
Breaking Service Function Chains with Khaleesi
Sara Ayoubi, Shihabur Rahman Chowdhury, and Raouf Boutaba

David R. Cheriton School of Computer Science, University of Waterloo
{sayoubi | sr2chowdhury | rboutaba}@uwaterloo.ca

Abstract—Network Function Virtualization (NFV) has recently
emerged as a means to replace vendor specific, purpose built
equipment with commodity hardware and leverage the open APIs
and application orchestration for on demand deployment and
scaling of network services. A well studied problem in NFV is
the orchestration of Service Function Chains, (SFCs), i.e., a set of
Virtual Network Functions (VNFs) chained together to realize a
network service. State-of-the-art literature on SFC orchestration
assumes a strict traversal order of VNFs in an SFC and less
attention has been paid to SFCs with relaxed VNF orderings. In
this paper, we address the problem of Flexible Service Function
Chain Orchestration that jointly allocates compute and network
resources for SFCs while considering a relaxed traversal order for
some pairs of VNFs. We propose Khaleesi, a suite of solutions that
consists of: (i) an Integer Linear Program (ILP) for optimally
solving the problem; and (ii) a heuristic algorithm to scale to
larger instances of the problem. Our simulation results show
that flexible SFCs can increase revenue earned per unit cost by
as much as ≈10% compared to a rigid SFC.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] has received
significant traction in recent years for its ability to decouple
packet processing software, i.e., Network Functions (NFs)
from specialized hardware middleboxes. NFV proposes to run
the NFs as Virtual Network Functions (VNFs) on commodity
hardware and leverages advances in application orchestra-
tion for on-demand provisioning of Service Function Chains
(SFCs), i.e., an ordered sequence of VNFs that implements a
network service. The capability of on-demand service provi-
sioning and the consolidation of multiple NFs on commodity
hardware enable the network operators to reduce their opera-
tional and capital expenditures.

However, the full benefits offered by NFV cannot be fully
reaped without efficient resource allocation mechanisms for
provisioning the SFCs. As a result, a significant body of
research has been dedicated to address the problem of SFC
orchestration, i.e., joint allocation of compute and network
resources to provision SFCs with Quality of Service (QoS)
(e.g., minimum bandwidth or maximum delay) requirements.
SFC orchestration has been shown to be NP-hard [2] and
a number of its variants have been studied in the research
literature [3]. Despite the significant research efforts in solving
SFC orchestration, little attention has been paid to the actual
semantics of the VNFs while allocating resources for them. As
a result, SFC has been mostly considered as a rigid sequence
of VNFs, i.e., the order of the VNFs cannot be modified. In this
work, we take a closer look at the semantics of VNFs and show
that VNF traversal order can be changed without modifying the

semantics of an SFC, and that such flexibility can be leveraged
to perform better resource allocation for SFCs.

As an illustrative example, consider the following VNFs:
a WAN optimizer that compresses and decompresses HTTP
payload and a Probe that counts flows with a given layer 3
and layer 4 signature. These VNFs work on disjoint parts
of a packet. Therefore, if they are next to each other in an
SFC, swapping their order will neither affect the set of packets
exiting the chain, nor the internal state of the VNFs (we call
such VNFs reorder-compatible). Now consider the example
SFC in Fig. 1(a), where the Probe, WAN Optimizer and Shaper
requires 2, 3, and 2 CPU cores, respectively. If we consider the
SFC to be rigid (i.e., the order of VNFs cannot be modified)
then the only possible provisioning solution is the one shown
in Fig. 1(b). However, if we consider the reorder-compatibility
of Probe and the WAN Optimizer, then we can swap their
order in the SFC and provision the SFC as shown in Fig. 1(c).
Note that, by leveraging the flexibility in VNF ordering, we
provisioned the same SFC with 50% less network bandwidth.

Considerations for flexible SFCs are not entirely new. Early
works in this area [4]–[6] proposed languages and data models
to represent flexible SFC requests. However they do not
discuss how the flexibility can be determined in the first
place. More recently, Parabox [7] and NFP [8] proposed to
parallelize VNF execution in an SFC by introducing additional
components. In contrast, we do not assume any additional
components for changing the order of VNFs in an SFC.
Moreover, no quantifiable results exist in the research literature
that demonstrates if any benefit can be gained from flexibility
in VNF ordering. In this paper, we fill this gap in research
literature with the following contributions:

• Theoretical foundation for determining reorder compati-
bility of VNFs and the mathematical models to represent
such flexibility in an SFC.

• The first quantifiable result showing the benefits of flexi-
ble SFC orchestration over its rigid counterpart. Our em-
pirical results demonstrate as much as 10% improvement
in revenue earned per unit cost compared to rigid SFCs.

• Khaleesi1, a suite of solutions to the Flexible SFC or-
chestration problem consisting of: (i) OPT-Khaleesi, an
Integer Linear Program (ILP) formulation for optimally
solving the flexible SFC orchestration problem. To the
best of our knowledge, this is the first optimal solution
proposed for such problem, and (ii) FAST-Khaleesi, A

1A character in popular fantasy novel “A Song of Ice and Fire”, who is
also known as the breaker of chains

ISBN 978-3-903176-08-9 2018 IFIP

(a) Service Function Chain (b) Placement of a Rigid SFC (c) Flexible SFC (Probe and WANX
swapped)

Fig. 1. Motivational Example

heuristic algorithm to solve larger instances of the prob-
lem. Simulation results show that FAST-Khaleesi allocates
≈2× extra resources and accepts ≈20% less SFC re-
quests on average compared to the optimal solution.

