
SERA: SEgment Routing Aware Firewall for
Service Function Chaining scenarios

Ahmed Abdelsalam⇤, Stefano Salsano†, Francois Clad‡, Pablo Camarillo‡, Clarence Filsfils‡,
⇤Gran Sasso Science Institute, †University of Rome Tor Vergata, ‡Cisco Systems

Abstract—In this paper we consider the use of IPv6 Segment
Routing (SRv6) for Service Function Chaining (SFC) in an NFV
infrastructure. We first analyze the issues of deploying Virtual
Network Functions (VNFs) based on SR-unaware applications,
which require the introduction of SR proxies in the NFV infras-
tructure, leading to high complexity in the configuration and in
the packet processing. Then we consider the advantages of SR-
aware applications, focusing on a firewall application. We present
the design and implementation of the SERA (SEgment Routing
Aware) firewall, which extends the Linux iptables firewall. In
its basic mode the SERA firewall works like the legacy iptables
firewall (it can reuse an identical set of rules), but with the
great advantage that it can operate on the SR encapsulated
packets with no need of an SR proxy. Moreover we define an
advanced mode, in which the SERA firewall can inspect all
the fields of an SR encapsulated packet and can perform SR-
specific actions. In the advanced mode the SERA firewall can
fully exploit the features of the IPv6 Segment Routing network
programming model. A performance evaluation of the SERA
firewall is discussed, based on its result a further optimized
prototype has been implemented and evaluated.

Index Terms—Service Function Chaining (SFC), NFV, Segment
Routing, Linux networking, Firewall, Iptables

I. INTRODUCTION

The advent of Network Function Virtualization (NFV) [1]
is dramatically changing the way in which telecommunication
networks are designed and operated. Traditional specialized
physical appliances are replaced with software modules run-
ning on a virtualization infrastructure made up of general
purpose servers. Such virtualization infrastructure can even be
composed of a set of geographically distributed data centers.
In traditional “pre-NFV” networking, the physical appliances
were placed en-route, i.e. along the path of the flows. In
NFV scenarios, the Virtual Network Functions (VNFs) that
replace the physical appliances can be arbitrarily located in
the distributed virtualization infrastructure, hence the need of
steering the traffic flows through the sequence of VNFs to be
accessed. The VNFs can also be denoted as Service Functions
(SF) and the Service Function Chaining (SFC) [2] denotes the
process of forwarding packets through the sequence of VNFs.
Examples of VNFs categories are NATs (Network Address
Translation), firewalls, DPIs (Deep Packet Inspection), IDSs
(Intrusion Detection System), load balancers, HTTP proxies,
CDN nodes.

This work has been partially supported by the Cisco University Research
Program Fund

The IETF SFC Working Group (WG) has investigated
the SFC scenarios and issues [3] and proposed a reference
architecture [4]. A specific mechanism, called Network Ser-
vice Header (NSH) [5] has been proposed by the SFC WG
to support the encapsulation of packets with a header that
specifies the sequence of services (VNFs) to be crossed.

In this paper, we consider the use of the IPv6 Segment Rout-
ing (SRv6) architecture to support Service Function Chaining,
as already discussed in [6]. In the SRv6 architecture an IPv6
extension header (the Segment Routing Header - SRH) allows
including a list of segments in the IPv6 packet header [7].
This segment list can be used to steer the packet though a
set of intermediate steps in the path from the source to the
destination, following a (loose) source routing approach. The
use of Segment Routing for SFC has been documented in [8].
The typical network scenario is that an edge node classifies
the traffic and consequently includes a segment list in the IPv6
packet header. Note that the application of SRv6 is not limited
to SFC, there are many other important use cases [9] like
for example traffic engineering, fast restoration, support of
Content Delivery Networks. The concept of SRv6 has been
extended in [10], from the simple steering of packets across
nodes to a general network programming approach. The idea
is to encode instructions and not only locations in a segment
list. This is feasible, thanks to the huge IPv6 addressing space.
Under this network programming model, the edge node can
program a sequence of nodes to be crossed and the packet
processing/forwarding behaviors to be executed by the nodes
on the packet.

In section II we discuss how the IPv6 Segment Routing
can be used to support SFC, what are the implications of
using SR-unaware applications and the potential advantages
of having SR-aware applications. As we will extend the open
source Linux iptables firewall, section III provides a short
introduction to its architecture. In section IV we analyze some
design requirements and use case scenarios for the SR-aware
applications, focusing on a firewall application. An important
contribution here is the inclusion of a scenario in which some
instructions to the firewall (e.g. actions to be executed on some
class of packets) can be included in the segment list associated
to a packet, without the need of reconfiguring the rules in the
firewall running in the core of the NFV infrastructure and in
line with the SRv6 network programming approach [10]. From
the requirements, we design the architecture of the proposed
SEgment Routing Aware (SERA) firewall, which extends the
iptables firewall. In section V some details of the implemen-ISBN 978-3-903176-08-9 c� 2018 IFIP

tation are given. To the best of our knowledge, the SERA
firewall can be considered the first SRv6-aware application.
Section VI provides the description of the testbed and the
result of the performance evaluation. Based on these results,
we have identified some shortcomings of the iptables design
for our use cases. We implemented and evaluated a proof-of-
concept that shows a significant performance improvement.

