
Rasch analysis of HTTPS reachability
George Michaelson

APNIC∗

ggm@apnic.net

Matthew Roughan Jonathan Tuke
UoA‡ and ACEMS†

{matthew.roughan,simon.tuke}@adelaide.edu.au

Matt P. Wand
UTS§ and ACEMS†

matt.wand@uts.edu.au

Randy Bush
IIJ¶

randy@psg.com

Abstract—The use of HTTPS as the only means to connect
to web servers is increasing. It is being pushed from both sides:
from the bottom up by client distributions and plugins, and from
the top down by organisations such as Google. However, there are
potential technical hurdles that might lock some clients out of the
modern web. This paper seeks to measure and precisely quantify
those hurdles in the wild. More than three million measurements
provide statistically significant evidence of degradation. We show
this through statistical techniques, in particular Rasch analysis,
which also shows that various factors influence the problem
ranging from the client’s browser, to their locale.

I. INTRODUCTION

There is a growing push for “HTTPS Everywhere,” where
HTTPS, or more exactly HTTP over TLS (Transport Layer
Security), is a more secure form of the standard Hyper-Text
Transfer Protocol. It is more secure in that it provides:

1. server authentication using certificates, i.e., a server can
prove its identity;

2. a private communications channel, i.e., it prevents eaves-
dropping; and

3. data integrity, i.e., it prevents standard man-in-the-middle
attacks.

HTTPS Everywhere is the ubiquitous use of HTTPS in pref-
erence to HTTP for all services, not only those specifically
requiring a secure connection.

The Electronic Frontier Foundation (EFF) is promulgating
a browser extension to this effect [1] as a defence against
spying, e.g., from nation states in the post-Snowden era.
Google supports the idea [2], and has announced that they
will give search-rank priority to HTTPS sites [3]. And the
increase in the number of clients accessing the Internet through
wireless connections mandates encryption at the connection
level. Reactions include the HTTPS-Only Standard [4], for
the US Federal Government.

There is a performance cost documented [5]–[7] as far back
as the 1990s. This cost arises primarily because the certificate
exchange requires an additional round trip at the start of a
connection. However, most HTTP requests don’t require a
full handshake, and with modern hardware the cryptography
overhead is not critical. For example Doug Beaver from
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Facebook, stated “We have found that modern software-based
TLS implementations running on commodity CPUs are fast
enough to handle heavy HTTPS traffic load without needing
to resort to dedicated cryptographic hardware. We serve all
of our [Facebook’s] HTTPS traffic using software running on
commodity hardware.” [8].

So on the face of it, HTTPS Everywhere is a “no brainer.”
There is even an “HTTP Shaming” web page.

HTTPS Everywhere seems to be happening. StatOperator
[9] reported that the number of (the top million) sites using
HTTPS as the default increased from around 103 to 219
thousand from 2016 to 2017. Google reports client usage
statistics [10], [11], and they show similar steady growth from
2015 to the present.

However, there is an important question to answer before
we convert the entire Internet to HTTPS: Will there be people
who are stranded behind port 80?

We know that HTTPS is not an issue for many people
(the current large-scale deployments of HTTPS prove that it
mostly works), but there could be locations, or users of specific
equipment that face challenges. Detailed reasons are given in
Section II. They range from concern about the quality of the
technology, to the rejection of compromised connections.

In this paper we provide evidence to inform the technical
and policy debate concerning the deployment of secure web
services, by measuring whether users can access HTTPS in
the wild. We collected 3.3 million observations using APNIC’s
web advertising infrastructure [12], from which we found that
there is sufficient evidence to show that HTTPS is not easily
accessible to all Internet users.

A secondary concern of this paper is the statistical rigour
necessary to allow such a statement to be made with confi-
dence. The proportion of users that failed to make an HTTPS
connection in our study was small. It has been common in
the past to simply report numbers, but our goal is to provide
statistically confident statements, despite a noisy and faint
signal. The ability to detect such faint signals is important — a
mere 0.1% of users now represents millions of individuals. We
do so using both standard statistical tests, and a tool that has
not been previously used in Internet measurement, but which
may find many other applications: Rasch analysis [13], [14].

We found statistically significant evidence that there are
clients that find HTTPS connections harder to complete than
HTTP, and that this difficulty was influenced by origin au-
tonomous system, browser, country of origin, and operating
system, suggesting a range of causes.
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II. BACKGROUND AND RELATED WORK

A. Experimental Context

Simple web services with no protection against snooping or
identity are typically conducted over TCP port 80, using the
HTTP protocol. We call this ‘port 80’ service or HTTP.

Web services which are protected by Transport Layer
Security (TLS) are usually conducted over TCP port 443,
commonly called ‘port 443’ or HTTPS.

There have been many studies of HTTPS. However, they
have focused on two main topics.

