
Observing IoT Resources over ICN
Hasan M A Islam, Dmitrij Lagutin

Department of Computer Science
Aalto University
Espoo, Finland

Email: firstname.lastname@aalto.fi

Nikos Fotiou
Department of Informatics

Athens University of Economics and Business
Athens, Greece

Email: fotiou@aueb.gr

Abstract—The Constrained Application Protocol (CoAP) is an
HTTP-like protocol for RESTful applications intended to run
on constrained devices, typically part of the Internet of Things.
CoAP observe is an extension to the CoAP specification that
allows CoAP clients to observe a resource through a simple pub-
lish/subscribe mechanism. In this paper we leverage Information-
Centric Networking (ICN), transparently deployed within the
domain of a network provider, to provide enhanced CoAP
services. We present the design and the implementation of CoAP
observe over ICN and we discuss how ICN can provide benefits
to both network providers and CoAP applications, even though
the latter are not aware of the existence of ICN. In particular,
the use of ICN results in smaller state management and simpler
implementation at CoAP endpoints, and less communication
overhead in the network.

I. INTRODUCTION

The Internet of Things (IoT) is expected to interconnect
billions of devices that will generate a vast amount of
information. Significant research efforts have been devoted
into enabling smart devices to connect to the Internet, share
information, and consume services. These efforts have resulted
in a variety of network access technologies and higher layer
protocols. On the other hand, core (inter-)networking tech-
nologies have not been adapted to this new paradigm, raising
concerns about whether or not networks will be able to cope
with the scale and the patterns of the traffic of the IoT. In order
to assuage these concerns a number of researches have sprung
up proposing Future Internet (FI) architectures. One such
promising FI architecture is Information-Centric Networking
(ICN). 1 ICN advocates implementing all (inter-)networking
functions around content (i.e., information) identifiers, rather
than location identifiers. This shift in focus and techniques
is expected to overcome various limitations of the current
Internet [2]. However, such a shift requires not only the re-
design of networking protocols, but also the modification
of legacy Internet applications. Such radical changes at all
network layers are an overwhelming barrier to the adoption of
the ICN. With this in mind, the POINT project [3] proposes a
radical approach to ICN adoption: it postulates an individual
ICN operator that uses network attachment points to translate

1A survey of ICN research and architectures that have been investigated,
with some still being pursued and experimentally explored further, can be
found in [1].

legacy IP applications traffic to ICN, i.e., the endpoints are
oblivious to the ICN.

The Constrained RESTful Environments (CoRE) working
group has designed and developed the Constraint Application
Protocol (CoAP) [4] which is intended to operate in the
constrained IP networks and provides the RESTful services
to constrained devices. The CoAP interaction model is very
similar to the client/server model of HTTP: a CoAP client
issues a request message to a server and if the CoAP server
is able to serve the request, it responds with a response code
and the payload to the requester. Unlike HTTP, CoAP requests
and responses are exchanged asynchronously on top of an
unreliable datagram oriented transport protocol (e.g., UDP).

CoAP observe, described in [5], is an extension to the CoAP
specification. The CoAP observe enables a CoAP client to
observe a resource hosted in a IoT device through a simple
publish/subscribe mechanism. The CoAP client registers with
the CoAP server for a particular resource. If the server accepts
the registration, it asynchronously pushes notifications of the
resource state changes to the interested clients and follows
a best-effort approach to guarantee the eventual consistency
of the observed state and the actual state of the resource.
Compared to HTTP, the CoAP observe can significantly re-
duce the communication overhead in terms of the bandwidth
requirements and the number of messages transmitted. Since
the CoAP observe protocol is based on the publish/subscribe
paradigm, it can benefit from the POINT architecture in terms
of latency, state management, communication overhead, and
better security and privacy.

In this paper, we present the design and implementation
of the CoAP observe over ICN and describe how CoAP can
benefit from the POINT architecture as well as how a network
operator that offers the CoAP connectivity can benefit from
ICN by leveraging the multicast capabilities of the POINT
architecture. It is important to note that our solution enables
the usage of legacy IP-based devices, for instance, the existing
CoAP endpoints can transparently access the resources hosted
in IoT devices through the intermediate ICN network.