II. SFC BASED ON IPV6 SEGMENT ROUTING

Following the terminology defined in [4], the SFC encap-
sulation carries the information to identify the sequence of
Service Functions (VNFs) that are required for processing a
given packet. In the SRv6 approach considered here, the IPv6
Segment Routing Header (SRH) [7] contains such information.
The SRH contains a segment list, a segment in this list
identifies a VNF. Moreover, additional information related to
the VNF chain can be carried in the optional Tag-Length-Value
(TLV) section at the end of the SRH.

When a VNF that processes the packets is a legacy VNF,
which is not aware of the Segment Routing based SFC
encapsulation, we refer to it as an SR-unaware application.
In this case an SFC proxy is needed, to remove the SFC
encapsulation and deliver a clean IP packet to the SR-unaware
application. Considering our focus on the Segment Routing
based solution, we refer to the SFC proxy as SR-proxy. For
the packets that are sent by the SR-unaware application, the SR
proxy needs to (re)apply the SFC encapsulation after proper
classification of the received packets. The operations of the
SR proxies tend to be complex and in general they are not
efficient. The main issue is that the information contained in
the SFC encapsulation is removed from the packet when the
packet is delivered to the SR-unaware application and may
need to be re-added to the packet. This process typically
requires a lot of state information to be configured in the
classifier components of all nodes of a VNF chain and can
consume a considerable amount of packet processing resources
in the nodes.

Different types of VNFs can process the IP packets in a
VNF chain. Some VNFs only need to inspect IP packets (e.g.
DPI or network monitoring applications), other can drop or
admit packets (e.g. firewall), other can modify IP and trans-
port layer headers (e.g. NATs), other may need to terminate
transport layer connections and reopen new ones (e.g. HTTP
proxies, TCP optimizers). In general, the operations of an SR
proxy depend on the type of VNF. If the VNF is not operating
on the connections at transport layer (i.e. it is not modifying
the 5-tuple of IP and transport layer source and destination
addresses) it is possible in principle to re-classify the packets,
at the price of repeating the flow-level classification in all
nodes of the VNF chain. If the VNF is terminating / opening
new transport level connections, it is not always possible to
re-classify the packets and associate them to a specific chain.

As described in the SRv6 network programming docu-
ment [10], the SR information can be added to a packet in
two different modes, insert or encap. Figure 1 shows the
original IPv6 packet and how it is carried in the two different

encapsulation modes. In the insert mode the SRH header is
inserted in the original IPv6 packet, immediately after the
IPv6 header and before the transport level header. Note that
the original IPv6 header is modified, in particular the IPv6
destination address is replaced with the IPv6 address of the
first segment in the segment list, while the original IPv6
destination address is carried in the SRH header as the last
segment of the segment list. In the encap mode the original
IPv6 packet is carried as the inner packet of an IPv6-in-IPv6
encapsulated packet. The outer IPv6 packet carries the SRH
header with the segment list.

Fig. 1: SRv6 encapsulated packets

An SR-unaware application is not able to process the
SRH information in the traffic it receives. An SR proxy is
used to process the SRH information on behalf of the SR-
unaware application. As discussed above, the behavior and the
applicability of an SR proxy depend on the type of processing
of the application. In [8], a set of behaviors of the SR-proxy
have been defined, among them we mention:

• Static proxy
• Dynamic proxy
• Masquerading proxy
Both the Static and the Dynamic proxies support IPv6

SR packets encapsulated only in encap mode. They remove
the SR information from packets before sending them to
an SR-unaware application. These proxies receive back the
packets from the SR-unaware application and reapply the SR
encapsulation which includes the information on the VNF
chain. They work under the assumption that the specific SR-
unaware application running in the VNF is inserted in only one
VNF chain, because all packets going out from the VNF are
re-associated to the same chain. If multiple VNF chains needs
to be supported, a different instance of the VNF is needed for
each chain. The difference between the Static and the Dynamic
proxies is that the SR information is statically configured in
the Static case and is read from the incoming packets in the
Dynamic case.

The Masquerading proxy supports SR packets encapsulated
in insert mode. It masquerades SR packets before they are sent
to an SR-unaware application, replacing the IPv6 destination
address (which correspond to the current segment of the
segment list) with the original IPv6 destination (i.e. the last
segment in the segment list). When the packets are received
back from the SR-unaware application, the Masquerading
proxy retrieves the VNF chain information from the SRH
header and changes the IPv6 destination address so that it
reflects the current segment of the segment list. This process

47

is refered to as de-masquerading. The assumption is that the
SR-unaware application simply ignores the SRH header and
that the SRH header is preserved in the processing. Moreover,
this type of proxy can be only used with applications that do
not change the packet headers and just inspect them.