1. The certificate landscape, e.g., see [15]–[17], in which the
problems with certificate distribution have led to security
holes, and consequent fixes1.

2. Comparisons between HTTP and HTTPS performance,
looking primarily at their latency difference, e.g., see [5],
[6], but also considering communications overhead and
energy consumption [7].

As a consequence of using HTTPS, an additional handshake
is needed to establish a connection. There can be no effective
proxy-caching of the content, and filtering (e.g., by firewalls)
is hampered. HTTPS also uses cryptography which induces
extra computational (and hence energy) costs, which may be
trivial on a modern computer, but may be important on battery-
operated devices, such as mobile phones.

A deeper consequence of the additional layer of complexity
is the potential for failures. Surprisingly, studies of HTTPS
appear to assume basic reachability, or more correctly, they
appear to assume that HTTPS reachability, while perhaps not
perfect, will be no worse than HTTP. However, it is not
obvious that this will be so. A prominent browser maker asked
if the Asia-Pacific Network Information Centre (APNIC) Labs
ad-based measurement system [12] could see if a statistically
significant number of users were unable to access TLS pro-
tected web resources.

So, what are the possible concerns? They range widely; the
following is an incomplete list.

1. A browser or OS may be too old to perform TLS at the cur-
rent specification. The web server used in this experiment
did not offer older approaches, such as RC4 cryptography,
so there is a chance that pre-TLS 1.x browsers will fail.
However, the older standards are no longer considered
secure, and it is our view that providing a false appearance
of security is worse than providing none. It might be
tempting to tell users to “catch up”, but this is infeasible
on mobile networks that sell captive locked phones left
behind on “old cold” protocol variants.

2. Some modern browsers use intermediate systems to speed
up or cache data. Opera, for instance, deployed a world-
wide “anycast” cloud of intermediates to offer speed-
up services, performing tasks such as JPG compression,
to make the web faster. It is possible that this service

1TLS security is predicated on valid certificates, and there have been significant
problems resulting from this weakness in the past. However, Certificate Transparency
mitigates many of these issues [16].

notionally works with TLS, but that it works badly for
flows it has in port 80 that move up into TLS because
the state doesn’t exist. Other well-meaning intermediary
systems might break such up-lifts.

3. The additional overhead of the extra handshake makes the
session more vulnerable to network problems, and hence
less stable.

4. TLS protects against the threat of bad actor man-in-the-
middle attacks. If an on-path attacker intercepts the session
and attempts to hijack an aspect of the content, TLS should
prevent the flawed connection. However, if such attacks are
prevalent, they become DoS attacks on the HTTPS service.

5. A firewall along the path might block encrypted traffic as
a matter of course. Though most firewalls allow port 80
traffic, they sometimes block all other ports. This might be
considered misconfiguration, but misconfiguration is not
uncommon [18].

6. Firewalls or other middle-boxes may perform their own
hijacking of a connection through installed certificates on
user machines.

7. Flaws in implementations or configuration [19], [20].
Our approach uses a cross-site reference within an adver-

tisement in order to create a measurement. The underlying
idea is not new. It has been used to measure DNSSEC and
IPv6 deployment, among other features, e.g., [21] (or for a
more general review see [22]). However, our approach differs
in several respects from [22]. The most important is that it
performs a pair of measurements: a control based on HTTP,
and an actual measurement of HTTPS, the focus. As far as
we are aware, past studies have typically lacked a control,
and therefore have been hard to interpret statistically.

However, APNIC’s measurement infrastructure also differs
from other approaches in that we use (paid) web-advertising
to instantiate the tests (details below). Additionally, all fetches
are to an APNIC-managed server, avoiding the major ethical
controversies of past experiments (see Section III-D for more
discussion of this issue).

B. Simple Statistical Background

Here we lay out the key statistical background. The material
is somewhat tutorial, but as these techniques are not commonly
applied in the Internet measurement context, we feel it is
valuable to be precise about the methods and their rationales.
We start by defining terminology:
Observation: the collected responses of a single client’s
connection attempts (see Section III-A for details).
Sample: the set of all observations.
Measurement: a particular feature of an observation, for
instance, whether a successful HTTPS GET was completed.
We also call these response variables, and denote them by
random variables (RV) Y (j), where j ∈ {HTTP,HTTPS} is
the treatment, and the measurement

Y (j) =

{
1, if measurement j succeeds,
0, otherwise.

The sample is the collection of instances {y(j)i } of this RV.
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Test: a statistical test applied to the data.
Categorical variable: one that takes a set of discrete values.
Predictor: a variable, also called a covariate, whose value
may influence the outcome of the measurements.