The rest of the paper is organized as follows. We begin with
a discussion of related work in Section II. Next, we present
the theoretical foundations for identifying re-order compatible
VNFs in Section III. In Section IV we present the system
model and formally define the problem. We present our ILP
formulation in Section V, followed by the heuristic in Sec-
tion VI. Our evaluation results are presented in Section VII. In
Section VIII we provide a brief discussion on the operational
aspects that may limit the flexibility of SFCs. Finally, we
conclude with some future research directions in Section IX.

II. RELATED WORK

Since the publication of introductory white paper in late
2013, research in NFV has gained significant traction over the
past few years. In the following, we discuss the state-of-the-
art in SFC orchestration with a specific focus on research that
considers relaxed order of VNFs in an SFC.

SFC orchestration is one of the most well studied problem in
NFV. It has been addressed with different objective functions
e.g., maximizing the number of admitted SFCs [9], minimiz-
ing operational cost [2], minimizing the number of servers
used [10], minimizing network resource utilization [11], min-
imizing the number of VNF instances used [4], [12] among
others. For a comprehensive survey on resource allocation in
NFV readers are referred to [3]. Approaches to solve these
problems include variants of Linear Programming [4], [10],
[11], Cut-and-solve method [9], polynomial time heuristic
design [2], [12], approximation algorithm [13], etc. However,
majority of these works assume a rigid SFC and do not
leverage the flexibility of reorder compatibility between NFs.

Only a handful of research has considered relaxed ordering
of NFs in an SFC. For instance [5] proposes a context free
grammar to represent an SFC request with flexible parts. The
flexible parts are segments of NFs that can be traversed in any
arbitrary order. An extension of this work is presented in [6]
where the authors propose a YANG data model to represent
flexible structures. The authors also propose a Pareto-optimal

solution and a heuristic to allocate resources for such SFCs
with flexible parts. However, works such as [5], [6], [14]
neither quantify the advantages in resource allocation stem-
ming from flexible VNF ordering in an SFC over its rigid
counterpart, nor do they shed light on the aspects that may
affect such flexibility. More recently, Parabox [7] and NFP [8]
proposed to relax the strict ordering of VNFs in an SFC
and parallelize some of them to reduce end-to-end latency.
However, to do so, additional components were introduced for
splitting incoming packets to parallelized functions and also to
combine their output. This incurs overhead in terms of network
resources and processing delays. In contrast, we identify “re-
order compatible” VNFs that can be swapped without adding
any additional functions.

III. RE-ORDER COMPATIBILITY OF VNFS

Flexible SFCs can bring benefits in terms of resource
allocation, thereby freeing up resources for more SFCs to be
admitted. This can indeed increase infrastructure provider’s
revenue in the long run. Flexible SFCs have been preliminarily
addressed before in [6] and [7]. However, in [6], the flexibility
of the chain is an input to the orchestration problem. In
[7], [8], the authors identify independent VNFs to increase
parallelism in the chain. The concept of independent VNFs is
somewhat similar to reorder compatible VNFs, however, not
every independent pair of VNFs is re-order compatible. To
the best of our knowledge, no existing work has yet formally
defined re-order compatible VNFs. In the following, we lay
the necessary theoretical foundation for identifying reorder
compatible VNFs.

In a nutshell, two VNFs are considered re-order compatible
if swapping their order in an SFC does not violate the SFC’s
semantics, i.e., results in two semantically equivalent SFCs.
We formally define semantically equivalent SFCs as follows:

Definition 1. Semantically Equivalent SFC: Two SFCs S1

and S2 composed of the same set of VNFs, F , in different order
are semantically equivalent if: (i) for an ordered sequence of
input packets pin, both S1 and S2 produce identical ordered
sequence of output packets, and (ii) after processing a packet

65

p ∈ pin the internal state of any VNF fi ∈ F is identical in
both S1 and S2.

As a packet traverses an SFC, a VNF in the SFC performs
any combination of the following three actions: (i) reads from
the packet, (ii) modifies the packet, and (iii) updates its own
internal state. For instance, while traversing a NAT, the source
IP and source MAC address of a packet are modified, as well
as the NAT’s address translation table. In another instance, a
probe may keep a count of the number of UDP packets that
are sent/received and updates the count after a packet passes
through it. Since SFCs provide a form of value-added service,
therefore it is important to ensure that any flexible structure
of the SFC provides the same service to the flows as well as
the constituent VNFs have identical internal states.

To formalize this, we refer to the set of packet2 fields that a
VNF reads or modifies as “interest fields”, denoted as Hi

f , and
the set of packet fields that affects the internal state of a VNF
as “state fields”, denoted as Hs

f . Every h ∈ H = Hi
f ∪ Hs

f

is expressed as a (byte offset, byte length) pair (e.g., source
MAC can be expressed as a pair (6, 6)), which allows us to
express interest fields and header fields in a protocol agnostic
way (similar to [15]). By comparing the interest and state fields
of two VNFs, we can determine their re-order compatibility.

Two VNFs are re-order compatible when their interest and
state fields are mutually exclusive (e.g., an application-layer
firewall and a network-layer firewall). Furthermore, even when
two VNFs share the same interest and/or state fields, as long as
they do not modify the shared interest and/or state fields their
processing functions remain independent (e.g., a probe and a
Deep Packet Inspector (DPI)). For each VNF, we represent the
set of interest and state fields by a |H|× 3 binary matrix M,
illustrated in Table I. The rows in M represent the different
fields h ∈ H. The columns r and w indicate whether this
particular VNF, f , reads and/or modifies h, respectively. The
column x indicates whether h affects the internal state of f ,
denoted by x = if(h ∈ Hs

f); x ∈ {0,1}. Given two VNFs u and
v and their corresponding matricesMu andMv , respectively,
u and v are re-order compatible if:

∀h ∈ H,∀(k, k′) ∈ {(u, v), (v, u)} :

(Mk[h][r] ∧Mk′ [h][w]) ∨
(Mk[h][w] ∧Mk′ [h][w]) ∨

(Mk[h][x] ∧Mk′ [h][r]) = 0 (1)

Finding the interest and state fields of a VNF is a non-trivial
task and is in fact a separate problem on its own. Different
approaches have been taken in the past including middlebox
modeling [16] [17] [18], header space analysis [19], white-
box testing [20], black-box testing [21], etc. However, it is an
orthogonal problem and is out of the scope of this paper.