Following the above discussion on the SR-unaware appli-
cations, we can state that their use in combination with SR
proxies is conditioned by some constraints and characterized
by high configuration complexity. It can also be affected by
performance issues. Of course these problems will be faced
and solved in practical use cases, considering the importance to
support legacy SR-unaware applications in NFV deployments.
On the other hand, in this work we take a more forward-
looking approach and consider the design and development of
SR-aware applications. Such applications are able to process
the SFC encapsulation included in the IP packets, that is in
our scenario the IPv6 SRH header that contains the segment
list. The greatest benefit of using SR-aware applications is
that the SR proxy is not needed and the SFC information
carried in the SRH header is preserved when the packet
is processed by the application. This approach avoids the
need to maintain state information in the internal nodes. The
configuration and management of the NFV infrastructure is
simplified and the performance of the NFV enabled nodes is
not affected by complex classification procedures. Moreover
advanced features are possible by letting the applications
interact with the SFC functionality offered by the network.

In this paper, we focus on the design and implementation
of an SR-aware firewall application, but most of the design
considerations have a more general applicability to other types
of applications that can be deployed in SR based Service
Function Chaining scenarios.

III. LINUX IPTABLES FIREWALL

A firewall [11] essentially works according to a set of rules
to accept or drop received packets. Each rule is composed of
a condition and an action. The condition is based on set of
attributes of received packets.

Once a packet satisfies the condition expressed by a rule
condition, the associated action is performed on that packet.
Iptables is a flexible and modular firewall and it is a standard
component of most Linux distributions. It is built on top on the
netfilter framework. In this section we provide a short tutorial
on Iptables and netfilter architecture and implementation,
which will be the base for the design of our solution.

A. Netfilter Framework

The netfilter framework [12] is a set of hooks in the packet
traversal through the Linux protocol stack, which allows access
to packets at different points. The current netfilter implemen-
tation provides five different hooks (PREROUTING, INPUT,
FORWARD, OUTPUT, POSTROUTING) distributed along the
receive and transmit path of packets as shown in Fig. 2. Kernel
modules can register callback functions at any of these hooks.
A callback function, after processing a packet, returns to the

netfilter hook the action to be taken on the packet, such as
DROP, ACCEPT, QUEUE (queue for user space processing).

Fig. 2: Netfilter hooks and their associated tables

B. Iptables

Iptables represents the userspace implementation which
allows access to the kernel-level netfilter framework hooks.
It defines a set of rules that instruct the kernel what to do
with packet coming to or traversing the protocol stack. The
implementation of netfilter includes some pre-defined tables,
as shown in Figure 2. Each table has a set of chains where
iptables rules can be inserted. The supported tables are: filter
(the default table, it contains rules that are used to filter
IP packets); nat (mainly used to re-write the source and/or
destination addresses of IP packets); mangle (a specialized
table for mangling packet as they go through the kernel);
raw (mainly used for connection tracking). Each iptables rule
defines a set of matching criteria based on information from
different layers of the protocol stack. Once the packet matches
a rule, iptables takes an action on this packet. The standard
actions are: ACCEPT, DROP, or QUEUE. Those correspond to
the callback functions return values. Listing 1 shows examples
of iptables rules.

C. Iptables extensions

The iptables framework is modular and extendible. New
match extensions and target extensions can be developed
separately and added to the iptables as new modules.

Listing 1: Examples of iptables rules

Standard iptables rule
Matches destination address of a packet
ip6tables -I INPUT -d fc00:d1::/64 -j DROP

Extended iptables rule
Matches destination address and hop-by-hop header
ip6tables -I INPUT -d fc00:d1::/64 \
-m hbh --hbh-len 40 -j DROP

48

Match extensions are used to add more matching options
to iptables. They can be used alone or in combination with
the default match options. They provide the ability to have
sophisticated iptables rules in order to look deeper into IP
packets. e.g., hbh, which matches the parameters in IPv6 Hop-
by-Hop extensions header. An example of extended iptables
rule is shown in Listing 1.

Target extensions are new actions added to the default ones
of iptables. A new iptables target usually performs an action
different from the default ones (ACCEPT, DROP, etc.,). It can
be used for logging/profiling or it can modify the packet before
returning it back to the netfilter framework. Destination NAT
(DNAT) is an example of iptables target extension, which is
used to modify the destination address of a packet.

IV. SEGMENT ROUTING AWARE (SERA) FIREWALL

In an SRv6 SFC scenario, the VNFs are deployed over
the servers of the NFV infrastructure. The Segment Routing
Header (SRH) is added to packets to enforce a VNF chain,
i.e. the sequence of VNFs to be crossed by the packets. The
SR-unaware applications rely on the SR-proxy that removes
the SRH from the packet. On the other hand, the SR-aware
applications are capable of processing the SR information
in the packets. We focus on a specific type of SR-aware
applications, namely a firewall application. In this section,
we start by analyzing some design requirements and use
case scenarios for the SR-aware applications. The following
considerations are focused on a firewall application, but they
have a more general value as they can be applied to similar
applications that needs to be deployed on an SR based SFC
environment (e.g. DPI, IDSs). We assume that an SR-aware
firewall should support two working modes: basic mode and
advanced mode.

