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Abstract—Less-than-best-effort (LBE) congestion control of-
fers a low-priority service for applications tolerant to high latency
and low throughput, like peer-to-peer file transfers or automatic
software updates. There are, however, situations where it would
be beneficial for the application to specify a soft deadline for task
completion. Examples of such situations could be completion of
backup tasks or synchronisation between CDN data centres. Since
network conditions change over time, a deadline-aware LBE (DA-
LBE) congestion control would need the ability to dynamically
adapt how aggressively it competes for capacity to meet the
soft deadline, trading low-priority behaviour for timeliness. One
candidate that shows promise as a LBE congestion control is
CAIA Delay Gradient (CDG). CDG uses changes in measured
end-to-end delay to control the congestion window. CDG has
several parameters that might help tune its “aggressiveness” in
a way that might help achieve the goal of DA-LBE congestion
control. We have evaluated CDG in order to establish how it can
be tuned to exhibit different degrees of LBE behaviour under
varying network conditions. Our results show that it is possible
to control CDG to vary its aggressiveness in a consistent way,
making it a prime candidate to implement a DA-LBE congestion
control system.

Index Terms—Congestion control; less-than-best-effort service;
deadline-aware congestion control; scavenger service.

I. INTRODUCTION

Commonly used TCP congestion control (CC) variants, like
CUBIC or Reno, provide a best-effort (BE) end-to-end service.
When a bottleneck is congested, congestion control tries to
ensure that all the flows in the bottleneck get a fair share of
the available capacity. There are, however, applications that do
not have strong requirements for low latency or persistently
high throughput, like software updates, background downloads
or backups. Ideally, traffic from such applications should yield
when other traffic arrives and quickly grab available resources
when the bottleneck is not congested. A less-than-best-effort
(LBE) or scavenger congestion control can provide such a
service.

Applications like synchronisation between CDN data
centres or distributed backups could be well served by an LBE
transport, however, these applications may have soft timeliness
constraints; ideally, data transfers should be finished before a
deadline, but not meeting the deadline would not break the
application. A deadline-aware less-than-best-effort (DA-LBE)
service would enable timely completion of transfers if the

capacity allows it, while still yielding to regular BE traffic
as much as possible. In order for DA-LBE to work, the lack
of aggressiveness in transmission, or “LBE-ness” as we will
call it henceforth, needs to be automatically adjustable in such
a way that (a) it can compete on up to near-equal terms with a
regular BE flow when needed to comply with a soft deadline,
or (b) consume very little resources when there is plenty of
time to reach the deadline. To dynamically adapt its sending
rate, a DA-LBE transport needs to consider the time remaining
until the deadline and the amount of data to be sent yet,
balancing LBE-ness and timeliness.

A DA-LBE congestion control could be designed from
scratch, but it should also be possible to leverage an existing,
non-deadline-aware method. The final goal of our work is
to explore the latter option, that is, whether it is possible to
introduce deadline-awareness into an available LBE algorithm,
simply by dynamically tuning the sender’s parameters. This
would allow the introduction of a new transport service—
i.e., LBE transport with soft deadlines—while avoiding major
protocol changes—e.g., new packet formats, or having to
change both sender and receiver—, easing deployment.

In order to find candidates for evaluation as a DA-LBE
mechanism, we have formulated three requirements candidate
congestion control algorithms should satisfy:

1) LBE-ness: The DA-LBE candidate must have the proper-
ties of an LBE congestion control: the ability to quickly
yield when BE traffic arrives and the ability to quickly
grab capacity when it becomes available. For fairness
reasons, a DA-LBE flow should not seize more capacity
than a BE flow under similar conditions.

2) Tunability: The presence of sender parameters that can
be tuned in a consistent way under different network
conditions, so as to change the LBE-ness of the conges-
tion control mechanism predictably.

3) Operating System (OS) availability: The mechanism
should be present in a stock OS for experimentation and
deployment.

Several LBE congestion control mechanisms have been de-
signed to carry background traffic (see [1] for a survey),
however, most have not yet seen any significant deployment or
real-world implementation. The majority of LBE CC methods
use measured delays, rather than packet loss (or ECN marks),ISBN 978-3-901882-94-4 © 2017 IFIP



as indication of congestion. The intuition behind this is that
increasing queuing delay indicates congestion buildup faster
than loss, allowing for a faster reaction to congestion and
yielding earlier to other competing flows.