A. Illustrative Example

Table II illustrates a re-order compatibility matrix for
some commonly deployed NFs [22], namely firewall, web

2In the rest of the paper by packet we refer to a Layer-2 frame.

TABLE I
INTEREST & STATE FIELD MATRIX M

r w x
h1

h2

....
h|H|

TABLE II
REORDER COMPATIBILITY MATRIX

Firewall Proxy IPS Shaper NAT DPI WANX Probe
Firewall X X X X

Proxy X X X
IPS X X X X

Shaper X X X X X
NAT X
DPI X X X X

WANX X X X X
Probe X X X

proxy, Intrusion Prevention System (IPS), Traffic Shaper, NAT,
payload-DPI, and WAN Optimizer (WANX). We obtained the
interest and state fields for these different VNFs by investigat-
ing existing middlebox models [16], middlebox catalog [23],
IETF drafts [24], Click configuration files [25], and related
research literature [7]. By applying (1) on the obtained interest
and state fields, we obtained the matrix in Table II.

We observe that a network Firewall (besides changing the
MAC address) typically examines layer 2-4 headers, e.g.,
source IP, destination IP, and port numbers, and either forwards
or drops a packet. An IPS analyzes the packet (header and/or
payload) and takes automated actions (drops packet, blocks
traffic, sends alarm, or resets connection). Since a network
firewall and an IPS perform “read-only” actions on common
interest fields they can be swapped without affecting chain
semantics. A traffic shaper classifies network traffic for QoS,
a payload-DPI inspects the packet payload and raises an
alarm if the packet matches a malicious signature. These
VNFs are clearly re-order compatible with a network Firewall.
Finally, a WANX can perform functions such as payload
compression/de-compression, QoS tagging etc., which do not
affect the interest and state fields of a network firewall. This
renders them also re-order compatible. However, a network
firewall and a network probe may not be re-order compatible
because of the Probe’s internal state. For instance, if a probe
is counting the number of incoming connections to port 80,
placing a firewall before the probe will yield a different count
than placing it after the probe.

IV. SYSTEM MODEL AND PROBLEM STATEMENT

We first present a mathematical representation of the inputs,
i.e., the substrate network and the SFC request, then we for-
mally define the problem of orchestrating SFCs with flexible
VNF ordering with lowest resource provisioning cost (Flexible
SFC orchestration for short).

A. Substrate Network

We represent the substrate network (SN) as an undirected
graph Gs = (N,L); where every node n ∈ N is associated

66

with residual compute resource capacity cn and internal-
switching capacity bn. Further, every link l : (i, j) ∈ L is
associated with residual bandwidth capacity bi,j .

B. Virtual Network Functions

The set of available VNFs is represented by F . Each VNF
f ∈ F has compute resource requirement (e.g., number of
CPU cores) df . Additionally, we have a |F×F| matrix R that
represents reorder compatibility between the VNFs. Rf,f ′ = 1
if VNF f ∈ F and f ′ ∈ F are reorder compatible according
to the definition in Section III, 0 otherwise.

C. SFC Request

We represent an SFC request as an directed graph Gv =
(F,E, no, nt), where F is the set of VNFs in the SFC.
Note that we focus on SFCs that are structured as chains.
Considerations for branching in SFCs is left as a future work.
The requested chain E is represented by a set of directed
virtual links, where each virtual link e ∈ E consists of a
pair of consecutive VNFs, and is associated with bandwidth
demand de. Further, each SFC is associated with an ingress
node no ∈ N and an egress node nt ∈ N .

D. Problem Statement

Given an SN Gs, set of VNFs F , a reorder compatibility
matrix R, and a SFC request Gv:

• Place VNF f ∈ F on a server n ∈ N .
• Route exactly |F | − 1 virtual links between the VNFs to

form a chain structure.
• Map each virtual link either to a single substrate path or

to a server.
• The cost of allocating bandwidth from the network to

route the virtual links are minimized subject to the
following constraints:

– Servers and network links cannot be over-committed
to accommodate VNFs and the virtual links.

– A virtual link should be routed on a single path in
the network or placed inside a single server in the
network.

Flexible SFC orchestration bares some similarity with the
well studied Virtual Network Embedding (VNE) problem [26].
However, a fundamental difference between flexible SFC
orchestration and VNE is that the set of virtual links to be
embedded is given as an input to VNE. Whereas, in case of
flexible SFC orchestration this set is not known and is part of
the solution instead.

V. OPT-Khaleesi: ILP FORMULATION

In this section, we first showcase our solution approach that
transforms an SFC to exploit flexibility, followed by OPT-
Khaleesi, our ILP model that optimally solves the flexible SFC
orchestration problem.

A. SFC Transformation

In order to fully exploit the flexibility in a given chain, the
model must become aware of every re-order compatible pair of
VNFs in this chain. To give the model a complete knowledge
of this flexibility, we augment the chain with directed virtual
links. The ensemble of the original chain and the augmented
directed virtual links represent all possible chains that can be
traced. The model then selects the optimal subset of |F |-1
virtual links that routes through every VNF in the chain with
minimum cost. Given an SFC and a re-order compatibility
matrix R, we augment the set E into E′ as follows:
• if Ru,v = 1 and (u → v) ∈ E, links (u → v.next) and

(v → u) are created and added to E′.
• if Ru,v = 1 and (u → v) /∈ E, if Ru,j = 1 ∀ u.next ≤
j ≤ v.prev, links (u → v.next) and (v → u) are created
and added to E′.