The remainder of this paper is organized as follows. In
Section II we introduce the CoAP and the CoAP observer
protocols, as well as, the POINT architecture. In Section III
we illustrate CoAP observe over ICN reference architecture,
alongside with the implementation details, and we highlight
how ICN can benefit CoAP-based applications. In Section IVISBN 978-3-901882-94-4 c© 2017 IFIP



we present our CoAP observe over ICN design and imple-
mentation. In Section V presents related work in the area, and
finally Section VI concludes our paper.

II. BACKGROUND

A. CoAP and CoAP Observe

CoAP [4] has been designed and developed to be a
’lightweight HTTP’ so that it can be suitable to operate in
the constrained IP networks. The CoAP interaction model is
similar to the client/server model of HTTP: a CoAP client
issues a request message to a server and if the CoAP server is
able to serve the request, it responds to the requester with a
response code and the payload. Unlike HTTP, CoAP requests
and responses are exchanged asynchronously on top of an
unreliable datagram oriented transport protocol (e.g., UDP).
The CoAP messaging model supports 4 types of messages:
CON (confirmable), NON (non-confirmable), ACK (Acknowl-
edgement), RST (Reset). Every CoAP message carries a Token
whose value is a sequence of 0 to 8 bytes. The Token correlates
a response with a request, along with the additional address
information of the corresponding CoAP endpoint. The CoAP
client generates a Token for a request message and the server
uses the same Token in the response. Each message also
contains a 16-bit message ID, which is used to detect message
duplicates.

The CoAP protocol also supports intermediaries and
caching of responses. There are two different kinds of proxies:
Forward-Proxy and Reverse-Proxy. A Forward-Proxy sends a
CoAP request to the CoAP server on behalf of a CoAP client.
For this, the Forward-Proxy needs to be configured to perform
requests on behalf of the client. In contrast, the Reverse-Proxy
is transparent to the client. The Reverse-Proxy behaves as if
it were the server of origin. The CoAP protocol supports the
discovery of resources by exploiting a separate entity called
Resource Directory (RD) which stores the descriptions of
resources. Moreover, CoAP supports group communication [6]
based on IP multicast; CoAP groups and the membership
of a group can be discovered via the lookup interfaces in
the Resource Directory (RD). Finally, CoAP enables clients
to observe a resource through a simple publish/subscribe
mechanism [5]. With this, the server asynchronously pushes
the notification of state changes of the resource for which the
client is interested in and follows a best-effort approach to
guarantee the eventual consistency of the observed state and
the actual state of the resource.

The CoAP observe protocol supports resource observation;
for this to be done, a CoAP client needs to register with a
CoAP server using a GET request with the observe option
setting the value to 1 (one). To unsubscribe the resource
observation, the CoAP client sends ACK by setting the value
of the CoAP observe 0 (zero). The CoAP client can also
utilize a proxy for observing a resource. Then, everytime the
state of the observed resource changes, the server pushes the
notification back to the client(s).

Fig. 1: The POINT architecture.

B. The POINT architecture

Instead of dictating a clean-slate end-to-end ICN archi-
tecture, which would be very challenging to deploy, POINT
allows standard IP traffic to be run over an ICN core network
in a more efficient way [3]. To achieve this, the POINT archi-
tecture (Figure 1) provides a number of handlers implemented
by the Network Attachment Points (NAPs). These handlers
perform translations between the existing IP-based protocols
(e.g., HTTP, CoAP, basic IP) and appropriate named objects
within the ICN core on both edges of the core. Therefore
existing applications can benefit from ICN’s features such as
native multicast and caching without any modifications. The
potential benefits of the POINT architecture compared to an
IP-based network, highlighted in more detail in [3].