In the basic mode the SR-aware firewall must be able
to work as a legacy firewall, but with no need of the SR-
proxy. In particular, the SR-aware firewall should be able to
use the same set of rules defined for the legacy firewall and
apply them directly to the SFC encapsulated packets that carry
the SRH information. It must be able to handle SR packets
encapsulated in encap as well as insert modes and logically
apply the rules to the original packets rather than to the
SFC encapsulated packets. To make a concrete example, if an
existing rule includes a condition on the source IPv6 address
and the original IPv6 packet has been encapsulated in (IPv6-
in-IPv6) it makes no sense to consider the IPv6 source address
of the received packet as the condition should be checked on
the source address of the packet. The use case scenario is to
virtualize the legacy firewalls, executing them in servers on
the NFV infrastructure, without changing the legacy rules and
with no need of SR-proxy functionality.

In the advanced mode the SR-aware firewall should support
rules with extended conditions that can explicitly include
attributes not only from the original packet but also from the
SRH and the outer packet. In particular, the SR-aware firewall
could leverage SRv6 SID arguments, TLVs, or TAG. It could
also apply differentiated processing based on the active SRv6

SID (i.e., apply different rule sets for different SIDs). As for
the actions, in the advanced mode the SR-aware firewall should
be able to support some SR-specific actions. For example, an
SR-specific action could be to skip the next SID in the segment
list, so that it is possible to operate a “branching” instead of
the usual linear exploration of the VNF chain, when some
conditions on the packet are met. A use case scenario for this
feature is to consider a service chain which includes a firewall
followed by an Intrusion Detection System and allow skipping
the IDS for a subset of traffic that matches some conditions. A
further requirement is that the SR-aware firewall application
should be able to select the actions to be performed based
on information contained in the SID. This is aligned with the
SRv6 network programming approach of minimizing the state
information maintained in the nodes and storing explicit state
information in the packets. The use case scenario in this case is
that instead of re-configuring some firewall rules in a specific
firewall running in the core of the NFV infrastructure, it is
possible to obtain the same result by changing a SID in the
SID list that is injected to the packet in the edge node. The
big advantage is that the reconfiguration is only needed in the
edge node, which in any case has to manage per-flow state to
perform the classification operations.

In the following subsections we propose the architecture of
the SERA firewall (for basic and advanced modes) that meets
the above requirements, extending the Linux iptables.

A. SERA basic mode

In the basic mode, SERA is an SR-aware firewall that can
apply the normal firewall processing to the original packets
even if they have an SR based SFC encapsulation. The
proposed packet processing architecture is shown in Figure 3.
Each received packet goes through an SR pre-processor that
splits traffic into SR and non-SR traffic. Non-SR traffic is
processed as in an SR-unaware firewall, as represented with
the solid-line path in Figure 3. SR traffic follows a different
path through the firewall, represented with double-line path
in Figure 3. In this path, the firewall evaluates the defined
rules on the original packet, properly taking into account the
impact of the SR encapsulation. It supports both encap and
insert mode, which implies that the original IPv6 source and
destination information of received packets may be encoded
differently as follows:

• Encap mode: original source and destination are the ones
of the packet.

• Insert mode: packets have only one IPv6 header. The
original source information is in the source address of the
IPv6 header, while the original destination is encoded as
the last SID in the SRH.

The Inner match functional block is responsible for getting the
original source and destination information from SR packets
and compare them to the defined rules. Once a packet hits a
condition of a rule, the associated standard action (ACCEPT,
DROP, etc.) is triggered on that packet.

49

B. SERA advanced mode

In the advanced mode, SERA extends the iptables capa-
bilities by offering new matching capabilities and new SR-
specific actions. It introduces new iptables rules (SERA rules)
that have extended conditions involving attributes from outer
packet, inner packet, and the SRH header. The architecture
of advanced mode (Figure 4) is defined incrementally with
respect to the basic mode (Figure 3), by adding the SRH
match functional block and replacing the Action block with the
Extended Action block. Since the matching could be performed
on both the original and the outer packet headers, the SR traffic
follows a more complex path, as shown in Figure 4. Unlike in
the basic mode SERA, all received packet are first processed
by the Outer match block, which applies parts of the extended
rules on the outer packet. The SR pre-processor does the same
job as in the basic mode SERA by splitting traffic into non-
SR and SR traffic. Non-SR traffic goes directly to the Action
functional block while SR traffic is directed to the the Inner
match block. The Inner match block works as in the basic
mode, but the rules that drive its behavior are written in a
different way. For example, with an extended rule it is possible
to match on the outer source and destination IPv6 addresses
(denoted as src, dst) and on the original ones (denoted as
inner-src, inner-dst). The Inner match block takes
care of the matching of the inner source and destination
(the ones of the original packet). The SRH match block is
concerned with the matching between SRH extension part of
the rules and the SRH of received SR packets. Finally, each
packet (SR or non-SR) that satisfies the matching condition
of a rule goes to the Extended Action block. It extends the
Action block present in the architecture of the Basic mode by
allowing the introduction of SR-specific actions in addition to
the standard ones.

An SR-specific action is an advanced action that can be
applied to SR-encapsulated packets. It may modify or process
SR-encapsulated packets based on SRH information. We list
here some examples of SR-specific actions, but the set of these
actions can be extended to cover more complex SFC use-cases.