We make a distinction here between a measurement and
a test, the latter meaning a hypothesis test to discriminate
between a null-hypothesis H0 and its alternative H1. The
advantage of a hypothesis test is that it is consistent and
repeatable with strict, precisely-defined assumptions and in-
terpretation. Through their use we can avoid making common
errors, such as over-interpreting limited evidence.

The test is conducted with respect to a significance level,
α, chosen at the outset of the experiment. Here we use the
common choice of α = 0.05. This sets the Type I error
probability (the chance we reject H0 incorrectly). The Type II
error probability (the probability we fail to reject H0 when it is
false) is determined by the power of the test on the particular
data. Thus we cannot control for it, but can ensure it is small
by providing enough observations.

We calculate a test statistic, determine from this a p-value,
and then reject the null-hypothesis if the p-value falls below
α. The common interpretation of the p-value is that it is the
probability, given the null-hypothesis is true, of observing
the at least the given test statistic. Hence, a small p-value
can be taken as evidence that the null-hypothesis is invalid.
However, we must be careful of this interpretation, because of
the underlying statistical nature of the problem.

When the null-hypothesis is true, we would expect to see
a uniform distribution of p-values over a set of repeated
experiments, which includes some values <α, leading to Type
I errors. In order to avoid incorrect inferences in repeated
experiments, we should try to control the Family-wise error
rate (FWER) not the Per-comparison error rates (PCER). We
shall do so here using the Bonferroni correction [23], in which
α is divided by the number of tests in the family. We should
note that this is rather conservative, and that there are other
more complex procedures available [23], but we deliberately
use a conservative FWER here.

Our experiment is a matched pairs experiment. That is,
the pair of measurements is conducted on the same client,
the question of interest being whether some users have more
trouble with HTTPS than HTTP. This cannot be answered
simply by comparing the proportions of successes for each
measurement, because in a matched pair experiments the
measurements are very likely correlated. Simply plotting the
two probabilities, while useful in an explanatory sense, would
not take these correlations into account.

However, the inclusion of our control experiment makes
it possible to ask this question in the formal context of
hypothesis testing using McNemar’s test [24], with hypotheses:
• H0 is that p1 = p2; and
• H1 is that p1 6= p2;

where pj is the probability that the jth measurement of any
particular observation is successfully completed. Rejecting the
null implies significant evidence that the difficulty of the two
measurements is different.

C. Rasch Modelling and Analysis

Hypothesis tests are an important starting point, but they
only tell us “if” but not “how much?” This paper further
proposes the use of Rasch analysis, an approach within the
broader area of Item Response Theory (IRT). It is best illus-
trated by its application to the analysis of exams. An exam
consists of a list of m questions, performed by n students.
Each student answers each question either correctly, or not,
forming the binary response variables Y (j)

i , where i is the
student (in our context an observation) and j is the question
(a measurement).

Rasch modelling is one of the most popular strategies within
IRT [13], [14]. It posits that there are latent variables, namely:
1. the ability or proficiency of student i, denoted αi; and
2. the difficulty of question j, denoted βj ;
that determine the probability that student i answers question
j correctly. The variables are latent in that we do not know
them a priori.

In its simplest case, i.e., a dichotomous response, we have
response variables Y (j)

i , which are Bernoulli random variables
indicating a successful answer to a question, whose probabil-
ities are modelled as

p
(j)
i = P

{
Y

(j)
i = 1

}
=

exp (αi − βj)
1 + exp (αi − βj)

. (1)

The logistic function above has an inverse called the logit
function. Applying the logit to (1) gives

logit(p(j)i ) = log
(
p
(j)
i /(1− p(j)i )

)
= αi − βj , (2)

a linear relationship between the logit and the parameters.
Rasch modelling’s enduring appeal within IRT [13], [14]

arises because:
• it simplifies the relationships so that reasonable estimates

can be made, even though we have only one instance of
each student attempting each question;

• unlike the conventional statistical paradigm, where param-
eters are fit to data, and accepted or rejected based on the
accuracy of the fit, in Rasch modelling the objective is to
obtain “data” that fit the model, i.e., the latent predictor
variables; and

• the Rasch model embodies the principle of invariant
comparison, in which (broadly speaking) the effect on the
outcome of a question is separated into the affect of the
respondent, and the question’s difficulty.

The approach is not limited to modelling examinations, but
can be applied to a set of observations such as we have.
However, in traditional dichotomous Rasch analysis, each
student answers each question one of two ways (correctly or
incorrectly). Here, the naı̈ve approach would be to consider
each observation as a “student” with two questions (the HTTP
and HTTPS measurements), but then we would have well
above the number of students typically considered, blowing
up the computational load for most algorithms. Moreover, this
would be banal, as performance at this level of granularity is
immaterial to us.
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purus. Aenean turpis ipsum, rhoncus vitae, 
posuere vitae, euismod sed, ligula. Donec 
nonummy lacinia leo. Curabitur risus urna, 
placerat et, luctus pulvinar, auctor vel, orci. 
Praesent a eros. Lorem ipsum dolor sit 
amet, consectetuer adipiscing elit. 
Quisque arcu ante, cursus in, ornare quis, 
viverra ut, justo. Ut eu metus id lectus 
vestibulum ultrices. Nam malesuada 
sapien eu nibh. Aliquam imperdiet lobortis 
metus. In hac habitasse platea dictumst. 
Etiam sodales orci nec ligula. Vestibulum 
ante ipsum primis in faucibus orci luctus et 
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Fig. 1: The observation process: numbers indicate sequence.