In the POINT architecture, every content item is identified
by a flat identifier known as the Rendezvous Identifier (RId).
Moreover, every content item belongs to at least one scope.
The purpose of a scope is to group “similar” content items and
to give a hint about content location. Scopes are hierarchically
organized and identified by a Scope Identifier (SId). Scopes are
managed by specialized Rendezvous Nodes (RNs), which form
an overlay Rendezvous Network. The rendezvous network pro-
vides a lookup service, which routes a “subscription” to a RN
that “knows” (at least) one publisher for the requested item. A
typical ICN transaction in POINT involves the following steps.
A content item is assigned with a RId and stored in (at least)
one publisher that advertises its availability in one or more
scopes. With this advertisement, the RId is stored in the RNs
that manage these scopes. Subscribers send subscriptions for
specific (SId,RId) pairs, which are routed by the rendezvous
network to an appropriate RN. Upon receiving a subscription
message and provided that at least one publisher exists, the
RN instructs a Topology Manager to create a forwarding path
from a publisher to the subscriber, which is included in the
notification message to the publisher. Finally, the content item
is transferred from the publisher to the subscriber.



Fig. 2: An example of CoAP over ICN reference architecture. On the right part there are Things offering resources. Each
resource is specified by a color and also by shape. On the left part there are CoAP clients.

III. COAP OBSERVE OVER ICN
A. Motivation

The IoT is expected to interconnect billions of heteroge-
neous devices, ranging from wireless sensors to actuators,
wearable devices, Radio-Frequency Identification (RFID) tags,
home appliances, surveillance cameras, and many others .
It is expected that these devices will be uniquely identified
and will be capable of communicating with each other. How-
ever, the design of a networking architecture for the IoT,
which is mainly composed of resource-constrained devices
that generate highly heterogeneous traffic patterns, poses great
challenges [7]. First, there is the need for supporting resolution
systems that translate resource URIs into IP addresses. How-
ever, it is difficult for constrained devices to allocate more
resources for a DNS client implementation. Second, some of
the constrained devices (e.g., temperature sensor) may receive
vast amounts of requests which requires significantly higher
processing capabilities. Third, when CoAP observe is used
a CoAP server needs to maintain state for each client and
respond separately to each of them.

B. Design
We now discuss the design of CoAP observe over ICN. This

module is a part of our earlier CoAP over ICN work [8] that
illustrates various CoAP-specific communication scenarios.

Figure 2 illustrates the network setup for observing re-
sources over the ICN architecture. In the middle of the figure
there is the POINT network that interconnects NAPs. In the
right part of the figure there are networks of Things. Each
Thing acts as a CoAP server offering a resource; the same
(type of) resource can be offered by many Things located in
different networks (e.g., there can be many sensors deployed
in various parts of a city offering temperature measurements).
Each network of Things is connected to the POINT network
through a NAP. A network of Things may be directly attached
to a NAP. A CoAP Resource Directory (RD) hosts the descrip-
tions of resources provided by the CoAP servers. In the left

part of the figure there are CoAP clients. A CoAP client is
also connected to the POINT network though a NAP.

The fundamental component of our CoAP over ICN archi-
tecture is a CoAP handler which is part of the NAP. A CoAP
handler receives CoAP requests from CoAP clients (over IP),
performs protocol translation and forwards the requests to
CoAP server. The CoAP server generates a response which
is forwarded through the ICN network to the CoAP clients
following the reverse process.

C. Functional Requirements
To implement CoAP observe over ICN, a CoAP handler

needs to satisfy the following functional requirements:

• The CoAP protocol runs on top of UDP. A CoAP
handler MUST maintain state of the CoAP clients prior
forwarding their requests to the POINT network. This
enables the CoAP handler to forward the corresponding
response back to the appropriate client.

• Efficient state maintenance within a CoAP handler in
case of resource subscriptions. A CoAP handler should
maintain additional state when similar requests are issued
by multiple clients attached to the same client-side NAP
(cNAP). Similarly, server-side NAP (sNAP) should also
consider how to efficiently handle multiple requests for
the same resource from multiple cNAPs.

• The CoAP handler MUST follow the protocol semantics
of CoAP observe [5] when registering a CoAP client to
the CoAP server.

