
Multipath IP Routing on End Devices:
Motivation, Design, and Performance

Liyang Sun∗, Guibin Tian∗, Guanyu Zhu∗, Yong Liu∗, Hang Shi†, and David Dai†
∗Electrical & Computer Engineering, New York University, Brooklyn, NY, 11201, USA

† Huawei Technology, Santa Clara, CA, 95050, USA

Abstract—Most end devices are now equipped with multi-
ple network interfaces. Applications can exploit all available
interfaces and benefit from multipath transmission. Recently
Multipath TCP (MPTCP) was proposed to implement multipath
transmission at the transport layer and has attracted lots of
attention from academia and industry. However, MPTCP only
supports TCP-based applications and its multipath routing flex-
ibility is limited. In this paper, we investigate the possibility of
orchestrating multipath transmission from the network layer of
end devices, and develop a Multipath IP (MPIP) design consisting
of signaling, session and path management, multipath routing,
and NAT traversal. We implement MPIP in Linux and Android
kernels. Through controlled lab experiments and Internet ex-
periments, we demonstrate that MPIP can effectively achieve
multipath gains at the network layer. It not only supports the
legacy TCP and UDP protocols, but also works seamlessly with
MPTCP. By facilitating user-defined customized routing, MPIP
can route traffic from competing applications in a coordinated
fashion to maximize the aggregate user Quality-of-Experience.

I. INTRODUCTION

Contemporary end devices are normally equipped with
multiple network interfaces, ranging from datacenter blade
servers to user laptops and handheld smart devices. Exploiting
all available interfaces, applications can adopt multipath trans-
missions to achieve higher and smoother aggregate throughput,
resilience to traffic variations and failures on individual paths,
and seamless transition between different networks. While
each application can implement its own multipath transmission
at the application layer, it is more desirable to provide mul-
tipath transmission services from the lower network protocol
stack so that all applications can benefit. Recently, Multipath
TCP (MPTCP) has been proposed and attracted lots of atten-
tion from academia and industry [1], [2], [3], [4], [5]. MPTCP
allows all TCP-based applications enjoy the multipath gain in a
transparent fashion. However, UDP-based applications cannot
benefit from multipath transmissions.

In this paper, we share our experience of orchestrating
multipath transmission from the network layer on end devices,
and present a complete design of Multipath IP Transmission
(MPIP). There are several advantages of implementing multi-
path transmission at the network layer:
Broader Coverage. MPIP can transmit IP packets generated
by any TCP or UDP based application. Being transparent to the
upper layers, MPIP can benefit all user applications without
changing the application and transport layer protocols.

Better View and Coordination. The network layer can
directly measure network status and promptly capture various
dynamic events, such as interface and network changes. Since
all application traffic go through the network layer, MPIP can
adjust the transmission strategies for all applications in a co-
ordinated fashion to maximally satisfy the diverse application
and user needs.
More Flexible Routing. With MPTCP, traffic allocated to a
path is determined by the rate achieved by the TCP subflow
on that path, i.e., routing is simply determined by congestion
control along multiple paths. This is too rigid and limited for
applications with different throughput and delay requirements,
and users with different resource and economic constraints.
MPIP instead can implement any customized multipath rout-
ing.
Lower Complexity. MPIP can eliminate redundant network
probings and routing adjustments attempted by individual
applications and sessions. From the implementation point of
view, similar to MPTCP, MPIP only requires changes on end
devices. MPTCP has to work with the complexity resulted
from the stateful TCP implementation. The legacy IP protocol
is stateless and its implementation is much simpler than the
legacy TCP. This leaves more design space for MPIP.

Meanwhile, MPIP also faces additional challenges. First
of all, due to the stateless nature of IP, there is no existing
session and path management mechanisms at network layer.
Secondly, to work with multiple paths, MPIP constantly needs
feedbacks about the availability and performance of each
path. However, the legacy IP does not provide end-to-end
feedbacks. Thirdly, various middle-boxes, e.g., NAT routers,
are by-no-means transparent. They change and verify IP
and TCP headers, and drop packets which they believe are
“unorthodox” according to the legacy TCP/IP protocol. Mul-
tipath transmission unavoidably leads to out-of-order packet
delivery. This will cause problem for running legacy TCP
over MPIP. Finally, MPIP design and implementation should
minimize the overhead and complexity added to the network
layer. We address those challenges in our MPIP design and
implementation. The contribution of our work is three-fold:

1) We develop a complete design to implement multipath
transmission at the network layer, consisting of signal-
ing, session and path management, multipath IP source
routing, and NAT traversal. Our MPIP design not only
can be used by the legacy TCP and UDP protocols, but
also works seamlessly with MPTCP.ISBN 978-3-903176-08-9 c© 2018 IFIP

Application

socket

transport

MPIP

IP11 IP12

Node A

Application

socket

transport

MPIP

IP21 IP22

Node B

session

IP Paths

Fig. 1. Example of MPIP Transmission

2) MPIP supports diverse multipath routing strategies. For
all-paths mode, we design a delay-based routing al-
gorithm for MPIP to balance the loads of available
paths. We also develop a user-defined multipath routing
framework, through which customized routing strategies,
such as selected-paths and single-path, can be realized
by MPIP to satisfy diverse application/user needs.

3) We implement MPIP in Linux and Android kernels.
We evaluate its performance using controlled lab exper-
iments and Internet experiments. We demonstrate that
MPIP can transparently achieve various multipath gains
at the network layer. It works seamlessly with legacy
transport layer protocols and popular applications. It can
significantly improve user Quality-of-Experience (QoE)
using easily configurable multipath routing strategies.