• seg6-go-next: the default action of the SEG6 target.
It is similar to the Endpoint function from the SRv6 net-
work programming model [10]. It sends packets towards
the next SID from SRH. The seg6-go-next serves as
an ACCEPT action for SRv6 encapsulated packets.

• seg6-skip-next: it instructs the SERA firewall to
skip the next SID in the SRH.

• seg6-go-last: it instructs the SERA firewall to skip
the remaining part of the segment list and process the last
segment.

• seg6-eval-args: the generic action that supports
SRH programmed actions.

Following the traditional iptables model, the above defined
SR-specific actions are included in statically configured rules
which are executed in a SERA firewall running as a VNF.
Taking into account the concepts of the SRv6 programming
model, we have designed a more dynamic approach, which

Fig. 3: Architecture of basic mode SERA

allows to define the action to be executed as a result of a
match on a packet by packet basis, by putting information
in the Segment IDentifier (SID). For this purpose, a special
SR-specific action is defined, called eval-args. It does not
represent a concrete action, but instructs the SERA firewall to
look into the current SID to find the action to be executed. As
described in [10], an SRv6 local SID is an IPv6 address that
can be logically split into three fields: LOC:FUNCT:ARGS.
LOC uses the L most significant bits, ARGS the R rightmost-
bits and FUNCT the remaining 128 � (L + R) bits in the
middle. In our case, the LOC part is used as a locator to
forward the packets to the NFV node that runs the firewall,
and it is advertised by the routing protocols. The FUNCT
part identifies a specific VNF on the NFV node (in our case
the SERA firewall instance). The ARGS part may contain
information required by the VNF and may even change on a
per-packet basis. Note that the ARGS part will be ignored in
most cases (or omitted setting R=0), whenever there is no need
to carry additional information in the SID. To give an example,
the LOC field can be 64 bits long and uniquely identify an
NFV node. This leaves 128-64=64 bits for the identification
of the VNF in the NFV node and for the arguments if needed.

In the advanced mode of SERA it is possible to use the
ARGS part of the SID to encode a firewall action to be
executed in case of match. This requires that a set of rules with
action eval-args is configured in the SERA firewall. For all
packets that match one of these rules, the action to be executed
is contained in the ARGS field of the SID. The advantage of
this approach is that it is possible to (re)configure the action
to be executed on a given subset of packets by operating at
the network edge, with no need to update the configuration of
the SERA firewall instance running in the core of the NFV
infrastructure.

V. IMPLEMENTATION

We implemented the SERA firewall as an extension of
Linux iptables described in section III.

50

Fig. 4: Architecture of advanced mode SERA

A. Implementation of basic mode SERA

In the Linux kernel the ip6_tables module is respon-
sible for checking the iptables rules against the received
packets. It implements the ip6_packet_match() function
that evaluates the defined iptables rules against the outermost
IPv6 header of a received packet. In order to implement the
basic mode of the SERA firewall, we extended the existing
ip6_tables module to operate according to the architecture
shown in Figure 3. We added the SR pre-processor block.
The SR packets are forwarded to the Inner match functional
block, implemented in the inner_match() function, which
evaluates iptables rules against the original packet. It supports
SR packets encapsulated in both encap and insert mode.

We added a new sysctl parameter (ip6t_seg6) to
switch between legacy iptables mode and SERA basic
mode. The system administrator can enable the SERA ba-
sic mode on the fly with the command: sysctl -w
net.ipv6.ip6t_seg6=1, which activates the SR pre-
processor.

We have realized a first version of basic mode SERA that
implements only a subset of the normal classification rules,
namely those involving the IP src and destination addresses.
On this first version we have performed the evaluation that is
reported in the paper. Then we have implemented a second
version that supports all the classification rules and it is now
available at [13].

B. Implementation of advanced mode SERA

We implemented the advanced mode SERA by exploit-
ing the iptables extension features. We added a new match
extension as well as a new target extension to the iptables
implementation both at kernel and user-space levels. Thanks to
these extensions it is possible to match on the SRH fields, this
allow to have a full control on where the packets is directed
(the next SIDs) and which nodes it has crossed before.

At kernel level, we implemented two additional kernel mod-
ules: the ip6t_srh as match extension and ip6t_SEG6
as target extension. The ip6t_srh module implements the
SR pre-processor, the Inner match, and the SRH match from

the advanced SERA architecture. The ip6t_SEG6 module
implements the Extended Action. It is a new target (SEG6)
for iptables rules that supports a set of SR-specific actions.

To support the advanced mode SERA at user-space level, we
extended the iptables user-space utility with two new shared
libraries: libip6t_srh and libip6t_SEG6. They allow
the iptables user to define SERA rules. These rules can have
attributes from outer packet, inner packet, and SRH. List. 2
shows a list of match options supported by the libip6t_srh
extension.