D. Functional Modules
A CoAP handler is composed of the following modules:

Proxy: A CoAP handler can be classified as one of the two
categories depending on its role in the POINT architecture:
forward proxy when it performs requests on behalf of the
client, and reverse proxy when it behaves as if it were the



Fig. 3: CoAP handler functional module.

original server. In our design, both roles are combined in the
same module and are complementary.

Protocol Translation: This module allows the CoAP han-
dler to translate CoAP messages to ICN messages and vice
versa. The translation module follows the semantics of the
CoAP protocol (RFC 7252).

POINT Interface Module: This module advertises ICN
messages (i.e., translation of CoAP requests) to the ICN net-
work. These messages eventually trigger the ICN rendezvous
process, which leads to the forwarding of these messages to the
appropriate NAP(s) (on the other side of the ICN network). A
NAP that receives an ICN message restores the original CoAP
request and forwards it to the appropriate CoAP server. The
CoAP server generates a response which is forwarded through
the ICN core network back to the CoAP clients following the
reverse process.

Algorithm 1 Handling GET request for CoAP observe

1: isObserveOption← [coap request]
2: token← [coap request]
3: messageID ← [coap request]
4: resourceURI ← [coap request]
5: if isObserveOption = = true then
6: search subscription list(tokenF lag, uriF lag)
7: if tokenF lag = = true then
8: drop the request packet
9: end if

10: if uriF lag = = true && tokenF lag 6= true then
11: insert an entry in subscription list
12: else
13: create coap request with observe option
14: end if
15: end if

IV. NODE OPERATION

A. Module Overview

The proxy module of the CoAP handler implements the
core functionality of a CoAP proxy. The translation process
of CoAP messages to ICN messages is implemented by

this module. A CoAP request message and the information
related to it are stored in a client_node structure. Since
CoAP transport is based on UDP, the client_node
structure allows a CoAP handler to match a response with
the corresponding request and eventually to the appropriate
CoAP client. The CoAP proxy module implements a list
of client_node to keep track of pending requests and
resources observations.

struct client_node {
struct client_node* next;
struct sockaddr_storage addr;
socklen_t addr_len;
unsigned char * token;

};

When a CoAP handler receives CoAP request messages
the proxy module extracts the first 4-byte mandatory header,
which contain the basic information of the request, including
message type, method code (GET, PUT, DELETE, UPDATE),
and token length. The URI of the resource, in a proxy request,
is encoded as a string in the PROXY-URI option. A request
may also include a Token which is used for matching requests
and with (asynchronous) requests. The PROXY-URI can be
split into the URI-HOST, URI-PORT, URI-PATH, and URI-
QUERY fields. The URI-HOST is the FQDN of the CoAP
server and the URI-PATH is the path of the resource within
the server.

The proxy of the sNAP constructs a new CoAP request;
this request uses the 4-byte mandatory header of the original
request and includes all the options extracted from PROXY-
URI option. The new request also includes the Token of the
original request.

B. Handling Observe Request

Algorithm 3 illustrates how an observe request in processed
by the the CoAP handler. Processing observe requests is
performed only if the request message contains the CoAP
observe option. The first step of processing such a request
is the establishment of an observe relationship between the
CoAP client and the CoAP server. To achieve this, the proxy
module maintains a subscription list the structure of which
follows:

struct coap_subscription{
char* resource_uri;
int resource_uri_len;
unsigned char* token;
int token_len;
int iteration;
uint16_t message_id;
struct coap_subscription* next;
struct client_node* client;

};



Algorithm 2 Handling coap response from coap server

1: isObserveOption← [coap response]
2: token← [coap response]
3: if isObserveOption = = true then
4: found← search observer(token, resourceuri)
5: observer entry ← subscription list
6: while observer entry 6=

NULL && observer entry → resourceURI
== resource uri do

7: token← observer entry.token
8: messageID ← observer entry.messageID)
9: iteration← observer entry.firstResponseF lag

10: if iteration then
11: #To create observe relationship
12: insert ACK code in response
13: end if
14: observer ← observer entry.client
15: update response with token and messageID
16: send response(coap response, observe)
17: next observer entry
18: end while
19: end if

First, the module checks the coap_subscription list to
verify if the request is a retransmission; if yes it drops it. Sec-
ond, the module verifies whether the request is intended for a
resource which already exists in the coap_subscription
list. If this is true, the module inserts a new entry in the
coap_subscription list and drops the request, otherwise,
it forwards it to the ICN network.