In practice, we would like to group measurements into
meaningful partitions, but we then depart from the standard
dichotomous Rasch model.

There are at least two alternative approaches; we might think
of these partition’s subsets as either being comprised of:
1. a group of similar students, who have an underlying

property in common (usually we assume members of the
group have proficiencies that are random variables with a
common mean and variance); or

2. a group of repeated measurements of a single “student”
who corresponds to the particular subset, and the responses
are now binomial random variables corresponding to the
number of correct measurements within the subset.

The two assumptions lead naturally to different algorithms,
and as the second is non-standard, we leave analysis its details
until Section IV.

III. EXPERIMENTAL METHOD

A. Measurements

APNIC Labs uses web advertising to measure browser
behaviour worldwide [12]. The advertisement is written in
HTML5 and fetches multiple pixels in the various protocol
exchanges under test (DNS, TCP/UDP, IP, TLS). The system
is 100 lines of JavaScript, gzip compressed to 5kb of data,
which is a small cost in web-page loading.

The process is illustrated in Figure 1. The observations start
(at 5a) with a primer query initiated by the advertisement
served to the user’s browser via standard advertisement in-
frastructure. The primer query is an HTTP GET, and the body
of the response is a set of measurements to be performed. Each
measurement is a discrete URL with the unique client identity
(CID) encoded in it, and is fetched under a ten-second timeout
via an asynchronous JavaScript web fetch; on completion of
a measurement, the time is recorded. On completion of all
measurements, or the ten-second timer, a result web query
is sent, which encodes the measurement results in the query
argument as a sequence of labels, showing the time or ‘null’
if they did not complete inside the time limit.

The web logs show whether a primer/result pair was valid,
and if so, we analyse the results. Observations without primer

TABLE I: Experiment duration, and number of observations. Analy-
sis focuses on the 3.3 million experiments initiated with HTTP (with
a subsequent HTTPS GET).

Duration
(days)

Unique
client IDs
(millions)

Valid
responses
(millions)

HTTPS
init.

(millions)

HTTP
init.

(millions)

25 192.5 132.4 129.1 3.3

and result success are filtered from the sample. The goal in
discarding these is to focus on the measurements with the
highest signal to noise ratio — measurements without a valid
pair indicate problems other than a failure of HTTPS, and
hence don’t add much information.

The primary goal of these measurements was to collect
information about ability to perform HTTPS. Google requires
that advertisements placed over a TLS-secured session remain
in TLS. Thus we could not recruit TLS users into a test of
insecure web access. However, we were permitted to take an
HTTP session and include fetches of web elements over TLS.
Therefore, our observations measure HTTP users who were
asked to fetch a web asset over TLS, thus detecting their ability
to upgrade to TLS, which is not precisely a raw HTTPS access.

We focused on connections initiated over HTTP because
this HTTP signal provides a “control.” The priming process
and the HTTP control measurement follow an identical con-
nection path. Hence, if the observation is valid, the client has
demonstrated the ability to perform an HTTP GET; therefore
failures of subsequent HTTP GETs provide an indication of
the “noise” in the system, i.e., the baseline rate of random loss
against which we should measure HTTPS connection failures.

The data were collected between the 10th of November
and 4th of December, 2016. Table I shows the total set of
client IDs, and the number of valid responses. A large number
of connection attempts defaulted to initiating over HTTPS.
Table I shows the decrease in the number of experiments as
we progress through HTTPS to only HTTP initiations.

Initial exploratory analysis suggested that a signal existed,
but at an intensity that could not be easily measured. The
situation is analogous to experiments conducted on mice who
are genetically modified to have cancer. We wished to measure
factors that affected a situation with small probability, and so
we inflate the probability of seeing the phenomena of interest.
In our case, we focused on observations where the initial
connection was HTTP, because these were the cases where
failures of HTTPS were most often expected to occur.

As noted, it is a standard statistical approach to collect
data in this way, but we must note that the observation is not
representative of a “typical” Internet user. For instance, were
we to measure a failure rate of 1% on these observations, this
does not mean that the general population has a 1% failure
rate. However, the question of interest here is not the absolute
value of the failure rate, but whether HTTPS is “harder” than
HTTP, and what factors affect the failure rate.

