networks. MUCA can
easily accommodate new ideas/solutions thanks to its flexible
design. MUCA is, therefore, a good starting point towards a
comprehensive routing solution for NDN.

ACKNOWLEDGMENTS

This work was supported in part by NSF under Grants CNS-
1345142 and CNS-1629009.

NDN can work in two name-announcement modes (i) active mode (where
the prefixes are announced by producers), and (ii) passive mode (where the
prefixes are solicited by consumers).

REFERENCES

[1] “OSPF Version 2,” https://www.ietf.org/rfc/rfc2328.txt, [Online].
[2] “Supelec,” http://wwwdi.supelec.fr/software-orig/ashiip/, [Online].
[3] A. Afanasyev et al., “ndnSIM: NDN simulator for NS-3,” Tech. Rep.

NDN-0005, 2012.
[4] T. Bu and D. Towsley, “On distinguishing between internet power law

topology generators,” in IEEE INFOCOM’02, 2002, pp. 638–647.
[5] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini,

“INFORM: A dynamic interest forwarding mechanism for information
centric networking,” in ICN’13, 2013, pp. 9–14.

[6] H. Dai, J. Lu, Y. Wang, and B. Liu, “A two-layer intra-domain routing
scheme for named data networking,” in IEEE GLOBECOM’12, 2012,
pp. 2815–2820.

[7] S. DiBenedetto, C. Papadopoulos, and D. Massey, “Routing policies in
named data networking,” in ACM SIGCOMM workshop on Information-
centric networking (ICN’11), 2011, pp. 38–43.

[8] J. Garcia-Luna-Aceves, “Name-based content routing in information
centric networks using distance information,” in ACM Conference on
Information-Centric Networking (ICN’14), 2014, pp. 7–16.

[9] E. Hemmati and J. Garcia-Luna-Aceves, “A new approach to name-
based link-state routing for information-centric networks,” in ACM
Conference on Information-Centric Networking (ICN’15), 2015, pp. 29–
38.

[10] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and
L. Wang, “NLSR: Named-data link state routing protocol,” in ACM SIG-
COMM workshop on Information-centric networking (ICN’13), 2013,
pp. 15–20.

[11] M. Lee, K. Cho, K. Park, T. Kwon, and Y. Choi, “SCAN: Scalable
content routing for content-aware networking,” in IEEE ICC’11, 2011,
pp. 1–5.

[12] H. Liu, X. De Foy, and D. Zhang, “A multi-level DHT routing framework
with aggregation,” in ACM SIGCOMM workshop on Information-centric
networking (ICN’12), 2012, pp. 43–48.

[13] J. Rajahalme, M. Särelä, P. Nikander, and S. Tarkoma, “Incentive-
compatible caching and peering in data-oriented networks,” in ACM
CoNEXT’08, 2008, pp. 1–6.

[14] S. Tarnoi, K. Suksomboon, W. Kumwilaisak, and Y. Ji, “Cooperative
routing protocol for content-centric networking,” in IEEE LCN’13, 2013,
pp. 699–702.

[15] J. V. Torres, L. H. G. Ferraz, and O. C. M. B. Duarte, “Controller-
based routing scheme for named data network,” Electrical Engineering
Program, COPPE/UFRJ, Tech. Rep., 2012.

[16] M. Tortelli, L. A. Grieco, G. Boggia, and K. Pentikousis, “COBRA:
Lean intra-domain routing in NDN,” in IEEE CCNC’14, 2014.

[17] Y. Y. L. W. B. Z. V. Lehman, A. M. Hoque and L. Zhang, “A secure
link state routing protocol for NDN,” Tech. Rep. NDN-0037, Jan. 2016.

[18] L. Wang, A. K. M. M. Hoque, C. Yi, A. Alyyan, and B. Zhang, “OSPFN:
An OSPF based routing protocol for named data networking,” University
of Memphis and University of Arizona, Tech. Rep., 2012.

[19] S. Wang, J. Bi, and J. Wu, “Collaborative caching based on hash-routing
for information-centric networking,” in SIGCOMM’13, 2013, pp. 535–
536.

[20] Y. Wang, K. Lee, B. Venkataraman, R. Shamanna, I. Rhee, and S. Yang,
“Advertising cached contents in the control plane: Necessity and feasi-
bility,” in IEEE INFOCOM’12, 2012, pp. 286–291.

[21] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang,
“On the role of routing in named data networking,” in ACM Conference
on Information-Centric Networking (ICN’14), 2014, pp. 27–36.

[22] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73,
2014.

[23] L. Zhang et al., “Named Data Networking (NDN) Project,” Tech. Rep.
NDN-0001, 2010.

[24] X. Zhang, T. Niu, F. Lao, and Z. Guo, “Topology-aware content-centric
networking,” in SIGCOMM’13, 2013, pp. 559–560.

[25] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in named data networking,” in IEEE ICNP’13,
2013, pp. 1–10.

297