C. Handling Observe Response

Algorithm 2 illustrates how a CoAP handler process a
response. First, the handler checks if the response contains the
CoAP observe option: if this option is found, the proxy follows
the Algorithm 2 to process the response packet. A response
packet only echoes the token and the message identifier of the
original request and does not contain any information about
the request URI. Therefore, the proxy module first checks
the coap_subscription list to find a match: if a match
is found, the module extracts the appropriate resource URI.
Based on the resource URI information, the proxy collects
all “observers” and distributes the response to them. The
coap_subscription list also provides information if this
is the first response. This is necessary in a case when multiple
CoAP clients are interested in the same resource for which
at least one observe relationship has already been established.
For all subsequent observe relationships, the proxy checks the
value of iteration: if this value is zero, the CoAP han-
dler updates the message status code with acknowledgement,
inserts the appropriate message id, and sends the response to
every interested observer; then it changes the iteration
value to 1. When a CoAP client receives a CoAP response
corresponding to an observe request, it verifies the token

and message id. If the verification is successful the observe
relationship is established.

D. Handling Acknowledgement

When a CoAP client issues an observe request, it waits for
an acknowledgement from the CoAP server. With the reception
of the acknowledgement, an observe relationship between the
CoAP client and the CoAP server is established. The CoAP
client also echoes a 4 byte mandatory header to notify the
CoAP server that the CoAP client is alive and still interested in
receiving further notifications. This procedure is intelligently
handled by the CoAP handler in case of multiple observe
requests for the same resource: the proxy module of the CoAP
handler maintains the list of pending acknowledgements for
those requests which are not forwarded to CoAP server. In
more details, if a CoAP client sends an observe request to
the CoAP server for a resource for which there already exists
an observe relationship between the CoAP server and another
client, the CoAP handler aggregates the request and suppress
the acknowledgement. The CoAP handler acts as if it were the
server of origin. The structure of the list is as follows:

struct suppressed_token {
unsigned char * token;
int token_len;
uint16_t message_id;
struct suppressed_token* next;

};

Algorithm 3 Handling ACK

1: message id← [coap ack]
2: if message id ∈ suppressed token then
3: do nothing
4: else
5: send coap ack to coap server
6: end if

E. ICN operations

A request from a CoAP client is translated to an appropriate
ICN name which is related to the FQDN of the server, while
the response to that request is published to the appropriate
ICN name related to the URL of the request. This allows a
server NAP to simply subscribe to the FQDN of any attached
CoAP server, while a CoAP server can publish any response
to the corresponding URL.

In Figure 4, we show an example of message sequence chart
(MSC) for a CoAP client request and CoAP server response.
The CoAP server registers its DNS name which leads to its
NAP subscribing to the server’s FQDN (aueb.example.gr/R1).
CoAP client issues a CoAP observe request for the resource
aueb.example.gr/R1. cNAP receives it and publishes to the
Rendezvous (RVZ). the cNAP uses the pub isub API (publish
with implicit subscription) call to publish the CoAP request.
The RVZ matches it with the servers subscription and asks the



Fig. 4: Message Sequence Diagram from a CoAP client to CoAP server.

TM (as part of its internal realization) to create a forwarding
path for the request as well as the reverse path. Eventually
the TM sends the forwarding path (FIDreq) and reverse path
(FIDres) to the cNAP. cNAP forwards the request to sNAP
using (FIDreq). sNAP de-capsulate the CoAP request and
sends it to the CoAP server. The CoAP server processes
the request and sends the CoAP observe response to sNAP.
sNAP forwards it to cNAP using (FIDres). Finally cNAP
forward the response to appropriate client. Upon reception
of the CoAP response, the observe relationship between the
CoAP client and CoAP server is established. The subsequent
communication from the CoAP client to transport ACK and
the updated resource status is performed using (FIDreq) and
(FIDres).