More formally, the main goal was to measure success/failure
for sessions upgrading to TLS and to see if those sessions
which could not upgrade to TLS were still successful on port
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80. In other words: “are there stranded users?”
Google’s infrastructure does not carry forward the referring

site, and DHCP can reallocate IP addresses, so we cannot be
certain that there were no repeats. However, the advertising
infrastructure is intended to reach many discrete individuals, so
the number of repeats should be very small. We also removed
the small number of obvious duplicates from the data. There
is some complexity in this process, resulting from apparent
fetches from the same IP address that cannot be resolved due
to the potential presence of middle-boxes such as Network
Address Translators (NATs). We preserved entirely unique
requests for the primer, but removed additional fetches without
a new primer. As a result, we cannot claim that there are no
duplicated observations, but they should be minimal.

B. Data Collected

The experiment logged all of the web fetches, using domain
names directed to APNIC-managed DNS and web servers. We
also captured the packet flow to relevant services: port 80, port
443, ICMP, DNS, as well as any fragmented IP state.

The combination of web logs, DNS logs, and packet cap-
tures allowed us to collate experiments by their IP address and
identity in the DNS name, and as presented to the web. Thus
we were able to derive the exact sequences of events in any
observation.

In the case of this experiment, the data were processed into
the form of a series of flags indicating (1) the success or failure
of each stage, and (2) whether the measurement succeeded
within a timeout. The delays were recorded in each case up
to 120 seconds, but for our purposes we recorded success if
the measurement completed within a timeout of 10 seconds.

In the data analysed, unique client IDs were assigned to
anonymise the data. We used code which harvests system
entropy and time, to obtain probably unique (modulo birthday
paradox) non-sorted 96-bit numbers. We then mapped them
into hex (see [25], for the code that was embedded in the
NGINX [26] web server).

C. Classification of Covariates

The secondary goal here was to identify the qualities
behind the quantities: i.e., can we understand these users in
terms of browser type, ISP, economy, or operating system,
in order to identify specific problem causes? In practice, this
is important because the goal behind APNIC’s participation
in such experiments goes beyond simply finding problems.
Ideally, the experiment should also help develop strategies to
remediate any problems found.

For the purposes of the analysis, a set of qualities was
identified, which we felt were simple, easy to reproduce by
other people, and provided useful groupings for understanding
causes. These qualities were:
• country,
• region (based on United Nations sub-regions [27]),
• origin Autonomous System Number (ASN),
• browser, and
• Operating System (OS).

We used the daily BGP table collected at AS4608 to map IP
addresses to origin ASN. There are well-known problems in
such a mapping. However, those problems are most prevalent
in infrastructure addresses, and we measured “eye-balls” here;
inter-AS links do not browse [28].

Likewise, mapping of eye-balls to geographic locations is
more accurate [28] than mapping arbitrary IP addresses to ge-
ographic locations. In this paper, we used MaxMind [29] data
to geolocate the IP addresses, but only at the country/region
levels, and so expected a reasonably low error rate.

We also logged each client’s user-agent string, which pro-
vides details of the client’s browser, OS, and device. To collect
and parse the information we used the Python uabrowser
library [30]. It is known that the user-agent string is spoofed
in some cases, for instance the ToR browser bundle does so by
default (e.g., it pretends to be running on Windows, regardless
of the underlying OS). However, there is no easy way to avoid
this problem at present, and it remains a caveat on the browser-
and OS-level results.

We also considered categorising the client’s device-type,
but this was too noisy to be useful at this stage, due to the
large number of uniquely identified device types by vendor
and version-string.

For each of these categories, we collated them into a series
of unique values, and then used a one-way random relabelling
to anonymise the categories. There might be enough data
to perform some act of deanonymisation, to obtain values
for some categories, However, it is important to note that
this level of blinding was not intended for the protection
of individual privacy (already protected through the client
ID anonymisation, and unlikely to be compromised by the
additional coarse-grained categorisations). Rather it was in-
tended to allow the statistical analysis to proceed, unbiased
by preconceived notions of the likely results.

D. Ethical Concerns

Google’s advertising infrastructure was used here, and so
we reviewed compliance with Google and APNIC lawyers,
and complied with Google’s legal restrictions on the mea-
surements. In particular, these excluded use of Personally
Identifying Information (PII), which in any case we did not
require or want. End-user IP addresses were only used for
ASN and regional classification, and were then anonymised
via a one-way-mapping.

As in many Internet measurement experiments the nature of
the measurement technique precluded voluntary recruitment.
However, we strictly followed any suggestion that the users
wished to opt out of such studies. For instance, end users
who had enabled ‘do not track’, who had disabled JavaScript,
or who ran ad-blocking software were not recruited. Also, as
far as possible, no users were repeatedly asked to run the
experiment, in order to place minimum load on any one user.