The rest of the paper is organized as follows. The semantics
of MPIP is presented in Section II. The complete MPIP design
is developed in Section III. Special issues related to TCP
are addressed in Section IV. In Section V, we report the
experimental results. Related work is summarized in Section
VI. The paper is concluded in Section VII.

II. SEMANTICS

MPIP works at the network layer on end devices. The basic
building blocks are: Node, Session, and Path.

• Node refers to an end device with potentially multiple
network interfaces, each of which gets assigned with a
private or public IP address. MPIP also works with nodes
with single network interface.

• Session is a transport layer flow between two nodes
served by MPIP. A session is established at the transport
layer, using the legacy TCP or UDP protocol, or even the
new MPTCP protocol.

• Path is an end-to-end IP route available for a session. For
each session, MPIP can use any interface on one node to
transmit packets to any interface on the other node. If
the two nodes have m and n interfaces respectively, the
number of possible paths is mn.

With the legacy IP, each session is associated with only one
IP (interface) and one port number on each node. The routing
decision is based on destination IP address. MPIP employs
customized session-based routing, and transmits packets of
each session using any combination of the available paths.
For the example in Figure 1, node A and node B are MPIP-
enabled. They use the legacy application layer and transport
layer. Each node has two interfaces (and the associated IP
addresses). There are four end-to-end IP paths, as illustrated
in Figure 1. When an application on node A opens a TCP/UDP
connection to node B, MPIP will treat this connection as a new
session. For each packet going from A to B, MPIP will choose
one of the four available paths to send it out. To do that, MPIP
will change the source and destination IP addresses as well as
the port numbers of the packet so that it can be forwarded
to the corresponding interface of the chosen path on node B.
When node B receives the packet, it will first check which
session it belongs to, then modify the IP address and port
number back to the original values of the session. Finally, the
packet will be passed to the corresponding TCP/UDP socket.
The whole process is transparent to TCP/UDP session. If
MPIP can simultaneously utilize the four paths by dispatching
different packets to different paths, TCP /UDP throughput can
be improved. Also the session can work normally as long as
one path is available. Consequently, a TCP/UDP session will
not be interrupted even if the default interfaces assigned to
the session by the OS are disconnected. This makes hand-
overs between different networks seamless and transparent
to the transport and application layers. In general, MPIP
routes packets from one session using several modes: 1) all-
paths mode: packets are dispatched concurrently to all the
available paths. Each packet will be transmitted along one of
the paths. MPIP Routing determines the traffic splitting ratios
among paths; 2) selected-paths mode: packets are routed on a
subset of paths that meet the requirements of the application.
Selected-paths mode avoids the inclusion of bad paths that
will drag down the application performance. Path selection
is application-specific and can be adapted by MPIP based on
both application and network dynamics; 3) single-path mode:
at any time, packets are only routed over one selected path,
which can change during the course of the session. MPIP will
handle seamless handover between paths, without interrupting
the session. Single-path mode eliminates path quality dispar-
ity, such as out-of-order packet delivery, by sacrificing the
throughput gain; 4) protected-path mode: a mission-critical
packet is simultaneously transmitted on multiple paths. The
receiver will pass the first arrived copy to the upper layer
and discard the subsequent redundant copies. It sacrifices
bandwidth for resilience.

III. MPIP DESIGN

A. Workflow of Sending/Receiving Packets

Before diving into the design details, we present the MPIP
workflow in Figure 2. When an outbound packet arrives at
network layer from transportation layer, given the destination
IP address and port number in header, MPIP checks whether

182

Dest MPIP
enabled?

Attach CM block

Modify packet header,
choose a path to send

out MPIP
packet?

Extract CM and process

MPIP
control packet?

Modify packet header,
push up

Drop
packet

Higher Layer (Transportation Layer, TCP, UDP)

Lower Layer (Link Layer, Mac)

Y

Y

N

N

Y

N

Fig. 2. MPIP Work Flow of Sending and Receiving Packets.

the destination node is MPIP enabled. If not, the packet will
be processed by the regular IP stack and sent to the data link
layer. If the destination is MPIP-enabled, MPIP will append a
MPIP control message (CM) block to the end of the packet,
change the IP and port addresses in packet header so that it
will be sent to a chosen IP path. When receiving an inbound
packet, MPIP processes the CM block to find the transport
layer socket that the packet belongs to. Then MPIP reverts the
IP and port addresses in packet header to the original values
before pushing the packet to the transport layer. The major
MPIP design components are: Signaling Channel, Handshake,
Session Management, Path Management, MPIP Routing, and
NAT Traversal.

B. Signaling Channel

TABLE I
CONTROL MESSAGE BLOCK

Source Session Local IP CM
Node ID ID Address List Flags

Path Feedback Packet Path
ID Path ID Timestamp Delay

MPIP needs realtime information about the availability and
performance of end-to-end paths. Due to its connectionless
design, legacy IP protocol doesn’t have its built-in end-to-
end feedback channel. We need a signaling channel for MPIP.
Instead of transmitting extra signaling packets, we piggyback
MPIP control information to each MPIP packet. For each
packet sent out by MPIP, we add an additional control message
(CM) data block at the end of user data. The size of the
CM block is 25 bytes, a small overhead for typical data
packets of 1000+ bytes. Considering the throughput gain and
robustness brought by MPIP, the overhead of CM block is
well acceptable. Packet size may exceed the link MTU after
attaching the CM block. We force the transport layer to reduce
the size of each segment, e.g. decreasing the MSS value for
TCP connection, to make sure the CM block fits within the
MTU limit. The information contained in a CM block of a
packet is shown in Table I.