• if Ru,v = 1 and (u → v) /∈ E, if Rj,v = 1 ∀ u.next ≤
j ≤ v.prev, links (u → v) and (v → u) are created and
added to E′.

Fig. 2(c) shows the set E′ generated for the SFC presented
in Fig. 2(a) given the re-order compatibility matrix in Fig. 2(b).
Generating the set E′ alone is not sufficient; this is because
not every subset Ē ⊂ E′ renders a valid chain. Concretely,
consider again the chain presented in Fig. 2(c), and recall that
VNFs 0 and 1 are not re-order compatible. Here, while chain
{3→0→1→2} is valid, chain {1→2→3→0} is not. Note that
both chains are made of a combination of virtual links in
E′. Subsequently, we need to ensure that any selected chain
structure Ē ⊂ E′ does not violate any semantics. To do so,
we introduce Ω, a binary matrix, that indicates whether VNF
f can precede function f ′.

Ωf,f ′ =

{
1, if (f, f ′) ∈ E ∨ (Rf,f ′ = 1 ∧ if (f, f ′) ∈ E′),
0, otherwise

Theorem 1. Any chain that adheres to Ω is semantically valid.

Proof. Let Ē ⊂ E′ be semantically invalid. This means that
Ē contains a pair of VNFs (f ,f ′) where f cannot precede f ′.
If f cannot precede f ′, it means that f and f ′ are not re-order
compatible; thus Rf,f ′ = 0 and by definition Ωf,f ′ = (Rf,f ′∧
if (f, f ′) ∈ E′) = 0. This follows that any chain that adheres
to Ω is semantically valid.

B. Decision Variables

A VNF is placed on a node in the SN, which is represented
by the following decision variable:

θfn =

{
1 if VNF f ∈ F is placed on node n ∈ N,
0 otherwise.

The following determines the selection of a virtual link e ∈
E′ for inclusion in the final SFC:

ze =

{
1 if virtual link e ∈ E′ is selected,
0 otherwise.

We use the binary variables xen and yen to indicate placement
of the origin and destination of a virtual link e ∈ E′ on a

67

i e

(a) Service Function Chain

0 0 1 1

0 0 1 1

1 1 0 1

1 1 1 0

(b) Re-order Compatibility Matrix

i e

(c) Augmented Set E′

Fig. 2. Semantically Correct Chains

substrate node n ∈ N . Routing of a virtual link e ∈ E′ is
determined by the following variable:

we
i,j =

{
1 if e ∈ E′ routed on substrate link (i, j) ∈ L,
0 otherwise.

Finally, we use the following variable to derive the ordering
between VNFs in the resultant SFC:

δf,f ′ =

{
1 if VNF f precedes VNF f ′ in the resultant SFC,
0 otherwise.

C. Constraints

1) VNF Placement Constraints: Constraint (2) ensures that
each VNF is placed on at most a single substrate node.
Placement of the origin and destination of each virtual link
is ensured by constraints (3) and (4), respectively. Finally, we
ensure by (5) that either both the source and destination of a
virtual link are placed, or neither.

∀f ∈ F :
∑
n∈N

θfn = 1 (2)

∀e ∈ E′, n ∈ N : xen ≤
∑

f∈F :o(e)=f

θfn (3)

∀e ∈ E′, n ∈ N : yen ≤
∑

f∈F :t(e)=f

θfn (4)

∀e ∈ E′ :
∑
n∈N

xen −
∑
n∈N

yen = 0 (5)

2) SFC Selection Constraints: The first and last VNF in the
resultant SFC is determined by (6) and (7), respectively. Then,
(8) ensures that a virtual link is routed iff both of its endpoints
are placed. Constraints (9) and (10) ensure that every VNF in
the resultant SFC is traversed exactly once. We ensure that
exactly |F | − 1 virtual links are placed by (11). Finally, (12)
is used to break loops between virtual links.

∀ē ∈ E′ : {o(ē) = no},∀f ∈ F :
∑
n∈N

yēn ≤ 1−
∑

e∈E′:{e 6=ē},
{t(e)=f}

ze

(6)

∀ē ∈ E′ : {t(ē) = nt},∀f ∈ F :
∑
n∈N

xēn ≤ 1−
∑

e∈E′:{e 6=ē},
{o(e)=f}

ze

(7)

∀e ∈ E′ : ze ≤
1

2
(
∑
n∈N

xen +
∑
n∈N

yen) (8)

∀f ∈ F :
∑

e∈E′:(o(e)=f)

∑
n∈N

xen ≤ 1 (9)

∀f ∈ F :
∑

e∈E′:(t(e)=f)

∑
n∈N

yen ≤ 1 (10)

∑
e∈E′

ze = |F | − 1 (11)

∀e ∈ E′, e′ ∈ E′ : {o(e) = t(e′) ∧ t(e) = o(e′)} : ze + ze′ ≤ 1
(12)

3) Substrate Capacity Constraints: (13), (14), and (15)
represent the server capacity, internal switching capacity, and
substrate link capacity constraints, respectively.

∀n ∈ N :
∑
f∈F

θfn · df ≤ cn (13)

∀f ∈ F :
∑
e∈E′

(xen · yen) · de ≤ bn (14)

∀(i, j) ∈ L :
∑
e∈E′

∑
(i,j)∈L

we
i,j · de ≤ bi,j (15)

4) SFC Routing Constraints: Constraint (16) represents the
flow conservation for mapping the virtual links. We use (17) to
determine the ordering of VNFs in the resultant SFC. Finally,
(18) ensures that the order of VNFs preserves the SFC’s
semantics.