The ibip6t_SEG6 extension supports the new SR (SEG6)
target with some SR-specific actions (shown in List. 3). For

Listing 2: Options of srh match extension

#ip6tables -m srh -h
srh match options:
[!] --inner-src addr[/mask] Inner packet src
[!] --inner-dst addr[/mask] Inner packet dst
[!] --srh-next-hdr next-hdr SRH Next Header
[!] --srh-len-eq hdr_len SRH Hdr Ext Len
[!] --srh-len-gt hdr_len SRH Hdr Ext Len
[!] --srh-len-lt hdr_len SRH Hdr Ext Len
[!] --srh-segs-eq segs_left SRH Segments Left
[!] --srh-segs-gt segs_left SRH Segments Left
[!] --srh-segs-lt segs_left SRH Segments Left
[!] --srh-last-eq last_entry SRH Last Entry
[!] --srh-last-gt last_entry SRH Last Entry
[!] --srh-last-lt last_entry SRH Last Entry
[!] --srh-tag tag SRH Tag
[!] --srh-psid addr[/mask] SRH previous SID
[!] --srh-nsid addr[/mask] SRH next SID

SRH programmed actions, we introduced a new sysctl variable
(ip6t_seg6_args) that defines the number of rightmost
bits in the active SID to be used as ARGS. The SEG6 target
decodes the ARGS bits to decide which action should be taken
on the packet. If the decoded value does not correspond to
any of the supported actions, SERA will send back an ICMP
Parameter Problem message point to the active SID. Such
ICMP message can be used to understand which actions are
supported by the firewall.

Listing 3: Options of SEG6 target extension

#ip6tables -j SEG6 -h
SEG6 target options:
[--seg6-action action]
Valid SEG6 actions:
seg6-go-next SEG6 go next
seg6-skip-next SEG6 skip next
seg6-go-last SEG6 go last
seg6-eval-args SEG6 eval args

VI. PERFORMANCE EVALUATION

A. Testbed description
In order to verify the correctness of SERA implementation

and to evaluate the performance aspects, we designed a
testbed environment that can be easily replicated, shown in

51

Fig. 5. For the experiments described in this section, we have
deployed the testbed on CloudLab [14]. Cloudlab is a flexible
infrastructure dedicated to scientific research on the future of
cloud computing. Our testbed is composed of three identical
nodes. Each node is a bare metal server with Intel Xeon E5-
2630 v3 processor with 16 cores (hyper-threaded) clocked at
2.40GHz, 128 GB of RAM and two Intel 82599ES 10-Gigabit
network interface cards. The three nodes are Linux servers and
respectively represent an ingress node, NFV node, and egress
node of an SRv6 based SFC scenario. The links between any
two nodes X and Y are assigned IPv6 addresses in the form
fc00:xy::x/64 and fc00:xy::y/64. For example, the
two interfaces of the link between the ingress node (node
1) and the NFV node (node 2) are assigned the addresses
fc00:12::1/64 and fc00:12::2/64. Each node owns
an IPv6 prefix to be used for SRv6 local SID allocation. The
prefix is in the form fc00:n::/64, where n represents the
node number. For example, the NFV node (node 2) owns the
IPv6 prefix fc00:2::/64. SRv6 local SIDs are in form
LOC:FUNCT:ARGS, where LOC is the most significant 64-
bits, ARGS is rightmost 16-bits and FUNCT is the 48-bits in
between LOC and ARGS. The ingress node is used as a source
for SR encapsulated traffic. The NFV node runs the SERA
firewall inside a network namespace. The SERA firewall is
instantiated on the SRv6 local SID fc00:2::f1:0/112.
We have two destination servers d1 and d2 that are used as
traffic sinks. Each destination server is assigned a prefix in
the form fc00:dn::/64, where n is the destination server
number. We configured the ingress node with two different SR
SFC policies as shown in Listing 4. The first SR SFC policy
is used to encapsulate traffic destined to d1 as SR packets in
encap mode, while the second one encapsulates traffic destined
to d2 as SR packets in insert mode. The SRv6 SFC policies
are used to steer traffic through the SERA firewall, then to the
egress node which removes SR encapsulation from packets as
they leave the SR domain towards destinations (d1 and d2).
The ingress and egress nodes are running Linux kernel 4.14
[15] and have the 4.14 release of iproute2 [16] installed. The
NFV node runs a compiled Linux kernel 4.15-rc2 with SRv6
enabled and SERA firewall included [17]. In order to saturate

Fig. 5: Performance evaluation testbed.

the CPU of the NFV node, we used only one processor core for
processing all the received packets by disabling the irqbalance
service and assigning the IRQ for all interfaces to be served by
the same CPU core. We used iperf [18] to generate traffic on
the ingress node. All traffic generated by iperf goes through
the SRv6 SFC policies configured on the ingress node.