Source Node ID is a globally unique ID of the sending node
of this packet. Since each node has multiple interfaces, and
their IP addresses may change over time, to have a semi-static
node ID, we use the MAC address of a NIC (preferable more
static ones) on the node to be its ID.

Local IP Address List carries all local IP addresses on the
sending node. This list will be used to construct MPIP paths.

CM Flags encodes the MPIP functionality of the packet.
With different values of CM Flags, different actions will be
operated when the packet is received.

Other fields will be explained in the following sections.

C. Handshake and Session Management

As an extension of IP, MPIP needs to be backward compat-
ible. To take advantage of MPIP, both end nodes of a session
need to be MPIP-enabled. Locally, every MPIP-enabled node
maintains a table to record the availability of MPIP on remote
nodes. A node can query the MPIP availability of a remote
node by sending out a MPIP packet with Flags Enable in
CM. If the remote node is MPIP-enabled, it will send back
confirmation. Both nodes will update their MPIP availability
table accordingly. Please refer to our technical report [6] for
the detailed handshake process, After the MPIP handshake, a
node can start to learn the interfaces available on each MPIP-
enabled remote node. Each node maintains a node ID to IP
address and port number mapping table. Every time a MPIP
packet is received, the receiver extracts the sender’s node ID
from the packet’s CM block, and IP address and port number
from the packet header. The three tuple is then written into
the mapping table.

MPIP conducts session-based routing. Session management
takes care of the addition and removal of TCP and UDP
sessions. At the transport layer, each session is identified by
the traditional 5-tuple: source and destination IP addresses and
port numbers, and protocol type. Since MPIP can transmit
a packet of a session using source and destination IP ad-
dress/port numbers different from the session’s original ones,
we can no longer use IP addresses/port numbers to associate
a MPIP packet with a transport layer session. Instead, we will
use session ID and node ID carried in the CM block to identify
the session of a MPIP packet. We need a table to correlate the
two different session mapping schemes employed by MPIP
and the legacy transport layer. This is achieved through the
session information table, as in Table II. The table maintains
one entry for each session to each remote node. For each entry,
the socket information, namely IP addresses and port numbers,
are the original ones from the transport layer.

After the MPIP availability handshake has been successfully
completed, when sending out a packet, the sender checks
Table II to see whether a proper session entry has been
generated. If not, MPIP generates a new session ID and adds
a new entry to Table II. After this, all packets belong to the
session will carry the session’s ID in its CM block. On the
receiver end, whenever a MPIP packet is received, the receiver
extracts the source node ID and session ID from its CM block.
If there is no entry found in its session information table, it

183

TABLE II
SESSION INFORMATION TABLE

Dest. Session Source Source Destination Destination Protocol Next Update
Node ID ID IP Port IP Port Type Sequence No Time
ID1 SID1 SIP 1 SPORT 1 DIP 1 DPORT 1 TCP S1 T1

ID1 SID2 SIP 1 SPORT 2 DIP 1 DPORT 2 UDP 0 T2

ID2 SID1 SIP 2 SPORT 3 DIP 2 DPORT 3 TCP S2 T3

ID2 SID2 SIP 2 SPORT 4 DIP 2 DPORT 4 UDP 0 T4

A

NAT1

B

NAT2

〈sip1, sp1〉 〈dip1, dp1〉

〈sip2, sp2〉 〈dip2, dp2〉
〈 ̂sip2, ŝp2〉

〈 ̂sip1, ŝp1〉

available paths to B

〈sip1, sp1〉 ⇔ 〈dip1, dp1〉
〈sip2, sp2〉 ⇔ 〈dip1, dp1〉
〈sip1, sp1〉 ⇔ 〈dip2, dp2〉
〈sip2, sp2〉 ⇔ 〈dip2, dp2〉

〈dip1, dp1〉 ⇔ 〈 ̂sip1, ŝp1〉
〈dip2, dp2〉 ⇔ 〈 ̂sip1, ŝp1〉
〈dip1, dp1〉 ⇔ 〈 ̂sip2, ŝp2〉
〈dip2, dp2〉 ⇔ 〈 ̂sip2, ŝp2〉

available paths to A

Fig. 3. MPIP Path Establishment with NAT

will generate a new entry and populate it with the source node
ID, session ID, and socket information carried in the packet
header, with swapped source and destination IP/port addresses.
This will make sure that both sides of the same session use the
same session ID. Removal of a session is done by expiration
based on the session’s Update Time in Table II. The column
Next Sequence No is used for TCP out-of-order process which
will be explained in Section IV-B.

D. Path Management

After a session is registered with MPIP, the next step is
to explore all the available paths for the session. One simple
solution is to have each node send their local IP addresses
to the other end using the Local Address List in CM block.
Then any pair of IP addresses on the two ends can be used
as a path for MPIP transmission. However, this only works if
all interfaces on both ends have public IP addresses. If one
node is behind a NAT, its local IP addresses cannot be used
directly to establish IP paths. To solve this problem, we have
to identify paths using a combination of IP address and port
number on both ends. Consequently, the path management has
to be done for each session individually.

1) Establishment: MPIP maintains a path information table
on each node, as in Table III, to record the available paths for
each session. Each entry contains the ID of the remote node
and the session ID. Each path is allocated with a path ID,
which is unique on the local node. The source and destination
IP and port addresses are the addresses carried in the header
of MPIP packet, NOT necessarily the same as those allocated
to the session at the transport layer.