These measurements were also less contentious than others
that have applied similar cross-origin requests e.g., [22]. TLS
is used ubiquitously for banking, login, end-user tracking
by less responsible advertisers, “bread crumbs” and web-site
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Fig. 2: Box and whisker plot of difference pHTTP − pHTTPS

by covariate, showing the interquartile range (shaded region) the
confidence interval for the estimate of the median (notch), Tukey’s 1.5
IQR, (whiskers) and outliers (crosses). Note that the lower quartile is
always positive, as are all whiskers except those for ASN, suggesting
that HTTPS is harder than HTTP. Also, if covariates had no effect
on the result, these should all have similar interquartile range and
median, the differences therefore suggest some structure.

logistics. Evidence suggests that the rate of TLS in the public
web is high (above 50% [7]) and very likely significantly
higher given the age of that study, and that it has been rapidly
increasing in recent years [9], [10]. Therefore, the simple
presence of a request to fetch a web asset over TLS does
not represent a high-risk activity.

Moreover, the measurement site to which the advertisement
redirected requests is innocuous, belonging to a regional
address registry (APNIC), so we were not able to discern any
reasonable risk to participants from such a connection.

In this experiment, those researchers not employed by
APNIC were exposed only to anonymised data, except for
those statistics reported here.

IV. ANALYSIS

In this section, we discuss the results of the analyses. We
will start with “broad brush” simple hypothesis tests, then
focus on those same tests, applied to country, region, ASN, OS
and browser. This will be followed by a more comprehensive
Rasch model, which analyses the data as a whole.

Figure 2 shows a box and whisker plot [31], [32] of the
differences organised by the various predictors. Note that the
lower quartile is always positive, as are all whiskers except
those for ASN, suggesting that HTTPS is harder than HTTP.
Our task is to determine whether this effect is statistically
significant.

Also, if covariates had no effect on the result, these should
all have similar interquartile range and median, the differences
therefore suggest some structure.

A. Standard Statistical Tests

We applied McNemar’s test with a significance level of
α = 0.05, applying the appropriate Bonferroni corrections
when conducting a set of multiple tests (i.e., we used signifi-
cance α/n for a family of n tests). Note that in some cases,
e.g., when we were testing against ASN, n was quite large,
and so the actual threshold was very small. Less conservative

TABLE II: Statistical tests applied to the whole dataset. Note that
very small p-values are reported via a bound.

Test p-value Accept/Reject
Fisher < 2× 10−16 Reject null

McNemar < 2× 10−16 Reject null

corrections exist (for instance the Sidak or Holm-Bonferroni)
but the results here are conclusive without needing the extra
power gained through these more accurate corrections.

The results, shown in Table II, for the test applied to
the whole dataset was a p-value less than 10−16 strongly
supporting a difference in the two measurements. This finding
must be qualified: although the two measurements are matched
they occur in order, and hence, there may be some effect on
the second measurement resulting from the state created by
the first. So we must understand that this experiment concerns
lifting a connection up from HTTP to HTTPS, not an arbitrary
HTTPS connection (see the detailed notes in Section III).

It is important, also, to verify that this is not caused by
some confounding effect of the covariates. If the covariates
were truly irrelevant, we would expect that interquartiles and
medians should be the same (within the ranges of natural
variation shown by the confidence in intervals in the case of
the median), and hence Figure 2 provides evidence that the
covariates are important.

Therefore we now consider what part the covariates (coun-
try, region, ASN, OS and browser) play. We chose, at least
initially, to be conservative by only analysing groupings with
at least 500 observations. It is quite possible that smaller
groupings would have been amenable to analysis, but we had
no need (here) to describe the relationships between all of
the rarer groupings, as our goal was to ascertain whether the
overall result was supported on a finer level of granularity.

The number 500 was chosen through an initial exploratory
analysis, which noted that some of the probabilities in question
were quite close to 1, and hence statistical rules of thumb
required a moderately large number of observations. As we did
not know exactly what these probabilities were a priori, we
chose a conservative lower bound. We also found, as Table III
shows, that excluding the groups with a small number of
observations excluded only a small percentage of the data.

The results can be seen in Figure 3, which shows histograms
of the distributions of p-values over the set of tests grouped
by the various categorical covariates described above. The
important fact to note is that most of the p-values are small.
We cannot see (at the resolution of the plot) whether the p-
values fall below the threshold, so Table III summarises the
tests, showing that in a large proportion of the cases we should
reject the null-hypotheses. Thus we have significant evidence
for a difference in most of the groupings.

Interestingly, ASN is the grouping with the lowest propor-
tion of rejected null-hypotheses, while we might have expected
that ASN would have a larger effect on the network aspects
of the problem. However, remember the large Bonferroni
correction in this case, which leads to a very conservative test.