Today, the most common LBE transport protocol is the Low
Extra Delay Background Transport (LEDBAT) protocol [2],
which is used by MacOS X for software updates and several
common BitTorrent clients [3]. LEDBAT is a delay-based CC
that aims at utilising spare capacity, while limiting to a target
value the extra queuing delay along its forward path. LEDBAT
makes use of a measured “base delay” that is meant to be
the one-way delay when the bottleneck queue is empty. Some
studies have found that LEDBAT may present issues like intra-
protocol unfairness and non-LBE behaviour (see e.g. [4]–[6]),
hence, we will not consider it further.

Other potential LBE candidates are Fuzzy Lower-than-best-
effort Transport Protocol (FLOWER) [6] and the well-known
TCP Vegas algorithm [7]. FLOWER solves some of LED-
BAT’s problems by replacing the proportional window control
scheme with a fuzzy logic controller. However, FLOWER
is fairly new, and is to our knowledge not yet part of any
operating system’s stock TCP implementation. Vegas does
show LBE behaviour (even if it was not designed as such) and
has been implemented in OS kernels, however, its dependence
on round-trip delays (RTTs) to adjust its sending rate make it
susceptible to react to delay fluctuations in the reverse path,
and is not immune to inaccuracies in base delay estimation [1].

We have therefore focused our efforts on a delay-based CC
algorithm named CAIA1 Delay-gradient (CDG) [8], originally
designed to coexist with traditional loss-based CC. CDG does
not require the base delay, like Vegas or LEDBAT. Instead,
the CDG algorithm adjusts the congestion window (cwnd) by
comparing the relative change in delay (i.e., delay gradient)
between RTT rounds and backs-off probabilistically according
to the value of the gradients. An adjustable parameter can be
used to scale the probability of backing off. As we will show
later, we can use this scaling parameter to tune CDG’s degree
of LBE behaviour towards loss-based CC. CDG is available
in both the Linux and FreeBSD kernels with several tunable
parameters available to the application programmer, including
the scaling parameter. We have thus chosen CDG for further
evaluation in the search of a good DA-LBE candidate, and this
evaluation is the topic of this paper.

The rest of the paper is organised as follows. In Section II
we present the CDG algorithm in detail, and how it could
be dynamically tuned to control its aggressiveness. Section III
describes our experimental environment for evaluation of CDG
and discusses the results. Finally, Section IV summarizes and
concludes the paper.

II. CAIA DELAY-GRADIENT (CDG)

CAIA Delay-gradient (CDG) [8] is a delay based congestion
control mechanism that reacts to perceived congestion in a

1Centre for Advanced Internet Architectures, Swinburne University of
Technology, Australia.

probabilistic manner. The overall probability of backing-off to
congestion can be adjusted by using a scaling parameter, G,
which is configurable via the operating system sysctl interface.
This should allow the aggressiveness of the congestion control
mechanism to be simply tuned. This section provides an
overview of this element of the CDG mechanism, which we
explore in Section III.

A. CDG algorithm
Most delay-based CCs infer congestion based on an estimate

of the path queuing delay; whether or not it is above or below
a preset threshold. This works well when the path propaga-
tion delay can be measured accurately, however, preexisting
queuing delays often cause an underestimate of the actual
path queuing delay, leading to situations such as the so-called
latecomer advantage problem [1]. CDG, on the other hand,
infers congestion by looking at changes in RTT trends.

Originally CDG was designed with heuristics to help it
coexist with loss-based CC, something delay-based congestion
control mechanisms struggle to do. However, this functionality
is not needed for a LBE mechanism. We turn it off, via the
sysctl interface, for our investigation into its suitability as a
LBE mechanism with dynamically tuneable aggressiveness.