Given m and n interfaces at each end node, there are totally
mn possible paths. After the MPIP handshake, each node
tries to send out packets from each of its local interfaces

to each of the known interface on the remote node. If a
packet with a certain combination of source and destination
IP/port addresses can get through, the node will add the path
to path information table. Let’s explain the process through
the example in Figure 3. Node A initiates a session with
node B. The IP and port addresses allocated to the session
at the transport layer are 〈sip1, sp1〉 and 〈dip1, dp1〉 on A and
B respectively. Without loss of generality, let’s assume the
session can be established correctly with legacy IP. Then on
both ends, MPIP records the new session, and adds the default
path between 〈sip1, sp1〉 and 〈dip1, dp1〉 for the session in
Table III. Since A knows B is MPIP-enabled, it also tries to
send the same packet from its other local interface with IP
address sip2 by changing its source addresses to 〈sip2, sp2〉.
When B receives the packet, possibly due to NAT, the source
IP and port addresses in the packet might be different from
〈sip2, sp2〉, say 〈ŝip2, ŝp2〉. Then B examines the Source Node
ID and Session ID in the packet’s CM block, it knows this
is a MPIP transmission for the same session but from a
different interface. B adds a new path with destination address
of 〈ŝip2, ŝp2〉 in its path information table. Now B will also
send back packets to A’s second interface, using destination
addresses 〈ŝip2, ŝp2〉. When A receives the packet, it confirms
the connectivity of its local path between 〈sip2, sp2〉 and
〈dip1, dp1〉, and adds it to its path information table. Similarly,
if B has another interface with public address dip2, A will
obtain the new address from the Local Address List in the
CM block of packets from B to A. Then A can establish more
IP paths to this new address using a similar process.

2) Monitoring: To facilitate path selection, MPIP contin-
uously monitors the performance of active paths. Given that
packet losses in the current Internet are rare, we mainly focus
on path delay in our current design. Due to asymmetric routing
and unequal congestion levels along two directions of the same
path, instead of measuring the round-trip delay of a path, we
measure the one-way path delay to infer the path quality on
each direction. When node A sends out a packet, it chooses
a path from Table III and sets Packet Timestamp with its
local system time T1. After node B receives this packet, it
calculates the one-way delay for the path as T2 − T1, where
T2 is B’s local time when receiving the packet. In practice,
the absolute value of path delay calculated here isn’t the real
delay value because of the clocks on node A and B are not
synchronized. But our path selection algorithms depend on
the relative ordering of path delays, instead of their absolute
values. Clock difference between nodes has little impact. B
then sends back the path delay information in the CM block

184

TABLE III
PATH INFORMATION TABLE

Dest Session Path Src Src Dest Dest Minimum Real-Time Real-Time Maximum Path
Node ID ID ID IP Port IP Port Path Delay Path Delay Queuing Delay Queuing Delay Weight

ID SID1 PID11 sip1 sp1 dip1 dp1 Dmin11 D11 Q11 Qmax11 W11

ID SID1 PID12 sip2 sp2 dip1 dp1 Dmin12 D12 Q12 Qmax12 W12

ID SID2 PID21 sip1 sp1 dip2 dp2 Dmin21 D21 Q21 Qmax21 W21

ID SID2 PID22 sip2 sp2 dip2 dp2 Dmin22 D22 Q22 Qmax22 W22

of the next packet going back to A, which records the path
delay value into the column Real-Time Path Delay in Table III.
Path delay values are smoothed using a simple moving average
algorithm. More details can be found in our technical report [6]

3) Dynamic Path Management: MPIP supports dynamic
addition and removal of paths from Table III. When IP address
change happens on one node, it sets Flags IP Change in
the CM block of its next outgoing packet. After receiving a
packet with this flag, the receiver knows that IP address on
the sender has changed, it removes all path entries related
to the changed IP address in Table III. Meanwhile, the entry
for this session in Table II remains unchanged. The path that
sends out the IP change notification will be added back to
the aforementioned tables as the only path of the session.
Also, the sender does the same reset for this session. After
all these resets, there is only one path left for this session,
all the other available paths will be added back through the
procedure in Section III-D1. Similarly, when a new interface
becomes available, new IP paths from it can be added using the
the mechanism in Section III-D1. Table III should be updated
continuously on both sides. The updates are piggybacked on
MPIP packets. For sessions with one-way traffic, such as some
UDP sessions, a periodical heartbeat mechanism is introduced
to keep Table III fresh. More details can be found in our
technical report [6].

E. Multipath IP Source Routing

Given all paths available for a session, every time one node
needs to send out a packet, it chooses the most suitable path
from Table III. MPIP offers different routing strategies to
satisfy the diverse needs of applications.

1) All-paths Mode: Many applications, e.g., web, file trans-
fer, and video streaming, can benefit from high-throughput
transmissions. MPIP can concurrently transmit packets along
multiple paths to achieve higher throughput than the traditional
single path routing. Since MPIP works under rate control
schemes from transport and application layers, it will be
redundant and possibly conflicting to implement fine-grained
rate control for each MPIP path at the network layer. Instead,
the main design goal of MPIP routing is to balance load among
concurrent paths using end-to-end path delay feedback and
probabilistic packet dispatching algorithm. As in Table III, we
maintain a Path Weight (W) for each active path. Each packet
will be dispatched to a path k with the probability P (k), which
is calculated as:

P (k) =
Wk∑N
i=1 Wi

. (1)

We use realtime one-way path delay to dynamically update
path weights. End-to-end path delay consists of propagation
delay, transmission delay, processing and queueing delay.
While propagation delay and transmission delay are mostly
constant, processing and queue delay are time-varying and
increase with congestion level. We maintain the minimum
path delay to represent the constant portion of end-to-end path
delay, and use the difference between real-time and minimum
delay to infer the queuing delay, which reflects the congestion
level along the path. We then adjust the weight of each path
using the real-time queuing delay. When a new delay sample
D is received, the other three delay metrics are updated:

1) Minimum Path Delay: Dmin = min {Dmin, D};
2) Real-Time Queuing Delay: Q = D −Dmin;
3) Maximum Queuing Delay: Qmax = max {Qmax, Q}.
We adjust the weights of all paths together based on their

queueing delay variations as in Algorithm 1. N is the number

Algorithm 1 Path Weight Adjustment.