F. Evaluation

We now present a simple CoAP communication scenario of
observing a resource (Figure 5) and discuss the benefits of the
ICN to CoAP. In Figure 5a CoAP clients issue observe requests
for a resource R, including tokens “t1”, “t2”, “t3”, “t4”
respectively. cNAP1 receives CoAP observe requests from a
CoAP client with “t1”. cNAP1 forwards the request to sNAP
and creates an entry in the subscription list. sNAP receives
the request and creates an entry in the subscription list for
cNAP1 and sends the request to the CoAP server. If the
observe relationship is possible, the CoAP server replies with
ACK which eventually creates an observe relationship between
CoAP client and CoAP server through NAPs. After some
time, another CoAP client issues observe request to cNAP1

with Token “t2”. cNAP1 finds a match for this request and
insert a new entry in the subscription list and does not forward
the request to sNAP. Similarly, cNAP2 receives two requests
with “t3”, “t4” and forward the request to sNAP with “t3”.

sNAP receives the request from cNAP2. sNAP finds a match
and inserts a new entry for cNAP2. cNAP and sNAP only
forward the request which arrives earlier and maintain the list
for others. The communication between cNAP and sNAP uses
ICN message which is translated from the CoAP message.

The main benefit of the POINT architecture is its native
multicast capabilities. Figure 5b shows that CoAP server sends
one unicast response to sNAP. sNAP translates it into an
ICN message and sends it to cNAP1 and cNAP2. Finally
cNAP1 and cNAP2 forward the response to the appropriate
client including the correct tokens and message identifiers. In
typical IP networks this communication pattern would result
in multiple unicast transmissions from the CoAP server to the
CoAP clients. In contrast, in POINT the impact to the network
of this type of bursty traffic can be reduced by employing
multicast. In order to achieve this, the CoAP handler instructs
NAPs to use the same token for all these identical CoAP
requests. NAPs are then responsible for modifying the token
to the CoAP response.

Furthermore, by using ICN, we are able to provide better
security and privacy for the constrained applications. Let us
consider the example of a multi-tenant building, where various
sensors have been deployed. The building management system
includes energy monitoring (e.g., temperature and humidity
measurements), the security and safety of the building (e.g.,
motion detection, fire alarms), billing (e.g., energy consump-
tion, number of parking slots used), and so on. It is expected
that each tenant should be able to define access control policies
since the information provided to building management system
is very sensitive. However, it is not feasible to extend the
constrained devices to support access control policies, both
from performance/cost and security perspectives, as it will
increase the processing power requirements and energy con-



(a) CoAP observe request.

(b) CoAP observe response.

Fig. 5: A simple scenario of observing a resource through POINT platform. (a) multiple observe requests for the similar
resource R hosted in a CoAP server (b) Forwarding the response to CoAP clients.

sumption. Nonetheless, a NAP is able to collect all information
and implement information access policies. The CoAP handler
is able to associate security and privacy requirements with
namespaces, enabling the definition of fine-grained, reusable
access rules that will govern information access directly from
personal gateways.

As a proof of concept, we tested our design using two
clients, one forward proxy, one reverse proxy and one CoAP
server. The CoAP server and clients are implemented using
libcoap2. Forward and Reverse proxy runs our system. The
CoAP clients issue observe requests for the same resource con-
taining different tokens. The different tokens denote different
CoAP request packets. The duration of observing the resource
is 90s, which is the default timeout in the libcoap client
implementation. We capture the CoAP traffic information
using Wireshark. The CoAP traffic includes CoAP observe
requests and CoAP acknowledgement packets. Our evaluation
shows that only 48% of the total request packets, including
acknowledgments, are forwarded to the CoAP server, whereas
the communication overhead in bytes is reduced by 50%.