∀i ∈ N, e ∈ E′ :
∑

j:(i,j∈L)

we
i,j −

∑
j:(j,i)∈L

we
j,i = xei − yei

(16)
∀f ∈ F,∀f ′ ∈ F,∀f ′′ ∈ F : δf,f” ≥ (δf,f ′ · δf ′,f”) + ze:{o(e)=f,

t(e)=f”}
(17)

∀f ∈ F,∀f ′ ∈ F : δf,f ′ ≤ Ωf,f ′

(18)

Note that (14) and (17) contain product of two integer
variables, which renders the model non-linear. However, the
product of two integer variables can be linearized as follows:
For Constraint (14), we introduce a new variable gen ∈ {0, 1}

68

such that:

gen ≤ xen (19)
gen ≤ yen (20)

gen ≥ xen + yen − 1 (21)

Similarly, we linearize Constraint (17) by introducing a new
variable qf,f ′,f ′′ ∈ {0, 1} such that

qf,f ′,f ′′ ≤ δf,f ′ (22)
qf,f ′,f ′′ ≤ δf ′,f ′′ (23)

qf,f ′,f ′′ ≥ δf,f ′ + δf ′,f ′′ − 1 (24)

D. Objective Function

Our objective is to embed the SFC while minimizing the
incurred cost in terms of bandwidth consumption.

minimize
∑
e∈E′

∑
(i,j)∈L

we
i,j

E. Hardness of the Problem

Theorem 2. OPT-Khaleesi is NP-Complete.

Proof. Given a graph Gs=(N ,L), where cn = 1 ∀ n ∈ N and
bl = 1 ∀ l ∈ L. We transform Gs into G′s=(N ′,L′) by adding
an auxiliary node of capacity 0 between every pair (i,j) ∈
L. G′s thus represents an SN where some nodes are servers
and the rest are network nodes. Now assume that we have a
chaotic SFC request of size N with 1 unit demand for each
VNF in the SFC and df = 1. A chaotic SFC refers to an SFC
where all pair of VNFs are re-order compatible. Solving the
Hamiltonian path problem in Gs corresponds to finding a path
that spans every node in N . This is exactly solving the flexible
service chaining problem in G′s since the Hamiltonian path
will span N compute nodes in Gs (the size of the chain).
Conversely, solving the flexible service chaining in G′s would
mean that we have found a chain that spans N compute
nodes. This chain in G′s corresponds to a Hamiltonian path
in Gs. Since computing Hamiltonian path is NP-Complete,
therefore a special case of our problem (i.e., placement of a
chaotic chain of size N) is also NP-Complete. Therefore, by
restriction, OPT-Khaleesi is NP-complete.

VI. FAST-Khaleesi: HEURISTIC SOLUTION

To overcome the computational complexity of OPT-
Khaleesi, we propose FAST-Khaleesi, a heuristic that performs
flexible chaining, VNF placement, and routing with the objec-
tive to minimize bandwidth footprint. FAST-Khaleesi consists
of 4 Steps, and is designed to select the chain that encourages
more virtual links to be routed internally, which in turn reduces
the number of inter-server switching.
• Step 1: Generate all SFCs First, given the set E′,

we trace all possible chains that do not violate any
semantics (i.e., respect Ω) by using backtracking. We
denote this set as S. Generating all possible chains for a
SFC where all VNFs are re-order compatible may yield
an exponential number of combinations O(|F |!) in the

Algorithm 1: FAST-Khaleesi Algorithm
Input: Gs = (N ,L), Gv = (F , E, no, nt), E′

Output: NF Placement and Chain Routing Solution m
1 function FAST-Khaleesi
2 Step 1: Generate all Valid Chains S
3 Step 2: Find all candidate servers in N
4 N̄ = {}
5 forall n ∈ N do
6 if (cn < min∀f∈F df) then
7 continue
8 N̄ = N̄ ∪ {n}
9 rn = |shortestPath(n, n0)|+|shortestPath(n, nt)|

10 SortDescendingOrder(N̄ , cr)
11 M = {}; /*Initialize an empty solution set*/
12 forall s = (F, Ē) ∈ S do
13 Step 3: VNF Placement
14 m̄ = {} /*Initialize an empty solution*/
15 V = F
16 while (|V | > 0) do
17 F̄ = FindMinOpCost∀v∈V (s,N̄)
18 m̄.nmap = m̄.nmap ∪ (F̄ ,n)
19 V = V - F̄
20 Ē = Ē - GetInternallySwitchedLinks(F̄)
21 Step 4: Virtual Link Routing
22 forall (e ∈ Ē) do
23 m̄.emap = m̄.emap ∪ Dijkstra(e)
24 M = M ∪ {m̄}
25 m = FindLowestCostSol(M)
26 return m

worst case. However, in practice, the size of SFC does
not exceed 6 in a DC [27]. Moreover, not all pairs of
VNFs are typically reorder compatible with each other.
Therefore, in practice the actual number of valid chains
is far less than the worst case.

• Step 2: Find Candidate Servers Step 2 consists of
finding a list of candidate servers. A candidate server is a
server with sufficient CPU resources to accommodate any
VNF. Once the list of candidate servers is obtained, we
compute the shortest path between each candidate server
n ∈ N̄ and the ingress no and egress nt nodes of the
chain, respectively. We denote these distances as xo and
xt, respectively. Subsequently, we compute the ratio rn
= cn

xo+xe
for every node n ∈ N̄ . By sorting the servers

in decreasing order of ratio r, we prioritize the servers
with highest capacity and proximity to the chain’s ingress
and egress nodes. This will also potentially reduce the
bandwidth footprint, as the VNFs will be placed close
to the origin and sink of the chain at hand. The time
complexity of Step 2 is O (2 · N̄ · (L + N logN) +
N̄ logN̄) ≤ O(N2logN) by dropping lower-order terms.