1) Measuring delay trends: CDG maintains two variables
gmin,n and gmax,n which represent the change in minimum
and maximum RTT respectively, between RTT rounds n and
n − 1. They are computed every RTT round as shown in (1)
and (2):

gmin,n = RTTmin,n − RTTmin,n−1 , (1)
gmax,n = RTTmax,n − RTTmax,n−1 . (2)

To reduce noise from outlier measures, the gradients are
smoothed using a moving average filter as shown in (3):

ḡ =

n∑
i=n−a

gi
a

(3)

where a is the length of the filter.
2) Probabilistic backoff: CDG probabilistically backs off

based on the value of either of these gradients. This helps
CDG operate with the noise of the delay signal as well as
helping to desynchronize the response to congestion should
multiple CDG transports be operating together. The cwnd
backoff probability is calculated according to (4):

P [Backoff] = 1− e−ḡ/G , (4)

where G is a scaling parameter (set to 3 by default). When
CDG operates in congestion avoidance mode, P [Backoff] is
calculated as described above every RTT round. If a randomly
generated number X ∈ [0, 1] is larger than P [Backoff], CDG
will backoff by doing a multiplicative reduction of cwnd by a
factor β (0.7 by default) as described in (5):

cwnd =

{
β · cwnd ḡ > 0 ∧X > P [Backoff] ,
cwnd + 1 otherwise.

(5)



Note that, since it takes one RTT to measure the effect of
backing-off, CDG only backs-off at most every second RTT.

B. CDG as a dynamically adjustable LBE congestion control
CDG is already supported in both Linux and FreeBSD as a

loadable CC module. Turning off the co-existence heuristics
allows CDG to operate in “LBE-mode”. Variable delay char-
acteristics (such as base delay and maximum queuing delay)
of a path do not cause issues with CDG’s LBE characteristics
as they do with LEDBAT, because its use of trends in delay
rather than inferred queuing delay with thresholds.

A study of CDG as an LBE transport in a home WLAN set-
ting [9] showed that CDG would add no more than 20–40 ms
to the 90th percentile RTT, whereas NewReno and CUBIC
would add between 110–560 ms to the 90th percentile RTT.
Further, it was shown that the queuing delay induced by CDG
was constant with variable buffer sizes, while NewReno and
CUBIC would grow linearly with increasing buffer sizes.

Although CDG flows with different RTT will grow cwnd
at different rates, the exponential nature of Eq. (4) ensures
that differences in RTT do not change the TCP fairness
between flows. Most importantly, the tunability of the prob-
ability scaling parameter G enables CDG to exhibit variable
aggressiveness, and thus variable LBE-ness, towards other
flows.

Tuning the G parameter of CDG should result in different
levels of aggressiveness towards other flows, because it scales
the probability P [Backoff] that a delay gradient signal will
make CDG back off. In the limit:

lim
G→∞

P [Backoff] = lim
G→∞

1− e−ḡ/G = 0, (6)

and conversely

lim
G→0

P [Backoff] = lim
G→0

1− e−ḡ/G = 1. (7)

As G increases CDG the probability of backing off due to
delay-gradient congestion indications decreases, in the limit
becoming 0 and making CDG as aggressive as its underlying
Reno congestion control mechanism reacting to packet loss.
As G decreases CDG becomes less and less aggressive.

III. EXPERIMENTAL EVALUATION

In this section we evaluate the efficacy of using the G
parameter to tune the aggressiveness of CDG. We look at the
share of capacity two CDG flows receive with respect to two
competing CUBIC flows.

A. Experimental setup
Our test-bed setup, depicted in Fig. 1, consists of two sender

and two receiver machines connected in a dumbbell topology
via two bridge machines, with a router machine in between.
All machines run Debian distributions with Linux kernel ver-
sion 4.2. To emulate typical delays in wide area networks, the
two bridge machines artificially delay packets using netem.
The router acts as a bottleneck, shaping incoming traffic to
10 Mbps with the tc utility2. The tail-drop router buffer

2Both tc and netem are part of the Linux iproute2 utility package.
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Figure 1: Testbed topology.

is sized, depending on emulated delay, to one bandwidth-
delay product (BDP) worth of packets3. All machines are
interconnected via Ethernet cables and switches running at
300 Mbps. The sender machine is configured to use CDG for
CC to send variable LBE traffic towards the receiver machine,
while the xsender machine uses the Linux default CUBIC CC
to send BE traffic towards the xreceiver machine. We use the
iperf tool4 to generate greedy traffic for both the LBE and
BE flows.

Random UDP background traffic is generated between each
sender–receiver pair to prevent emulation artifacts, such as
synchronization, corrupting the results. Background traffic is
sent using the D-ITG traffic generator [10]. 1450-byte packets
are sent with an exponentially distributed inter-departure time
of 23.2 ms from each sender, producing on average about
1 Mbps at the bottleneck.