Hypothesis testing could be expanded here in several ways.
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Fig. 3: The distributions of p-values for the McNemar tests, applied across country, region, ASN, browser and OS. The distributions in all
cases vary dramatically from a uniform distribution, with values heavily skewed in the direction of p = 0.

TABLE III: Hypothesis tests summaries for different covariates. Ñ
is the number of groups left after excluding those with fewer than
500 observations. The “% of data” is that retained by this filtering.
And the final column reports the proportion of McNemar tests for
which we reject the null hypothesis over the Ñ groups.

covariate Ñ % of data McNemar
country 119 99.6 0.840

region 20 100.0 0.950
ASN 458 93.1 0.555

browser 28 99.9 0.929
OS 14 100.0 1.000

Multiple-comparisons could be applied, for instance, to test
differences between countries or some other covariate. How-
ever, in doing so there would be O(n2) comparisons for n
countries, and these hypothesis tests are not all independent of
each other, complicating the test procedure greatly. Moreover,
much of this theory has been developed in domains where the
each measurement requires a physical or social experiment,
and therefore it seeks to make best use of a limited set of
costly measurements. We have many measurements, and so
these refinements are not needed. Instead, in our next step we
opt to apply an approach called Rasch analysis.

B. Rasch Analysis

The disadvantage of the previous tests is they provide only a
yes/no answer (or really a yes/maybe answer), while we would
like, for instance, to be able to say how large the difference is.
Here we use Rasch modelling to perform this analysis, but as
we are not interested in the per-observation performance we
use a grouping strategy. We start by defining Gk to be the kth
group of observations determined by a covariate. We consider
here two modelling approaches.

The first model still follows (2), but now we assume that the
proficiency of each student is distributed as αi ∼ N(λk, σ

2),
for i ∈ Gk, where λk is the group mean proficiency, and σ2

is the common standard deviation within groups. The task is
then to estimate λk and σ2. The careful reader will note the
additional assumptions introduced by this model.

The second approach takes a simpler model, that

logit(p(j)i ) = αk − βj . (3)

for i ∈ Gk, We now only estimate a group proficiency αk,
not individual proficiencies. This has the disadvantage that it

might not be able to fit the data as accurately, but it frees from
distributional assumptions.

The former approach has been developed further, in that
exact results are known, and there are off-the-shelf solvers
using Marginal Maximum Likelihood Estimation (MMLE). We
use IRTm [33], [34], a Matlab toolbox allowing quite general
models to be estimated. Apart from its additional assumptions,
in MMLE each categorical variable with m categories is
deconstructed into m binary variables, each an indicator for
one possible state of the original variable. For instance, the 119
countries in our data result in constructing a covariate vector
consisting of 119 binary elements, leading to an estimation
procedure taking considerable memory and time.

The results are illustrated below, in conjunction with those
of the second approach, in which we assume each group
consists of a set of repeated measurements. However, the stan-
dard Binomial Rasch models assumes each measurement is
repeated a fixed number of times. For instance, in partial-credit
Rasch models [35], a student may obtain some proportion
of the marks for a question, but each student answers the
same question, with the same total possible marks. But in our
groupings, the number of “total marks” would vary, depending
on the number of client observations that fall into the group.
This case does not appear to have been treated in the literature,
and hence we wrote our own Alternating Least Squares (ALS)
algorithm (also in Matlab) to estimate the parameters.

The algorithm alternates between fitting the αk and the βj
values, keeping the other parameters fixed. It also needs an
additional fixed point of reference (because the variables αk

and βj are not otherwise uniquely determined), which we fix,
without loss of generality, by E[αk] = 0.

We assessed the two approaches in this (somewhat non-
standard) application by comparing computation times, and
Root-Mean-Square (RMS) fitting errors, as shown in Figure 4.
All computations were made on an 8 core, Intel i7-6900K 3.2
GHz, running Linux Mint 18, and Matlab R1016b (the largest
case for the MMLE algorithm did not complete within 24
hours and so is excluded), The ALS algorithm is orders of
magnitude more accurate and faster, and so in what follows
we focus on the ALS approach. Note also that the estimation
errors in ALS reach a maximum in the order of 5%, which is
reasonable given the problem of interest.

Ideally, we could group by all covariates at once. However,
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Fig. 4: Computation times (blue) and RMS errors (red) for the two
approaches to Rasch modelling.

this results a very large number of covariates in the MMLE
approach, while in the ALS approach, we end up with very
few observations in many of the bins, due to the combinatorial
number of bins. Thus we analyse each of the categories as
separate groupings. As before, we consider only groupings
with at least 500 observations.