• Step 3: VNF Placement The VNF placement is per-
formed for every chain as follows: First, for every can-
didate server n ∈ N̄ and for every VNF f ∈ F , we

69

compute an opportunity cost of placing f along with a
subset of VNFs F̄ on n. The subset F̄ ∪ f with the lowest
opportunity cost is chosen and mapped on node n. Here,
opportunity cost refers to the number of virtual links
that require inter-server switching as result of placing
F̄ ∪ f on n. This cost is reduced by maximizing the
number of virtual links with both end points placed on
the same server. Hence, to minimize the opportunity cost
for every VNF f , we traverse the chain s starting at f , and
every time we find a pair of adjacent VNFs that can be
packed in n without violating its capacity we add them
to F̄ . This iteration is repeated until the placement of
all VNFs is settled. At every iteration, the set of virtual
links that require inter-server routing is updated. The time
complexity of Step 3 is O(|S| · |N̄ | · |F |2).

• Step 4: Inter-Server Routing Finally, for every place-
ment solution generated in Step 3, Dijkstra’s shortest path
algorithm is performed to route the set of virtual links
whose end points are distributed in different servers. The
time complexity of Step 4 is O(|S| · (|L| + |N |log|N |)).

Once Steps 3 and 4 are performed for every SFC, the algorithm
terminates, and the mapping solution with the lowest total
bandwidth consumption is returned. If no feasible mapping
solution can be found for any chain, the SFC is rejected.

VII. PERFORMANCE EVALUATION

We evaluate our proposed solutions in the following sce-
narios: (i) evaluating the benefits of flexible VNF ordering
in SFCs (Section VII-C), and (ii) performance comparison
between FAST-Khaleesi and OPT-Khaleesi (Section VII-D).
Before presenting the results, we describe our simulation setup
in Section VII-A and the evaluation metrics in Section VII-B.

A. Simulation Setup

1) Testbed: We implemented OPT-Khaleesi and FAST-
Khaleesi using IBM ILOG CPLEX 12.5 Java libraries and
Java, respectively. Our testbed consists of machines with
hyper-threaded Intel 8×10-core Xeon E7-8870 CPU and 1TB
of memory. We developed an in-house discrete event simulator
to simulate the arrival and departure of SFCs on an SN.

2) Topology: We used the following two real topologies,
representing two different scenarios and scales for our eval-
uation: (i) Univ-DC: a university data center topology with
23 nodes and 42 links from [28]; and (ii) AS3967: a mod-
erate size ISP topology with 79 nodes and 147 links from
Rocketfuel dataset [29]. (i) represents a data center network,
which typically has high server density compared to an ISP’s
backbone network such as (ii). To represent this diversity in
server density we augmented (i) and (ii) with 144 and 64
servers, respectively, each with 8 CPU cores.

3) Traffic Data: For Univ-DC topology, we used real traffic
traces from the same data center [28] to generate SFC request
between pairs of edge switches. For AS3967, no real traffic
traces are available, hence, we resorted to generating synthetic
traffic. We used FNSS tool [30] and generated time varying
traffic by following the distribution presented in [31].

 1.02

 1.05

 1.08

 1.11

4 5 6 7 8 9 10Ra
tio

 o
f R

ev
en

ue
 p

er
 U

ni
t C

os
t

Mean Arrival Rate

AS3967 Univ-DC

(a) Orchestration of Flexible vs Rigid SFCs

 1.02
 1.05
 1.08
 1.11
 1.14

4 5 6 7 8 9 10Ra
tio

 o
f R

ev
en

ue
 p

er
 U

ni
t C

os
t

Mean Arrival Rate

AS3967 Univ-DC

(b) Impact of considering flexible VNF ordering in existing
SFC orchestration algorithm [2]

Fig. 3. Benefits of Flexible VNF ordering in SFC

4) Middlebox Data: We selected a set of six VNFs from
the ones listed in Table II and computed the reorder compat-
ibility matrix accordingly. We randomly chained subsets of
the selected VNFs to generate SFCs with lengths between 3
and 6. Middlebox CPU requirements were obtained from the
research literature and available vendor data sheets [2], [32].
SFC arrival and departure was generated following a Poisson
distribution with mean arrival rate varied between 4 - 10 SFCs
per 100 time unit. Mean life time of these SFCs were set to
1000 time units. The simulation was run for a total of 10000
time units and included 400 - 960 SFC requests. Note that the
dataset and parameters chosen for evaluation are in accordance
with relevant research literature [3], [26].

B. Evaluation Metrics

1) Acceptance Ratio: The ratio of number of admitted SFC
requests to the total number of SFC requests.

2) Embedding Path Length: Embedding path length is the
sum of lengths of all the paths used for routing all inter-NF
links in an SFC.

3) Revenue per unit cost: Revenue is computed as a func-
tion that is proportional to an SFCs total resource requirement.
Revenue earned per unit cost is calculated by dividing revenue
from an SFC by the SFC’s embedding cost.

C. Benefits of Flexibility in SFCs

We demonstrate the benefits of flexible VNF ordering in
SFCs by evaluating the following two scenarios. First, we
compare results of optimally orchestrating flexible SFCs with
that of orchestrating non-flexible or rigid SFCs. In the second
scenario, we empirically evaluate how much benefit we can
get by feeding all possible SFCs stemming from a flexible
SFC to an existing orchestration algorithm from the literature.

70

The goal is to evaluate how much benefit we can get even
without explicitly considering flexible VNF ordering in an
existing SFC orchestration algorithm. For that purpose, we
use the dynamic programming algorithm from [2].