1: Qavg =
∑N

i=1 Qi

N ; //average delay among all paths
2: if Qi ≤ Qavg then
3: Wi = Wi + S; //increase weight for low delay path
4: if Wi > 1000 then
5: Wi = 1000; //upper bound for path weight
6: end if
7: else
8: Wi = Wi − S; //decrease weight for high delay path
9: if Wi < 1 then

10: Wi = 1; //lower bound for path weight
11: end if
12: end if
13: return ;

of paths that belong to one session, Qi and Wi are queuing
delay and weight of path i, and S is the adjustment granularity.
Initially, every path has the same path weight of 1000

N . In each
iteration, the path weight increases or decreases by S based on
whether its queuing delay is higher or lower than the average
delay. The maximum weight is 1000, and the minimum is 1.
This way, we keep all live paths in consideration. Heavily
congested paths will not be completely eliminated. Instead
they will have the minimum weight, and their weights will
be increased after congestion is relieved. Algorithm 1 is
executed periodically, the length of each period is defined as
a configurable system parameter T .

185

2) User-defined Multipath Routing: Not all applications
take throughput as the first priority. To address the diverse
needs of applications, we design MPIP to support user-
defined routing schemes, including selected-paths, single-path
and protected-path. Users can inform MPIP of their desired
multi-path routing policies by configuring a routing table as
illustrated in Table IV. Each line of the table is a customized

TABLE IV
USER-DEFINED MULTIPATH ROUTING TABLE

IP Port Protocol Start End Routing
Address Number Type Size Size Priority
∗ 22 TCP 0 200 Rf

192.168.1.2 5222 UDP 200 ∗ Tf

192.168.1.2 5221 UDP 0 500 Rf

routing rule for outgoing packets. Each rule matches a set
of packets and the routing priority for the matched packets.
Packet matching is done using destination IP address, port
number, protocol, and the range of packet length. We currently
define two types of routing priorities: throughput-first Tf , and
responsiveness first Rf . Outgoing packets with Tf priority
will be dispatched to available paths using the all-paths mode
presented in Section III-E1. Outgoing packets with Rf priority
will always be sent to path with the lowest delay using the
single-path mode. For example, based on the first row of
Table IV, for any TCP connection with destination port 22
(ssh session), if the packet length is smaller than 200 bytes,
the packet will be forward to the lowest delay path. The second
row defines that all UDP packets going to a remote host with
packet size larger than 200 bytes should be forwarded using
all-paths mode. The third row specifies that for a UDP packet
going to the same remote host, but a different port number,
if the packet size is less than 500, it will be forwarded to the
lowest delay path instead. We will extend this basic framework
to incorporate more flexible and more user-friendly packet
matching rules and more diverse routing policies with finer
granularity in our future work.

IV. TCP-RELATED ISSUES

By deviating from the default single-path transmission,
MPIP also brings some new issues for the upper layer proto-
cols, especially TCP, such as NAT checking and out-of-order
packet delivery. It is also intriguing to explore the co-existence
of MPIP with multi-path transmissions at upper layers, such
as MPTCP. We now present solutions to TCP-related issues.

A. NAT Checking

Based on our experiments and other studies, e.g. [1], NAT
devices are by no means transparent, and conduct all kinds
of mapping, verification, and dropping to end-to-end sessions,
especially TCP. One immediate obstacle introduced by NAT
to MPIP is that many NAT devices drop a TCP packet if they
don’t have a record about the TCP connection that the packet
belongs to. In MPIP, if we transmit TCP packets on a path dif-
ferent from the original one through which the TCP connection
is established, NAT devices along the path are not aware of

the connection and will drop these packets before they arrive
at the destination. We provide two solutions. One solution is
to construct a fake TCP three-way hand-shake on the NAT’s
path before sending packets over. When a client receives the
IP address list of the server, it sends out a SYN packet along
each possible path to the server except the original one which
was used to initiate the real TCP connection. After the fake
three-way handshake is completed successfully, NAT routers
along the path have a record about this fake TCP connection,
will pass TCP packets assigned to the path. Another solution
is UDP wrapper. During our experiments, most NAT devices
don’t verify socket information of UDP packets. We make use
of this feature and wrap a TCP packet inside a UDP packet
to pass NAT checking. Whenever MPIP chooses for a TCP
packet a path different from its original path, it encapsulates
the TCP packet into an UDP packet by adding a forged UDP
header using the corresponding IP addresses and port numbers
of the chosen path. At the receiver end, MPIP removes the
UDP header and extract the original socket information from
Table II to be filled into the TCP and IP headers.

B. Out-of-order Packet Processing

Packets sent over multiple interfaces/paths can arrive at the
destination node out of order. When TCP works over MPIP,
if the delay difference between multiple paths is significant,
we can expect a lot of out-of-order packets. To resolve this
problem, for each session in Table II, if it is TCP protocol,
MPIP maintains the sequence number S of the next in-order
packet of the session to be received. MPIP also maintains a
separate re-sequencing buffer B for each active session to store
out-of-order packets. Whenever a new packet is received, if the
sequence number is larger than S, it will be stored in B; if
the sequence number equals to S, MPIP pushes all consecutive
packets in B to the transport layer and update S accordingly.
To avoid blocking introduced by a lost packet, we limit the
size of re-sequencing buffer. All the packets in the buffer will
be pushed up once the buffer is full. In our prototype, we set
the maximum buffer size to 100 packets.