Listing 4: SR SFC policy

SR SFC policy - encap mode
ip -6 route add fc00:d1::/64 encap seg6 mode \
encap segs fc00:2::f1:0,fc00:3::d6 dev enp6s0f0

SR SFC policy - insert mode
ip -6 route add fc00:d2::/64 encap seg6 mode \
inline segs fc00:2::f1:0,fc00:3::d6 dev enp6s0f0

Listing 5: SR pre-processor implementation

static inline bool
sr6_pre_processor(const struct sk_buff *skb,

int *innoff,int *srhoff,int *encap)
{

/* SRv6 traffic (encap mode) detector

if (ipv6_find_hdr(skb, innoff, IPPROTO_IPV6,

NULL, NULL) > 0)){

*encap=1;

return true;

}

/* SRv6 traffic (insert mode) detector */

if (ipv6_find_hdr(skb, srhoff,IPPROTO_ROUTING,
NULL, NULL) > 0)

return true;
return false;

}

B. Measurements
In order to evaluate the performance of our implementation,

we generated SR traffic with a rate of 1 Mpps (106 packets per
second). Each packet has a payload size of 1 KB. We wanted
to measure the processing capacity (or throughput) of the
firewall in processed packets per second (pps). We configured
iptables with a rule that drops all traffic going from ingress
node towards the destinations. Therefore, the counter of this
rule represents the number of SR packets that the firewall has
been able to process. In order to evaluate the performance
for different numbers of rules, we add a sequence of N-1
non-matching rules before the matching rule. In particular, we
repeated each experiment for ten different number of rules N
from 1 to 512. Each value plotted in Figures 6-9 represents
the average of 30 runs, each run with duration of 60 seconds.
The confidence intervals are so close to the average that we
have not plotted them.

We conducted five experiments as follows:
• Exp. 1: default iptables on plain IP packets.
• Exp. 2: basic mode SERA with SR encap mode.
• Exp. 3: basic mode SERA with SR insert mode.
• Exp. 4: advanced mode SERA with SR encap mode.
• Exp. 5: advanced mode SERA with SR insert mode.

In experiment 1 (default iptables), we used a rule that matches
the IPv6 source and destination address of the received
packets. The non-matching rules have the same structure,
but different source and destination addresses. With only
one rule configured (N=1), the throughput is 911 Kpps. As
expected, the achieved throughput decreases with the number

52

Fig. 6: Basic SERA vs. default iptables

Fig. 7: Basic SERA vs. advanced SERA (encap mode)

of rules, as shown in Figure 6. This is due to the operations
that are executed for each rule. In particular, the function
ip6_packet_match() is called for each rule.

In experiments 2 and 3, we evaluate the throughput of basic
mode SERA with the same rules as the ones in the experiment
1 (matching the source and destination address). In these
experiments, we are considering SR encapsulated packets and
we set the ip6t_seg6 sysctl to apply the rule to the original
packets. When there is only the matching rule (N = 1) the
throughput is 875 Kpps in encap mode and 873 Kpps in insert
mode (Figure 6). For larger N , the degradation of the perfor-
mance is more evident. The performance reduction of basic
SERA with respect to iptables default is due to the SR pre-
processor functional block, whose implementation is reported
in Listing 5. This block has the task to look for the inner IPv6
header in the packet or for the SRH header in case of insert
mode (we have re-used the ipv6_find_hdr function used
by iptables). These operations are computationally expensive
and are the reason for the reduction of the throughput visible
in Figure 6. According to the design philosophy of iptables,
the SR pre-processor is executed once for each rule, because
each rule operates in a stateless way and no state related
to the packet is saved. From a performance point of view,

this is clearly not efficient. Therefore, in order to improve
the throughput result shown in Figure 6 we are considering
alternate design choices which can achieve higher performance
when a large number of rules may need to be applied to
the packets. The insert mode has lower throughput than the
encap mode due to our implementation of the SR pre-processor
block, which detects SR packets in encap mode before those
in insert mode (Listing 5). We decided to add the encap mode
detection before the insert mode since it works also for IPv6-
in-IPv6 tunnels.

In experiments 4 and 5, we evaluated the throughput of
advanced mode SERA. We considered an extended rule that
matches source and destination address from both inner and
outer packet. The results are similar to the basic mode SERA,
the throughput is 857 Kpps in encap mode and 849 Kpps in
insert mode when one rule is configured (N = 1) and the
performance degradation with respect to the default iptables
is higher when the number of rules N increases (the Figure is
not reported for space reasons). In Figure 7, we compare the
throughput of basic and advanced mode SERA, considering
the SR packets in encap mode. Both in the basic and in the
advanced mode the SR pre-processor is executed once for each
rule, the advanced mode SERA achieves a lower throughput
because it has to perform two match operations (Inner and
Outer) rather than a single one.

We wanted to verify that the throughput reduction when
several rules per packet are executed was not caused by
problems in our implementation. Hence, we conducted a new
experiment using an already existing iptables extension, the
Routing Header extension (implemented in ip6t_rt kernel
module). This extension is able to match the common fields
of the IPv6 Routing Header, including the Routing Type field
(but is not able to parse the content of the SRH header, for
which we have developed the proposed extension). We run the
test for the different numbers of rules N as in the previous
experiments. For matching we used an extended rule that drops
packets with Routing Type 4, i.e. the SR packets with the SRH
header. As shown in Figure 8 the obtained throughput perfectly
matches our SERA implementation, confirming that the poor
performance is inherently related to the iptables design.