For the first scenario, we implemented an ILP similar
to [2] for comparison. From the results, we did not observe
much of a difference between the two approaches in terms
of acceptance ratio for different arrival rates. However, the
number of accepted SFCs does not say much about the types
of SFCs that were accepted. Therefore, we further analyzed
the solutions and computed the revenue earned per unit cost
for different arrival rates and present the result in Fig. 3(a).
More specifically, we present the ratio of revenue earned per
unit cost for flexible and rigid cases. The flexible case always
yielded more revenue per unit embedding cost to an extent of
11% compared to the rigid cases.

For the second scenario, we take a black box approach.
Instead of modifying the dynamic programming algorithm
from [2], we executed the algorithm for all valid SFCs that
can be traced from an SFC request. We keep the result with
the lowest cost for each SFC request. We compare the results
from this setting with that from executing [2] on non-flexible
SFCs. The results are presented in Fig. 3(b). We observe that
even without explicitly considering and exploiting flexibility
in SFCs, there is about 10% improvement in revenue earned
per unit cost on average for [2].

The takeaway from this study is that flexibility in SFCs can
yield more revenue per unit cost even for an SFC orchestration
algorithm not designed to handle flexible SFCs. An intuition
behind such result is that the flexibility in an SFC leads to
reordering of some of the VNFs to accept some more resource
demanding ones compared to the non-flexible case.

D. FAST-Khaleesi vs. OPT-Khaleesi

1) Acceptance Ratio: We present the cumulative accep-
tance ratio of OPT-Khaleesi and FAST-Khaleesi for both SN
topologies in Fig. 4 with 5th and 95th percentile error bars.
We consider the first 1000 time units of simulation as the
warm up period and discard results from that period. For
a compute resource constraint environment as in AS3967,
the performance gap between the heuristic and the optimal
is larger than Univ-DC topology. Nonetheless, we found the
heuristic to accept no greater than 20% less SFC requests on
average compared to the optimal solution.

2) Mean Embedding Path Length: Our cost function is pro-
portional to the embedding path length for an SFC. Therefore,
we compare the mean embedding path length across all SFC
requests to gain an estimate as to how much far off is the
heuristic from the optimal solution. The results for both of the
topologies are presented in Fig. 5. For the data center topology
where network diameter is relatively smaller compared to the
ISP topology, the heuristic’s mean embedding path was within
20% of that of the optimal solution. However, on a network
with larger diameter such as the ISP topology we used, this
stretch increased up to ≈2× the optimal solution.

 0.6
 0.7
 0.8
 0.9

 1

4 5 6 7 8 9 10

Ac
ce

pt
an

ce
 R

at
io

Mean Arrival Rate

OPT-Khaleesi FAST-Khaleesi

(a) Univ-DC Topology

 0.3
 0.4
 0.5
 0.6
 0.7

4 5 6 7 8 9 10

Ac
ce

pt
an

ce
 R

at
io

Mean Arrival Rate

OPT-Khaleesi FAST-Khaleesi

(b) AS3967 Topology
Fig. 4. Acceptance Ratio vs. Load

 4

 8

 12

 16

4 5 6 7 8 9 10M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

gt
h

Mean Arrival Rate

OPT-Khaleesi FAST-Khaleesi

(a) Univ-DC Topology

 0
 10
 20
 30
 40
 50

4 5 6 7 8 9 10M
ea

n
Em

be
dd

in
g

Pa
th

 L
en

gt
h

Mean Arrival Rate

OPT-Khaleesi FAST-Khaleesi

(b) AS3967 Topology
Fig. 5. Comparison of Mean Embedding Path Length

We also show the Cumulative Distribution Function (CDF)
of embedding path length of one fixed arrival rate in Fig. 6.
The purpose is to show the breakdown of the length distri-
bution and try to understand the long errorbars in Fig. 5. As
we can see, the heuristic demonstrates a long tailed CDF. This
long tail is due to the heuristic’s shortcoming of finding a good
solution when the network is very close to saturation.

3) Execution Time: Execution time for OPT-Khaleesi and
FAST-Khaleesi for embedding a single SFC request is pre-
sented in Table III. Note that execution time for Univ-DC
is higher than that of AS3967. This is because, majority of
the execution time in both of the solutions is spent to find

71

 0

 0.5

 1

 5 10 15 20 25

C
D

F

Embedding Path Length

OPT-Khaleesi FAST-Khaleesi

(a) Univ-DC Topology

 0

 0.5

 1

 0 15 30 45 60 75

C
D

F

Embedding Path Length

OPT-Khaleesi FAST-Khaleesi

(b) AS3967 Topology

Fig. 6. Mean Embedding Path Length vs. Load

TABLE III
AVERAGE EXECUTION TIME PER SFC REQUEST

Topology OPT-Khaleesi FAST-Khaleesi
Univ-DC 4538ms 61ms
AS3967 1920ms 43ms

suitable placement of VNFs on the servers. Recall that the data
center topology has higher number of servers, hence, higher
execution time despite being smaller than AS3967.

VIII. DISCUSSION

In light of the above, we clearly can see potential advantages
of flexible structures over the rigid ones. However, the degree
of flexibility that might be available in a network not only
depends on the types of VNFs deployed, but also on the op-
erator’s policies and customer requirements. There are certain
NFs, which by policy might not be flexible at all. For instance,
a network’s policy or a customer’s requirement may govern
that all incoming and outgoing traffic must traverse through
a firewall. In such cases, even if the VNF is reorder compat-
ible with others, it cannot be considered for such flexibility.
However, there are indeed some NFs that are deployed for
performance enhancement purposes such as a WAN Optimizer,
Video Transcoder, Traffic Shaper etc., that may have less strict
requirement on their order. Our solution can also work with
such operator policies. In such cases, where we have additional
constraints imposed by policies, setting appropriate entries in
R before running the optimizations should be sufficient.