C. MPTCP over MPIP

A MPTCP session employs multiple subflows, each of
which is a legitimate TCP connection over a single IP path.
When MPTCP runs over MPIP, each TCP subflow can now
utilize multiple paths. For the example in Figure 1, a MPTCP
session can have 4 subflows. MPIP will treat each subflow
as an independent TCP session, and will create 4 paths for
each subflow. As a result, there are totally 4 sessions and
16 paths managed by MPIP. When congestion accumulates
on one path, MPIP will first notice the high queuing delay
on that path, reduce the path weight and shift packets to less
congested paths. The load balancing conducted by MPIP at the
network layer makes the congestion variations along different
paths less perceivable for MPTCP subflows so that MPTCP
can make better use of subflows to achieve higher throughput.
We will demonstrate this using MPTCP+MPIP experiments in
Section V-A1.

186

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed design, we
implement MPIP in Linux kernel 3.10.11 in Ubuntu system
for IPv4. The main MPIP functions are implemented with
more than 5, 000 lines of code. MPIP is also implemented into
Android system 6.0.1 with kernel version 3.10.73. For all TCP
experiments, we use CUBIC-TCP [7]. MPTCP version 0.92 is
used in our evaluation. We use Iperf/Iperf3 to generate traffic.

Seconds
0 10 20 30 40 50 60

M
b
p
s

0

20

40

60

80

Path 1
Path 2
Total

(a) Load Balancing

Normal Extra Delay Bandwidth Limit

50

60

70

80

MPTCP
MPIP
MPIP & MPTCP

(b) MPIP and MPTCP

Fig. 4. TCP over MPIP Performance

A. Controlled Lab Experiments

In our lab, we install the prototype on two desktop com-
puters, which are connected directly to a router. Each desktop
has two 100Mbps NICs, leading to 4 paths with aggregate
capacity of 200Mbps. We use tc (traffic control) tool in Linux
to control bandwidth and delay on each path.

1) TCP over MPIP: To test the effectiveness of MPIP load-
balancing, we enable only two parallel paths between the two
desktops so that they don’t share any NIC to prevent traffic
coupling. To make it more intuitive, we limit the bandwidth
of path 1 to 40Mbps and path 2 to 20Mbps. From the
throughput trend in Figure 4(a), both paths converged close to
their capacities and remained stable for the whole experiment.
We then compare path failure response time of TCP/MPIP
and MPTCP/IP by disconnecting then reconnecting one path.
MPTCP always suffers a 10 ∼ 20 seconds delay to re-establish
the subflow. MPIP promptly detects the re-activated path at the
network layer to ramp up the throughput.

As mentioned in Section IV-C, MPIP should be compatible
with MPTCP. Three groups of experiments are conducted
for different combinations of multipath transmission at trans-
port and network layers, namely, MPTCP/IP, TCP/MPIP, and
MPTCP/MPIP. For the first group (normal), two available
paths with 40Mbps bandwidth each are configured; for the
second group (extra delay), an extra 10ms delay is added to
path 1; at last, bandwidth of path 1 is limited to 20Mbps. In
Figure 4(b), the boxplots for throughputs of all combinations
are plotted. MPTCP/IP throughput is stable and close to the ca-
pacity in all cases. TCP/MPIP and MPTCP/MPIP throughputs
are little lower but still close to the capacity. Their throughput
variances are also larger than MPTCP. The interaction between
MPIP load balancing and upper layer congestion control needs
further study and fine-tuning.

Fig. 5. MPTCP/MPIP Compete with Single Path TCP

Seconds
0 10 20 30 40 50

M
b

p
s

0

5

10

15

20

25

30
MPTCP Subflow 1
MPTCP Subflow 2
TCP

(a) MPTCP/IP and TCP/IP

Seconds
0 10 20 30 40 50

M
b

p
s

0

5

10

15

20

25

30
MPIP Path 1
MPIP Path 2
TCP

(b) TCP/MPIP and TCP/IP

Fig. 6. Fairness with Legacy TCP/IP

2) Fairness with Legacy TCP/IP: We next conduct experi-
ments to study how TCP/MPIP co-exists with legacy TCP/IP
sessions, and compare it with MPTCP. Consider a network
containing three types of sessions, TCP/IP, MPTCP/IP, and
TCP/MPIP, illustrated in Fig 5. Similar to the MPTCP fairness
study in [8], two paths are set up with two bottleneck links
of 20Mbps. The upper path is shared by the TCP/IP session
and MPIP (or MPTCP) session. The MPIP (MPTCP) session
starts first. The TCP/IP session follows after ten seconds,
and lasts for thirty seconds. Fig 6(a) illustrates how MPTCP
with BALIA congestion control (CC) co-exists with TCP.
MPTCP gradually reduces its traffic on the shared path to
leave space for the single-path TCP, which eventually gets
comparable throughput as MPTCP. When TCP session is done,
it takes a while for MPTCP to reclaim the capacity on the
shared path. Meanwhile, from Fig 6(b), MPIP reacts much
faster than MPTCP to make space for single-path TCP, which
obtains nearly all the available bandwidth of the shared link.
After single-path TCP completes, MPIP also reclaims the
available bandwidth faster than MPTCP. This demonstrates
that MPIP’s load balancing at the network layer can facilitate
fair bandwidth sharing at the transport layer.