Data was collected at the interfaces of the sender and
xsender machines using tcpdump5. All experiments have
been repeated 10 times.

B. CDG vs. CUBIC throughput share

In this set of experiments flows start up with a 30 +X s
gap between them, where X is a uniformly distributed ran-
dom number in the range [0, 5] s. The CDG flows start first,
followed by the CUBIC flows. Each run lasts 5 minutes, with
10 runs for each combination of G and RTT. The average
throughput is calculated from the last 2.5 minutes of the
experiment. Error bars span the minimum and maximum
observations. Note that CDG’s co-existence heuristics are
disabled in these experiments. All CDG parameters other than
G are set to their Linux defaults. 20 values of G are chosen
in the range [0.1, 120]6. 7 RTT values are used in the range
[20, 300] ms.

3The MTU is set to 1500 bytes.
4We used version 2.0.5, available from: https://iperf.fr/download/ubuntu/

iperf_2.0.5+dfsg1-2_amd64.deb.
5http://www.tcpdump.org/release/tcpdump-4.6.2.tar.gz
60.002 and 120 are the lowest and highest permitted values of G in the

Linux CDG implementation respectively. However, experiments indicate that
the difference between G=0.1 and G=0.002 is negligible in most cases.
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(b) G = 2
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Figure 2: CDG vs. CUBIC share of throughput

Figure 2 shows sample time series plots, with summary
statistics, of throughput share between CDG and CUBIC
flows, when base RTT (RTTbase) is set to 50 ms, for G values of
0.1, 2, 6 and 120. When G is small (see Fig. 2a), the aggregate
throughput of the CDG flows stabilize at quite a small fraction
of the available capacity before the CUBIC flows start. This is
due to the high probability of backing off due to delay-gradient
based congestion indications, even when queuing delay is
relatively small. When the CUBIC flows start, CDG yields to
the CUBIC flows, and maintains a throughput share of ≈5%
(see box to the left of the legend with statistics) capacity per
flow on average when G = 0.1. From G = 2 (see Figs. 2b
to 2d) CDG is able to fully utilize the available capacity before
the CUBIC flows start. The amount of capacity CDG yields to
the CUBIC flows decreases as G increases. This culminates
in an almost even relative share between CDG and CUBIC
flows when G = 120 for RTTbase = 50 ms (see Fig. 2d).

We now look at how RTTbase influences the relative share
between CDG and CUBIC flows for different values of G.
Figure 3 summarizes the experiments, showing the relationship
between CDG’s throughput share against CUBIC (Note that
the x-axis in Fig. 3 is neither linear nor logarithmic). We see
the total fraction of throughput achieved by CDG flows when
the G parameter is varied for different values of RTTbase.

Looking at the 20 ms curve in Fig. 3, we see that when
RTTbase is low, CDG’s throughput can be tuned to take
between 10% and 50% of capacity per flow. CDG reacts
faster to changes in delay, but also increments the cwnd
more frequently, which means smaller adjustments to G have
larger impact compared to when RTTbase is high. As RTTbase
increases, so does the lower bound on CDG’s share, while
the upper bound remains limited to Reno. Also, the shape of
the curves goes from being concave, where adjustments to G
have highest impact for smaller values of G, to convex, where
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Figure 3: Aggregate throughput of two CDG (LBE) flows for varying values of G, when running against two CUBIC flows.
Note that the G scale is not linear, nor is it logarithmic. Error bars span minimum and maximum observations.

G must be set to higher values to have an effect on CDG
aggressiveness. This is due to the fact that CDG is competing
with a high-speed TCP variant (i.e., CUBIC), CDG’s window
increase rate is inversely proportional to RTTbase, incrementing
cwnd maximally once per RTT in congestion avoidance mode
as shown in (5). On the other hand, CUBIC’s cwnd growth
function relies on time between packet loss events and is
thus more or less independent of RTTbase. Consequently,
CDG’s tuning range—i.e., the difference between the lowest
and highest tunable share of throughput—will be limited by
RTTbase.

Note however that this does not affect the LBE property of
CDG. Because CDG is limited to be no more aggressive than
Reno, a CDG LBE flow should not utilize more than (roughly)
half of the capacity even if G is set to the maximum value.