V. RELATED WORK

In recent years, several networking architectures have been
proposed for Futrue Internet (e.g., CCN [9], DONA [10],

2https://github.com/obgm/libcoap

PURSUIT/PSIRP [11], POINT [3], NetInf [12] with aspiration
to efficiently distribute and retrieve content. Various research
efforts explore how these architectures can be used in the
context of the IoT. At the same time, IPv6 over Low power
Wireless Personal Area Networks (6LoWPAN) [13] is the cur-
rent approach to connect Wireless Sensor Networks (WSNs)
to the conventional Internet. In [14], the authors highlight the
key challenges of IoT and provide a design of high level NDN
architecture that can meet IoT challenges. In [15], the authors
propose the CCN communication layer on top of MAC layer
to transmit packets. Similarly, an overlay of ICN architecture
based on CCN on top of ETSI M2M architecture is presented
in [16]. In [17], authors propose a service platform based
on CCN for Smart Cities that can integrate the available
relevant wireless technologies to provide ubiquitous services,
optimize the usage of communication resources through dis-
tributed caching and provide security by exploiting the security
feature of CCN architecture. In [18], the authors provide
an experimental comparison of CCN with the traditional IP
based IoT standards 6LoWPAN/RPL/UDP in terms of energy
consumption and memory footprint. This experiment has used
a compact version of CCNx [19], referred as CCN-Lite [20], in
RIOT OS [21]. The authors of [22] propose a push mechanism
for CCN to optimize the traffic in sensor networks, whereas
authors of [23] propose a content-centric internetworking



scheme for resource constrained network devices based on task
mapping where the network activities (e.g., storing, publishing,
and retrieving content) of the constrained devices are trans-
ferred to the core CCN network. The work in [24] has designed
and implemented a lightweight CCN protocol targeted for
Wireless Sensor Network as an alternative to IP protocol
for sensor network. All these efforts require modifications to
IoT endpoints. In contrast, the POINT architecture provides
a CoAP handler that maps CoAP protocol onto appropriate
named objects within the ICN core.

Recent efforts [25], [26] have been performed on proxy
based CoAP observe in Wireless Sensor Network (WSNs).
Alessandro et el. [25] includes WebSocket protocol in the
design of the CoAP proxy for HTTP based web applications.
The work in [26] considers dynamic aggregation/scheduling
of multiple observe requests at CoAP proxies. These efforts
are complementary to our work, which utilizes ICN to further
enhance the efficiency gains of the CoAP observe.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present the design and implementation
details of CoAP observe for POINT architecture that enable
CoAP clients to observe the resources hosted in IoT devices
through ICN network. The CoAP clients are oblivious to the
existence of ICN. CoAP observe functionality is very similar
to publish/subscribe based ICN in particular asynchronous
transmission. Transporting CoAP traffic over ICN can benefit
in terms of communication overhead, state management and
latency, in particular when multiple clients are interested
to subscribe the same resource hosted in a IoT device. In
addition, the inherent multicast capabilities of ICN and caching
at the edge can be exploited in observing similar resources
hosted in IoT devices by multiple CoAP clients.

Future work in this are includes the integration of our solu-
tion in the POINT architecture. To evaluate the performance
of CoAP observe over ICN, we will construct a simple IoT
testbed which will be connected to the existing POINT testbed.

ACKNOWLEDGMENTS

Many of the ideas presented in this paper stem from
discussions among POINT consortium partners. The work
presented in this paper was supported by the EU funded H2020
ICT project POINT, under contract 643990.

REFERENCES

[1] G. Xylomenos, C. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. Katsaros, and G. Polyzos, “A Survey of Information-
Centric Networking Research,” IEEE Communications Surveys Tutori-
als, vol. 16, no. 2, pp. 1024–1049, 2014.

[2] D. Trossen, M. Sarela, and K. Sollins, “Arguments for an information-
centric internetworking architecture,” SIGCOMM Comput. Commun.
Rev., vol. 40, no. 2, pp. 26–33, Apr. 2010.

[3] D. Trossen, M. J. Reed, J. Riihijrvi, M. Georgiades, N. Fotiou, and
G. Xylomenos, “IP over ICN - The better IP?” in European Conference
on Networks and Communications (EuCNC),, June 2015, pp. 413–417.

