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Abstract—Software-Defined Networking (SDN) has led to a
paradigm shift in the way how networks are managed and
operated. In SDN environments the data plane forwarding rules
are managed by logically centralized controllers operating on
global view of the network. Today, SDN controllers typically
posses little insight about the requirements of the applications
executed on the end-hosts. Consequently, they rely on heuristics
to implement traffic engineering or QoS support. In this work,
we propose a framework for application-awareness in SDN
environments where the end-hosts provide a generic interface
for the SDN controllers to interact with. As a result, SDN
controllers may enhance the end-host’s view of the attached
network and deploy policies into the edge of the network.
Further, controllers may obtain information about the specific
requirements of the deployed applications. Our demonstration
extends the OpenDaylight SDN controller to enable it to interact
with end-hosts running a novel networking stack called NEAT.
We demonstrate a scenario in which the controller distributes
policies and path information to manage bulk and low-latency
flows.

I. INTRODUCTION

The Software-Defined Networking (SDN) paradigm
promises to facilitate the management and operation of
datacenter networks by enabling an automated, centralized
control and optimization of pooled network resources. To
achieve this goal, network controllers strive to maintain a
rich and up-to-date global view of the network topology and
the resources available therein. In order to efficiently map
network traffic to the physical network substrate, controllers
require information about the properties of flows traversing
the network. Flow level information may be extracted by
monitoring forwarding devices and used to obtain valuable
metrics for traffic engineering. However, such information
often does not offer the SDN controller a full picture of the
myriad of network applications deployed at the edges and
their respective requirements. For example, one may consider
the wide range of network applications which tunnel traffic
over TCP on port 80. In such cases, inferring whether a
network flow is associated with a conferencing application
with low latency requirements or a low bandwidth instant
messaging application is a challenging task.

Application-aware networking [1], [2] refers to the ability
of an intelligent network to consider the requirements of
applications connecting to it and, as a result, optimize the

performance of the individual applications as well as that of
the overall network. To achieve application awareness, end-
host applications may interact with a network controller to
express their specific resource demands or obtain feedback
about the current network conditions. Several recent proposals
utilize local agents in end-hosts dedicated to collect metrics
from applications and characterize them (e.g., [3]). Further,
controllers may utilize their global view of the network to
configure the behavior of network connections initiated by
end-host applications and tune transport protocol parameters
(e.g. [4]). The use-case specific approaches in these and other
related works illustrate a clear demand for mechanisms that
integrate end-host applications into SDN environments.

Building on previous successes, in this demo we introduce
a generic, overarching framework for end-host SDN integra-
tion, integrated into the NEAT transport architecture [5]. Our
framework provides structured interfaces for communication
between applications and external controllers. The framework
includes an expressive policy system which is able to fulfill
a large range of use-case requirements, without requiring a
re-engineering of the involved applications. We introduce our
framework in the next section, followed by a description of
the demo in Section III.

II. END-HOST SDN INTEGRATION WITH NEAT

The NEAT transport architecture [5] and accompanying
software stack [6] is designed to offer a flexible and evolvable
transport system. Applications interface the NEAT System
through an enhanced API that effectively decouples them
from the operation of the transport protocols and the network
features being used. This allows the best transport option to
be configured at run time based on application requirements,
current network conditions, and the supported transport ser-
vices on the path. Applications may supply the NEAT System
with the requirements desired for each connection as well as
optional hints about the type of traffic that will be transferred.

A key component of the NEAT framework is the Policy
Manager (PM), which is responsible for matching application
requirements with system policies as well as available informa-
tion about system and network state, stored in a Policy Infor-
mation Base (PIB) and a Common Information Base (CIB),
respectively. For each application request, NEAT configures
and establishes the most suitable transport connection, basedISBN 978-3-901882-94-4 c© 2017 IFIP
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Fig. 1. Demonstration architecture

on a ranked list of feasible connection candidates generated by
the PM. As a PM runs on each NEAT-enabled end-host, it pro-
vides an ideal hook, enabling SDN controllers to influence the
parameters of any connection instantiated through NEAT. To
this end, NEAT exposes a REST API through which external
entities can query and modify the contents of the PIB and CIB
repositories. As a result, logically centralized controllers may
supply end-hosts with information about end-to-end, network-
wide path characteristics such as latency, available bandwidth
or loss rates. This information is automatically utilized by
the PM to determine connection candidates which best match
specific application requirements. In addition, the PM may
mandate which network paths should be used for certain traffic
classes and influence the parameters of transport connection
by deploying suitable policies at specific end-hosts.

III. DEMONSTRATION

This demonstration showcases the interaction between
NEAT-enabled end-hosts and an SDN controller using the
NEAT framework. The scenarios illustrate the management
and handling of flows with different requirements. The NEAT-
enabled end-hosts are interconnected through an emulated
network using the CORE emulator [7] (Fig. 1). Inside CORE,
we use nodes running Open vSwitch that are controlled by the
OpenDaylight (ODL) controller using the OpenFlow protocol.
We extended ODL with a module that implements a north-
bound interface for communicating with NEAT-enabled end-
hosts. In addition, the controller is responsible for installing
flow rules in the managed switches.

In the demo, we show how an SDN controller may optimize
the placement of bulk transfers and latency-sensitive flows for
a given network topology. The controller uses NEAT policies
to instruct applications to tag transfers as elephant flows using
a dedicated DSCP pattern if the flow size exceeds a pre-
defined threshold. In addition, the controller implements a
path probing approach by creating monitoring packets to deter-
mine latencies for different network paths [8]. The controller
then provides end-to-end latency estimates to the end-hosts
through the host’s CIB repository. As client applications, we

implemented a simple NEAT file transfer client that runs on a
host with the NEAT framework enabled, and a corresponding
server (not necessarily NEAT-enabled). For each transfer, the
application on the NEAT-enabled host indicates the amount
of data to be transferred, through the NEAT API. In addition,
we implemented a NEAT-enabled real-time monitoring agent,
which transmits periodic sensor readings to another host. The
agent also uses the NEAT API to indicate its low-latency
requirement.

Whenever a new file transfer is initiated, the flow size may
trigger the elephant flow policy installed by the controller. The
NEAT stack thus marks the packets with the DSCP value,
which is used by the controller to map the large flows to high
capacity paths. Packets without DSCP markings are instead
forwarded along a pre-calculated path. The controller uses
its Path Calculator and Flow Scheduler modules to install
suitable forwarding rules on the switches between the source
and destination nodes. Similarly, whenever the low latency
agent creates a new connection, a system policy translates
the low-latency requirement to a predefined value of end-to-
end latency. The NEAT stack automatically selects the most
suitable network interface based on the latency information
pushed to the host’s CIB through the controller. The effects of
the installed policies and supplied path metrics on the network
flows can be monitored in real time through CORE’s GUI.
Also, we will demonstrate the impact of different network
topologies and different traffic specifications.
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