The first detail to consider is the βj values, indicating
the difficulty in completing the two measurements (HTTP,
and HTTPS). The estimated values are shown in Table IV,
along with their difference. Larger values indicate additional
difficulty with a measurement. The positive values of the
difference indicate additional difficulty in the HTTPS measure-
ments compared to HTTP. From all points of view, HTTPS is
more difficult than HTTP.

We also see some consistency, namely, the differences in
βj are similar for location (country, region and ASN), and for
end-point software (OS and browser), as you might expect.
Notably the former group seems to have a larger impact on
success than the latter, so it appears that while a client’s device
is important, the location from which one accesses the Internet
is more important.

The second set of parameters to examine are the αi values,
namely, the ability or proficiency of a particular covariate
group to perform any of the measurements, large values being
better. Figure 5 shows the distribution of αi values for the
region, OS, and browser covariates. We see that they might be
coarsely considered to follow a Normal distribution. The data
by OS fit this assumption least well, but remember that there
are only 14 values here, and we expect to see some natural
variation here, because of measurement noise.

Note that we do not draw, from these values, inferences
about the particular quality of HTTPS in a particular country
(or other grouping). The αk variables record the ability of a
group to perform both HTTP and HTTPS measurement. This
parameter separates out the “noise” inherited from the quality
of Internet connections through a particular country from the
HTTP v HTTPS question.

However, we also see outliers, here defined as those values
that fall more than 1.96 times the standard deviation from the
mean, i.e., outside the 95th percentiles. These are not extreme
outliers, but there may be some interest in these, so we have
reversed the mapping (for these outliers only).

TABLE IV: ALS estimates of Rasch “difficulty” parameters with
different groupings. Larger values indicate a smaller chance of
measurement success. Note the increase in difficulty for HTTPS.

country region ASN browser OS
βHTTP -5.26 -4.91 -6.07 -3.94 -3.99
βHTTPS -2.92 -2.74 -3.80 -2.29 -2.12

Difference 2.34 2.16 2.27 1.65 1.86

• country: five positive outliers: Suriname, Macau, Cyprus,
Latvia, Korea; and one negative: Macedonia.

• region: no outliers.
• ASN: there is a list of 22 positive outliers, but only one

negative: AS58539 (listed as China Telecom).
• browser: positive outlier: Amazon Silk and no negatives.
• OS: one positive outlier: ChromeOS and no negatives.

Some of these might be slightly surprising – for instance, many
may not have expect Suriname to be in the list of positive out-
liers. However, it should be remembered that the measurement
methodology filters participants who successfully complete the
primer and results query successfully. So this result really says
that, those who have a good connection, have a very good
connection, i.e., , if they complete the primer and result, they
are very likely to be able to complete the other measurements.

Similarly, the positive outliers ChromeOS and Amazon
Silk (the Kindle Fire’s browser) are perhaps indications of
consistency amongst all such devices, because of the stronger
constraints on these devices. For instance, Amazon Silk routes
requests through remote proxy servers powered by Amazon
EC2, which provide high-performance connection speeds and
computing power not normally available to a mobile form
factor, and apparently improve the consistency of responses.

Hence, though these outliers may be interesting, the un-
derlying point is not that any particular location or device
group has a given αk, so much as the parameter allows us to
disentangle these effects from those of the two measurements
(HTTP and HTTPS), and thus see the latter in isolation.

In summary, there are two main conclusions to be drawn.

1. The measurements show that there is significantly more
difficulty in performing HTTPS than HTTP measurements.
The difference is often small, necessitating some extra care
in order to determine whether the difference is significant.

2. There are country, OS, and browser differences, mainly
important through a small set that exhibits more extreme
variations from the norm.

One last important insight is that the dependence on the
covariates indicates that the results are not an artefact of
APNIC’s measurement infrastructure, as that would remove
dependency on point of origin effects.

V. CONCLUSION AND FURTHER WORK

Using a large set of measurements (data provided at
bandicoot.maths.adelaide.edu.au/HTTPS/ ), and detailed statis-
tical modelling we have shown that a small cohort of users in
the real world will be adversely affected if HTTPS is adopted
universally. That cohort is not a large proportion of Internet
users, but those users deserve our attention.
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Fig. 5: Histograms of αk values for ALS algorithm. Positive values
indicate a favourable probability of measurement success.

We have categorised measurements by country and region,
their provider (origin ASN), browser and operating system,
and shown that all of these factors affect a client’s facility with
HTTPS. The range of factors points to a range of causes for
the blockages. The browser/OS combination suggests a tech-
nological problem, but the other covariates suggest problems
based in the network near the clients.

In the future, we plan to further investigate, and use the
details of the analysis with extensions to understand better
correlations in covariates, to help focus efforts onto relevant
development to mitigate the problem.

The use of careful statistical methods was vital in this
study. The underlying signal is weak, and hence required
“amplification” and careful analysis so as to be able to make
confident statements.
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