3) UDP over MPIP: To evaluate how UDP-based applica-
tions, such as Real Time Communications, can benefit from
MPIP, we run WebRTC video chat over MPIP and collect
application-level performance by capturing the statistics win-
dows of WebRTC-internals embedded in Chrome, then extract-
ing data from the captured windows using WebPlotDigitizer.
We first configure two IP paths between two lab machines
without bandwidth limit, and then run WebRTC video call
between the two machines. To test the robustness of MPIP

187

against path failures, one path is disconnected in the middle
of experiment. If WebRTC video chat is running over legacy
IP, when the original path is disconnected, video freezes for
few seconds before video flow migrates to the other path.
This demonstrates that while WebRTC can recover from path
failure at the application layer, its response is too sluggish and
user QoE is significantly degraded by a few seconds freezing.
With MPIP, video streams continuously without interruption.
In addition, to demonstrate how WebRTC benefits from MPIP
multipath throughput gain, we limit the bandwidth of each path
to 1Mbps. Comparison presented in Figure 7(a) illustrates that
with the help of MPIP, WebRTC video throughput improves
from 600Kbps to 1200Kbps. We then introduce additional
delays of 50ms and 80ms to the two paths respectively. MPIP
then use single-path mode to route audio packets to the path
with shorter delay, while video packets are routed using all-
paths mode. Figure 7(b) shows clearly that audio delay is
reduced by 30ms while the video quality is not affected.

Seconds
0 20 40 60 80 100 120

K
b

p
s

400

600

800

1000

1200

1400 with MPIP
w/o MPIP

(a) Video Rate under B.W. Limit

Seconds
0 20 40 60 80 100 120

m
s

20

40

60

80

100

with Customized Routing
w/o Customized Routing

(b) WebRTC Audio Delay

Fig. 7. WebRTC Performance over MPIP: (a) all-paths mode; (b) single-path
mode for audio, all-paths mode for video.

B. Internet Experiments

Besides the controlled lab experiments, we also conduct
experiments on the Internet to evaluate MPIP’s compatibility
with real applications and various middle boxes, e.g. NAT
routers inside ISP and CSP networks.

1) Coordinated Routing between Applications: We study
coordinated MPIP routing for Youtube video streaming and file
downloading applications using the testbed in Figure 8. Since
we cannot install MPIP on YouTube servers, we configure a
MPIP proxy using Squid on Ubuntu. Three NICs are installed
on the proxy server: one NIC is connected to Internet, and the
other two are connected to a MPIP client through two paths
in an emulated network. We setup 2Mbps bandwidth limit for
each path and introduced 20ms extra delay to one path.

Fig. 8. MPIP works with YouTube through Proxy

Seconds
0 30 60 90 120 150 180

S
e

c
o

n
d

s

0

20

40

60

80
Compete
Phase

Coordinate
Phase

Video only
Phase

(a) Video Buffer Health

Seconds
0 30 60 90 120 150 180

K
b

p
s

0

1000

2000

3000

4000

5000

6000
Compete
Phase

Coordinate
Phase

Video only
Phase

(b) Video Throughput

Fig. 9. Youtube 720p Video Streaming with Coordinated MPIP Routing

At the beginning, besides the YouTube video session,
another file downloading session is added to transmit data
from MPIP proxy server to client. Initially MPIP operates in
the all-paths mode and establishes two paths for each session
to acquire more bandwidth. Due to the path delay difference,
out-of-order packet deliveries limit the TCP throughput for
both sessions. Sixty seconds into the experiment, MPIP
implements coordinated routing: both sessions are routed
using the single-path mode, with Youtube session assigned to
the path with shorter delay and the file downloading session
assigned to the other path. In Figure 9, coordinated routing
significantly improve the performance of the video session:
video throughout increases by 400Kbps (from 1, 500Kbps to
1, 900Kbps), and buffer length accumulates to 10 seconds
without freezing. Meanwhile, the average throughput of the
downloading session drops from 2.51Mbps to 1.89Mbps.
Since users are more sensitive to video quality than the file
downloading throughput, the coordinated routing presumably
improves the overall user experience. Sixty seconds later, we
terminated the downloading session. From Figure 9(a) and
9(b), we observe that both the video throughput and preload
buffer length increase significantly.

Seconds
0 10 20 30 40 50 60

M
b
p
s

0

2

4

6

8
Wi-Fi
AT&T Cellular
Total

(a) WiFi and Cellular

Seconds
0 10 20 30 40 50 60

M
b
p
s

0

2

4

6

8 T-Mobile Hotspot
AT&T Cellular
Total

(b) Two Cellular Networks

Fig. 10. MPIP over Wireless

2) Android Experiments: We use a Nexus 5X phone located
in California to test Android MPIP. The phone is equipped
with one cellular interface and one WiFi interface. We use
it to download data from a server located in New York
City with one public IP address. We first connect the phone
to a corporate ISP through WiFi and AT&T CSP through
4G cellular. Without MPIP, the phone can achieve average

188

bandwidth of 4.5Mbps through WiFi and 4.3Mbps through
cellular respectively. The average RTTs of WiFi and cellular
are 76.2ms and 155.9ms respectively. When MPIP is enabled,
as illustrated in Figure 10, Android MPIP can concurrently
transmit data on both paths going through different ISP/CSP
and reach aggregate throughput of 7.5Mbps in the face of
large delay disparity. Next we replace the corporate WiFi
router with a hotspot hosted by another phone connected to
T-Mobile cellular network. As all data through the hotspot
are forwarded by another phone, the average RTT on the T-
Mobile path increases dramatically to 349.2ms and the average
bandwidth is only 1.52Mbps. Figure 10(b) demonstrates that
even when one cellular path has bad performance, MPIP still
manages to multiplex bandwidth from two CSPs to achieve
higher aggregate throughput.