IX. CONCLUSION

In this paper, we have taken a first step towards studying
the impact of flexibility in SFCs and also how such flexibility
can be leveraged for resource allocation. We present the
first quantifiable results showing the potential benefits of
flexible SFCs over rigid ones. Our results show that indeed
there is improvement in revenue per unit cost, however, the
significance of this improvement can be better explained when
it is translated into actual monetary values. To the best of our
knowledge, we are the first to propose an ILP-based optimal
solution to the problem. We also propose a heuristic that
performs within 2× of the optimal solution on average while
executing orders of magnitude faster.

Flexibility in SFC can be leveraged in other scenarios as
well. For instance, in the event of substrate node or link failure,
flexibility can be leveraged for restoring failed SFCs while

minimizing backup footprint. Another interesting direction is
to investigate how flexibility in SFC can be applied for re-
optimizing resource allocation to alleviate bottlenecks.

REFERENCES

[1] “Network Functions Virtualisation - Introductory White Paper,” Oct
2012. [Online]. Available: https://portal.etsi.org/nfv/nfv white paper.pdf

[2] F. Bari et al., “Orchestrating virtualized network functions,” IEEE Trans.
on Net. and Service Management, vol. 13, no. 4, pp. 725–739, 2016.

[3] J. G. Herrera et al., “Resource allocation in nfv: A comprehensive
survey,” IEEE Trans. on Net. and Service Management, vol. 13, no. 3,
pp. 518–532, 2016.

[4] S. Mehraghdam et al., “Specifying and placing chains of virtual network
functions,” in Proc. of IEEE CloudNet, 2014, pp. 7–13.

[5] ——, “Placement of services with flexible structures specified by a yang
data model,” in Proc. of IEEE NetSoft, 2016.

[6] S. Dräxler et al., “Specification, composition, and placement of network
services with flexible structures,” International Journal of Network
Management, vol. 27, no. 2, 2017.

[7] Y. Zhang et al., “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proc. of ACM SOSR, 2017, pp. 143–
149.

[8] C. Sun et al., “Nfp: Enabling network function parallelism in nfv,” in
Proc. of ACM SIGCOMM, 2017, pp. 43–56.

[9] S. Ayoubi et al., “A cut-and-solve based approach for the vnf assignment
problem,” IEEE Trans. on Cloud Computing, 2017.

[10] H. Moens et al., “Vnf-p: A model for efficient placement of virtualized
network functions,” in Proc. of CNSM, 2014, pp. 418–423.

[11] B. Addis et al., “Virtual network functions placement and routing
optimization,” in IEEE CloudNet, 2015, pp. 171–177.

[12] M. C. Luizelli et al., “Piecing together the nfv provisioning puzzle:
Efficient placement and chaining of virtual network functions,” in Proc.
of IFIP/IEEE IM, 2015, pp. 98–106.

[13] R. Cohen et al., “Near optimal placement of virtual network functions,”
in Proc. of IEEE INFOCOM, 2015, pp. 1346–1354.

[14] W. Ma et al., “Traffic aware placement of interdependent nfv middle-
boxes,” in Proc. of IEEE INFOCOM, 2017, pp. 1–9.

[15] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in Proc. of ACM HotSDN,
2013, pp. 127–132.

[16] D. Joseph et al., “Modeling middleboxes,” IEEE network, vol. 22, no. 5,
2008.

[17] A. Panda et al., “Verifying reachability in networks with mutable
datapaths.” in Proc. of USENIX NSDI, 2017, pp. 699–718.

[18] S. K. Fayaz et al., “Buzz: Testing context-dependent policies in stateful
networks.” in Proc. of USENIX NSDI, 2016, pp. 275–289.

[19] P. Kazemian et al., “Header space analysis: Static checking for net-
works.” in Proc. of USENIX NSDI, 2012, pp. 113–126.

[20] W. Wu et al., “Automatic synthesis of nf models by program analysis,”
in Proc. of ACM HotSDN, 2016, pp. 29–35.

[21] ——, “Network function modeling and its applications,” IEEE Internet
Computing, vol. 21, no. 4, pp. 82–86, 2017.

[22] J. Sherry et al., “Making middleboxes someone else’s problem: network
processing as a cloud service,” ACM SIGCOMM Computer Comm. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[23] S. W. Brim et al., “Middleboxes: Taxonomy and issues,” 2002.
[24] N. Freed, “Behavior of and requirements for internet firewalls,” 2000.
[25] J. Martins et al., “Clickos and the art of network function virtualization,”

in Proc. USENIX NSDI, 2014, pp. 459–473.
[26] A. Fischer et al., “Virtual network embedding: A survey,” IEEE Comm.

Surveys & Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.
[27] S. Kumar et al., “Service function chaining use cases in data centers,”

IETF SFC WG, 2015.
[28] T. Benson et al., “Network traffic characteristics of data centers in the

wild,” in Proc. of ACM IMC, 2010, pp. 267–280.
[29] N. Spring et al., “Measuring isp topologies with rocketfuel,” ACM

SIGCOMM Computer Comm. Rev., vol. 32, no. 4, pp. 133–145, 2002.
[30] L. Saino et al., “A toolchain for simplifying network simulation setup,”

in Proc. of SIMUTools, 2013, pp. 82–91.
[31] A. Nucci et al., “The problem of synthetically generating ip traffic

matrices: initial recommendations,” ACM SIGCOMM Computer Comm.
Rev., vol. 35, no. 3, pp. 19–32, 2005.

[32] “Wanos wan optimizer admin guide - hardware requirements.” [On-
line]. Available: http://wanos.co/docs/docs/wanos-admin-guide/getting-
started/hardware-requirements/

72