Finally, we tackled the issue of performance degradation
and we were able to design and implement a solution focusing
on one specific scenario, the basic mode SERA operating on
SR packets encapsulated in encap mode. In this scenario,
a set of existing rules needs to be applied to the original
packets that are encapsulated with IPv6-in-IPv6. As shown
in Figure 6, there is a performance penalty which becomes
significant when the number of rules is large. We revised the
design of our iptables extension so that we can execute the
SR pre-processor once for each packet instead of re-executing
it for every rule. The idea is to modify the pointers that point
to the memory area in which the headers of the packet is
stored once before executing all the rules and then to properly
keep into account these modifications in the processing of the
results of the matching. The throughput measurements of the
revised design are shown in Figure 9. Only in case of a single

53

rule, the throughput is slightly reduced do to the operations
that are performed once for the packet. When the number of
rules increases, there is no throughput degradation as for the
basic mode SERA, and the performance approaches the one
of the default iptables operating on plain (not encapsulated)
IPv6 packets.

Fig. 8: Existing RH iptables extension vs. advanced SERA

Fig. 9: Revised iptables design vs. Basic SERA

VII. CONCLUSIONS

In this work we have shown that it is possible to modify
an existing application (the Linux iptables firewall) and make
it Segment Routing aware. Thanks to this awareness, it is
possible to setup chains of VNFs in a simple and efficient way,
with no need of SR proxy. In the basic mode, the proposed
SERA firewall solution avoids the need of (re)classification
of packets in the intermediate NFV nodes that host the SR-
aware firewall. In the advanced mode, new firewall actions can
operate on the SR segment list, allowing to make branches in
the VNF chain. We have also described how it is possible
for the edge node to put instructions in the SR segment list,
which can dynamically change the firewall actions that will
be executed. This can be done by the edge node even on a
packet-by-packet basis. In this way the firewall VNF could
become stateless so that it can be scaled, replicated, moved
arbitrarily in the NFV infrastructure.

From the performance analysis of the SERA implementa-
tion we have highlighted a throughput degradation when the
number of rules to be checked for each packet increases. This
is due to the iptables design that operates in a stateless way
and repeats all operations per each rule. We have implemented
a proof-of-concept that overcomes this issue in a specific
scenario, showing the performance gain that can be obtained.

We provided an open source implementation for SERA [17].
We submitted our implementation to the the Linux kernel and
a part of it has been merged into version 4.16 [13]. We also
contributed to the netfilter.org project to extend the iptables
user-space utility to support the new match options and SR-
specific actions (part of our work is in release 1.6.2 of iptables
[19]).

REFERENCES

[1] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[2] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, pp. 138–155, 2016.

[3] P. Quinn and T. Nadeau, “Problem Statement for Service Function
Chaining,” Internet Requests for Comments, RFC Editor, RFC 7498,
April 2015.

[4] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Ar-
chitecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
October 2015.

[5] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header
(NSH),” Internet-Draft, November 2017. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-sfc-nsh

[6] A. AbdelSalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and
L. Veltri, “Implementation of Virtual Network Function Chaining
through Segment Routing in a Linux-based NFV Infrastructure,” in 3rd
IEEE Conference on Network Softwarization (NetSoft 2017), Bologna,
Italy, July 2017.

[7] S. Previdi (ed.) et al., “IPv6 Segment Routing Header (SRH),”
Internet-Draft, September 2016. [Online]. Available: http://tools.ietf.
org/html/draft-ietf-6man-segment-routing-header-02

[8] F. Clad et al., “Segment Routing for Service Chaining,” Internet-
Draft, October 2017. [Online]. Available: https://tools.ietf.org/html/
draft-clad-spring-segment-routing-service-chaining-00

[9] J. Brzozowski et al., “IPv6 SPRING Use Cases,” Internet-
Draft, December 2017. [Online]. Available: https://tools.ietf.org/
html/draft-ietf-spring-ipv6-use-cases

[10] C. Fisfils et al., “SRv6 Network Programming,” Internet-
Draft, March 2017. [Online]. Available: https://tools.ietf.org/html/
draft-filsfils-spring-srv6-network-programming-04

[11] J. R. Vacca and S. Ellis, Firewalls: Jump start for Network and Systems
Administrators. Elsevier, 2005.

[12] R. Russell and H. Welte, “Linux netfilter Hacking Howto.”
[Online]. Available: http://www.netfilter.org/documentation/HOWTO/
netfilter-hacking-HOWTO.html

[13] “Linux community. linux 4.16 changelog,” Web site. [Online].
Available: https://kernelnewbies.org/Linux_4.16

[14] “CloudLab home page,” Web site. [Online]. Available: https:
//www.cloudlab.us/

[15] “Kernel 4.14 release,” Web site. [Online]. Available: https:
//kernelnewbies.org/Linux_4.14

[16] “iproute2 4.14 release,” Web site. [Online]. Available: https://mirrors.
edge.kernel.org/pub/linux/utils/net/iproute2/

[17] “SERA - SEgment Routing Aware Firewall,” Web site. [Online].
Available: https://github.com/SRouting/SERA

[18] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,” Web
site. [Online]. Available: http://iperf.fr

[19] “iptables releases. iptables-1.6.2 changelog,” Web site, February 2018.
[Online]. Available: https://netfilter.org/projects/iptables/downloads.
html#iptables-1.6.2

54