VI. RELATED WORK

The growing popularity of multi-homed devices makes it
possible to initiate multipath transmission from end devices.
Back to 2001, Hsieh et al proposed pTCP[9] that effectively
performs bandwidth aggregation on multi-homed mobile hosts.
In [10], the authors investigated the potential benefits of
coordinated congestion control for multipath data transfers.
In [11], Dong et al implemented concurrent TCP(cTCP) in
FreeBSD to improve throughput. Also, the Stream Control
Transmission Protocol (SCTP)[12], [13] is an early protocol
designed for multihoming to support failover and simultaneous
transmission. In 2010, Barre et al published experimental
results of using multiple paths simultaneously in TCP trans-
mission [4], [1]. IETF RFC 6182 [14] for Multipath TCP
was published in in 2011. In [2], Chen et al did a thorough
measurement of MPTCP over wireless links. Different from
those multipath protocols at the transport layer, MPIP is a
transparent multipath solution at the network layer of end de-
vices. As bandwidth of cellular network becomes comparable
with the wired Internet, switching among WiFi and cellular
becomes practical for mobile devices, e.g. [15], [16]. All these
solutions require significant changes and coordination at mul-
tiple layers. In [17], a pure user-level solution, called msocket,
was proposed for seamless handover between different mobile
networks. Different from these previous work, MPIP realizes
path selection and seamless handover by only changing the
network layer. It has long been observed that routing for
applications on the same device needs to be coordinated [18],
[19]. MPIP serves as a light-weight framework to implement
coordinated routing for multiple applications.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed MPIP, a complete design of mul-
tipath transmission at the network layer of end devices. MPIP
consists of signaling, session and path management, multipath
routing, and NAT traversal. MPIP can be used by both TCP
and UDP-based applications. It also works seamlessly with
MPTCP, and supports user-defined routing strategies. We
implemented MPIP in Linux and Android kernels. Through
extensive lab and Internet experiments, we demonstrated that

MPIP can transparently support flexible and coordinated rout-
ing for diverse applications to achieve multipath gains. MPIP is
only our first attempt for implementing multipath transmission
at the network layer. The signaling and feedback mechanisms
can be further optimized to reduce its overhead and improve its
robustness. The delay-based load balancing algorithm can be
improved to better address path heterogeneity, especially for
WiFi, LTE, and the emerging 5G Cellular links. We will extend
the user-defined routing framework to support finer routing
granularity and more flexible forwarding actions. We will also
port MPIP to IPv6. Finally, we will further study the efficiency,
fairness and stability of the vertical and horizontal interactions
of MPIP with legacy TCP and IP protocols through analysis,
simulations and prototype experiments.

REFERENCES

[1] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing and
implementing a deployable multipath tcp,” in NSDI, 2012.

[2] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of multipath tcp performance
over wireless networks,” in IMC, 2013.

[3] Y.-C. Chen, D. Towsley, E. M. Nahum, R. J. Gibbens, and Y.-s. Lim,
“Characterizing 4g and 3g networks: Supporting mobility with multipath
tcp,” School of Computer Science, University of Massachusetts Amherst,
Tech. Rep, vol. 22, 2012.

[4] S. Barre, C. Raiciu, O. Bonaventure, and M. Handley, “Experimenting
with multipath tcp,” in SIGCOMM 2010 Demo, September 2010.

[5] C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of applying
experimental design to improve multipath tcp,” in CoNEXT, 2013.

[6] L. Sun, G. Tian, G. Zhu, Y. Liu, H. Shi, and D. Dai, “Multipath IP
Routing on End Devices: Motivation, Design, and Performance,” Tandon
Engineering School, New York University, Tech. Rep., 2017, available
at http://eeweb.poly.edu/faculty/yongliu/docs/MPIP Tech.pdf.

[7] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp
variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, Jul. 2008.

[8] Q. Peng, A. Walid, J.-S. Hwang, and S. H. Low, “Multipath tcp algo-
rithms: Theory, design and implementation,” IEEE/ACM Transactions
on Networking, 2016.

[9] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts,” in MobiCom,
2002.

[10] P. Key, L. Massoulié, and D. Towsley, “Path selection and multipath
congestion control,” Commun. ACM, vol. 54, no. 1, Jan. 2011.

[11] Y. Dong, D. Wang, N. Pissinou, and J. Wang, “Multi-path load balancing
in transport layer,” in Next Generation Internet Networks, 3rd EuroNGI
Conference on, May 2007.

[12] L. Ong, C. Corporation, and J. Yoakum, “An introduction to the stream
control transmission protocol (sctp),” IETF RFC 3286, 2002.

[13] I. Joe and S. Yan, “Sctp throughput improvement with best load sharing
based on multihoming,” in INC, IMS and IDC, 2009. NCM ’09. Fifth
International Joint Conference on, Aug 2009.

[14] A. Ford, C. Raiciu, M. Handley, S. Barre, U. C. D. Louvain, and
J. Iyengar, “IETF RFC 6182: architectural guidelines for multipath tcp
development,” 2011.

[15] P. Nikander, T. Henderson, C. Vogt, and J. Akko, “End-host mobility
and multi-homing with host identity protocol,” IETF RFC 5206, 2008.

[16] A. Singh, G. Ormazabal, H. Schulzrinne, Y. Zou, P. Thermos, and
S. Addepalli, “Unified heterogeneous networking design,” in IPTComm,
2013.

[17] A. Yadav and A. Venkataramani, “msocket: System support for mobile,
multipath, and middlebox-agnostic applications,” in 2016 IEEE 24th
International Conference on Network Protocols (ICNP), 2016.

[18] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated congestion
management architecture for internet hosts,” in Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, ser. SIGCOMM ’99, 1999.

[19] H. Balakrishnan and S. Seshan, “Ietf rfc 3124: The congestion manager,”
2001.

189