Given that CUBIC is roughly insensitive to the RTT, in cases
where RTT is low Reno may grow its cwnd faster than CUBIC
normally would. To keep up with RTT-dependent CCs CUBIC
keeps another window emulating Reno window growth for
cases where delay is low. If the emulated window is larger
than the CUBIC window, CUBIC’s cwnd is increased by the
difference between the emulated Reno window and its own
cwnd.

Table I summarizes the tuning range of CDG for different
values of RTTbase. The lower bound assumes only one CDG
flow illustrated in Fig. 3. The upper bound assumes the number
of CUBIC flows are less than or equal to the number of CDG

Table I: Minimum and maximum percent share of capacity
achieved by CDG flows, when competing with equivalent
CUBIC flows for different values of RTTbase (see Fig. 2).

Base RTT (ms) Tuning range, as min-max % of share

20 10.3–49 %
50 6.7–49 %
75 4.05–44.5 %
100 3.0–37.3 %
150 2.0–26.3 %
200 1.5–19.6 %
300 1.0–12.3 %

flows. We see from the table that the tuning range of CDG
is dependent on RTTbase. When RTTbase ≤ 75 ms the range
is wide. As RTT increases beyond 75 ms the range shrinks,
because the lower bound converges against its limit while
the upper bound decreases faster. The range is thinnest at
RTTbase = 300 ms. A deadline-aware LBE service based on
CDG will benefit from taking its RTTbase into consideration
when calculating an appropriate value of G.

IV. CONCLUSION AND FUTURE WORK

A transport service that allows its aggressiveness to be
tuned, provides a base for implementing a deadline-aware
LBE service. Key to providing an LBE service is reacting
quickly to changes in network conditions. Generally path delay
more quickly indicates congestion build up than packet loss or



standard ECN, making delay-based CC a good choice for an
LBE mechanism. We identify CDG, a delay-gradient CC, as a
candidate base for deadline-aware LBE for this reason, along
with the ease to tune its aggressiveness with the G scaling
parameter, and because it does not rely on knowing path
delay characteristics such as RTTbase or the maximum queuing
delay to maintain LBE behavior. Tuning the aggressiveness
with respect to an approaching deadline requires some sort of
control mechanism. Hayes et al. [11] propose a framework
for adding LBE behavior with deadline awareness to any
congestion control mechanism. This framework can be easily
applied to CDG and is a future work direction.

We have evaluated its suitability through a set of emu-
lated experiments comparing the Linux versions of CDG and
CUBIC over a variable RTT path. Our results indicate that
the Linux implementation of CDG can be tuned via its G
parameter to achieve a range of between 20–100% of what a
competing CUBIC flow would achieve under the same condi-
tions with an RTT of 20 ms. The aggressiveness tuning range
of CDG with respect to CUBIC is dependent on RTT. This
dependence stems from CDG’s cwnd increase policy, which by
default limits cwnd growth to 1 MSS (maximum segment size)
per RTT. In cases where end-to-end latency is high, this may
impose limits on the guarantee that a task will be completed
within a specified deadline. One possible solution may be to
use CDG’s experimental alpha_inc parameter to allow cwnd
to increase at a rate higher than 1 MSS per RTT in these
circumstances. Another way of overcoming this limitation may
be to combine a high-speed TCP window growth mechanism,
such as the one used by CUBIC, with the delay-gradient based
congestion indications of CDG. Study of these possibilities is
left for future work.

We note that this study is restricted to comparisons with
CUBIC and that the future Internet may use new and quite
different congestion controls. The effect this will have on
tuning the G parameter is an item for further study, though we
note that the framework proposed in [11] gives some direction
as to how the operation of a DA-LBE machanism may be
adapted in such an environment. In our evaluation we have
disabled CDG’s loss-tolerance heuristic. Future work could
investigate whether CDG’s loss-tolerance heuristic is useful for
an LBE transport over lossy links. Also, in our experiments we
assume a FIFO tail drop queuing discipline at the bottleneck
queue. Active Queue Management methods like CoDel [12]
and PIE [13], which try to limit maximum queuing delay,
could affect a delay-based CC’s estimates of congestion and
consequently limit its tunable aggressiveness. Future work will
therefore evaluate CDG’s LBE range against delay-limiting
AQM schemes.
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