[4] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” IETF, RFC 7252, 2014.

[5] K. Hartke, “Observing resources in the constrained application protocol
(CoAP),” IETF, RFC 7641, 2015.

[6] A. Rahman and E. Dijk, “Group communication for the constrained
application protocol (CoAP),” IETF, RFC 7390, 2014.

[7] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung, “A
survey on the IETF protocol suite for the internet of things: Standards,
challenges, and opportunities,” IEEE Wireless Communications, vol. 20,
no. 6, pp. 91–98, 2013.

[8] N. Fotiou, H. Islam, D. Lagutin, T. Hakala, and G. C. Polyzos,
“CoAP over ICN,” in 2016 8th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), Nov 2016, pp. 1–4.

[9] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[10] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. Kim, S. Shenker,
and I. Stoica, “A data-oriented (and beyond) network architecture,” in
ACM SIGCOMM Computer Communication Review, vol. 37, no. 4.
ACM, 2007, pp. 181–192.

[11] S. Tarkoma, M. Ain, and K. Visala, “The publish/subscribe internet
routing paradigm (PSIRP): Designing the future internet architecture,”
Towards the Future Internet, p. 102, 2009.

[12] C. Dannewitz, “Netinf: An information-centric design for the future
internet,” in Proc. 3rd GI/ITG KuVS Workshop on The Future Internet,
2009.

[13] G. Mulligan, “The 6lowpan architecture,” in Proceedings of the 4th
workshop on Embedded networked sensors. ACM, 2007, pp. 78–82.

[14] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Named data
networking for iot: An architectural perspective,” in Networks and
Communications (EuCNC), 2014 European Conference on. IEEE, 2014,
pp. 1–5.

[15] B. Saadallah, A. Lahmadi, and O. Festor, “Ccnx for contiki: implemen-
tation details,” Ph.D. dissertation, INRIA, 2012.

[16] L. A. Grieco, M. B. Alaya, T. Monteil, and K. Drira, “Architecting
information centric etsi-m2m systems,” in Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2014 IEEE Inter-
national Conference on. IEEE, 2014, pp. 211–214.

[17] I. Cianci, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Content
centric services in smart cities,” in Next Generation Mobile Applications,
Services and Technologies (NGMAST), 2012 6th International Confer-
ence on. IEEE, 2012, pp. 187–192.

[18] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
“Information centric networking in the iot: Experiments with ndn in the
wild,” in Proceedings of the 1st international conference on Information-
centric networking. ACM, 2014, pp. 77–86.

[19] P. CCNx, “http://www.ccnx.org,” Sep. 2009.
[20] C. Lite, “Lightweight implementation of the content centric networking

protocol,” 2014.
[21] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt, “Riot

os: Towards an os for the internet of things,” in Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on.
IEEE, 2013, pp. 79–80.

[22] J. François, T. Cholez, and T. Engel, “Ccn traffic optimization for iot,”
in Network of the Future (NOF), 2013 Fourth International Conference
on the. IEEE, 2013, pp. 1–5.

[23] Y. Song, H. Ma, and L. Liu, “Content-centric internetworking for
resource-constrained devices in the internet of things,” in Communi-
cations (ICC), 2013 IEEE International Conference on. IEEE, 2013,
pp. 1742–1747.

[24] Z. Ren, M. A. Hail, and H. Hellbrck, “Ccn-wsn - a lightweight, flexible
content-centric networking protocol for wireless sensor networks,” in
2013 IEEE Eighth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, April 2013, pp. 123–128.

[25] A. Ludovici and A. Calveras, “A proxy design to leverage the inter-
connection of coap wireless sensor networks with web applications,”
Sensors, vol. 15, no. 1, pp. 1217–1244, 2015.

[26] N. Correia, D. Sacramento, and G. Schutz, “Dynamic aggregation and
scheduling in coAP/observe based wireless sensor networks,” IEEE
Internet of Things Journal, 2016.


