
Understanding Multistreaming for Web Traffic: An
Experimental Study

M. Rajiullah†, A. C. Mohideen?, F. Weinrank‡, R. Secchi?, G. Fairhurst? and A. Brunstrom†

†Karlstad University, Karlstad, Sweden
{mohammad.rajiullah, anna.brunstrom}@kau.se

?University of Aberdeen, Aberdeen, U.K.
{althaff, raffaello, gorry}@erg.abdn.ac.uk

‡FHM, Munster, germany
weinrank@fh-muenster.de

Abstract—This paper explores the design trade-offs needed
for an Internet transport protocol to effectively support web
access over HTTP/1.1. It explores use of a multistreaming
transport protocol mechanism and studies these using a practical
methodology utilising the transport features of TCP and SCTP.
This is used to evaluate the relative benefit of key transport mech-
anisms and analyse how these impact web access performance.
Our conclusions help identify the root causes of performance
impairments and suggest appropriate choices when selecting a
suitable transport protocol.
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I. INTRODUCTION

Over the last decade web pages have evolved from a simple
compositions of images and text, to highly complex structures
embedding interactive contents and web applications [1]. A
typical web page is a collection of inter-dependent resources
whose order of delivery and processing impacts the page display
time. Recent studies [2]–[4] found that the dependency graph
for web page resources (and corresponding scheduling order)
play a significant role in overall web performance.

A problem known as head of line blocking (HoLB) occurs
when the chain of processing is delayed waiting for a critical
resource to be received over a transport connection [5].
Browser/server implementations employ various techniques
to mitigate this and thereby accelerate page download [5]. One
approach is to increase the parallelism of resource download,
i.e., to request/retrieve an HTTP resource while other resources
are being downloaded. HTTP/1.1 [6] allowed a client to open
two parallel TCP connections that may be kept open for multiple
request/response transactions (known as HTTP persistence).
Since early specifications of HTTP/1.1, browsers have used an
even larger number of connections per server (e.g., the current
default is six in Mozilla Firefox and Google Chrome) and often
adopted a proactive policy of connection management, including
closing/reopening slow TCP connections or requesting the same
resource over multiple connections. In addition, servers often
distribute web pages across multiple domains (even for the
same server), a practice known as sharding. This forces a client
to open multiple connections, at least one for each domain [7].
This contributes to further increase the required number of
transport connections.

Although parallelism has benefits, introducing a large
number of TCP connections is not without drawbacks. First, the
client-server session may experience a large number of under-
utilised connections (e.g., a TCP connection to send only a small
resource), which reduces efficiency due to the overhead required
to open and maintain each connection. Second, breaking the
transmission flow into many independent TCP connections
reduces control over congestion, making web traffic more
aggressive towards other competing traffic [8].

There are drawbacks in using multiple parallel connections
to the same web server, but this is still commonly used by
web clients [9]. On the one hand, applications open parallel
connections to achieve concurrent object transmissions because
TCP does not offer a mechanism to identify sub-streams. On
the other hand, the scarce deployment of message-oriented
protocols, such the Stream Control Transmission Protocol
(SCTP) [10] [11], means there is little viable alternative.

This paper evaluates the benefits of multistreaming extend-
ing the analysis in [11]. The contribution is two fold: First,
a web traffic workload based on both a dependency graph
and the processing time for HTTP objects at a web client is
used to explore the benefits of multistreaming. Second, the
evaluation considers the impact of RTT and capacity on the
web performance.

The remainder of this paper is organised as follows: Section
II describes our web model and testing methodology. The
experimental tool and experiment are described in section III
followed by the performance analysis in section IV. The paper
concludes in section V.

II. WEB MODEL AND DATASET

This study utilised a public web performance dataset [12].
This provides the number and size of HTTP resources from
170 recorded web pages. It also includes graphs representing
the dependency between HTTP resources and their processing
time at the client.

To characterise the web traffic workload, the web pages
were categorised according to the total size of all resources
in a page. This total was used to divide pages into 6 bins
(size-ranks), labeled A to F. The bins were organised so that
each size-rank held an equal number of web pages, forming
statistically significant groups. Table I reports the interval ofISBN 978-3-901882-94-4 c© 2017 IFIP
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Figure 1: Distribution of number of resources by MIME type
across size-ranks.
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Figure 2: Distribution of time to complete transfer by MIME
type across size-ranks.

sizes for each size-rank in the second column, and the 5%,
50% and 95% percentile for the resource size distribution in
the 3rd, 4th and 5th column. For each bin, the percentile of
the distribution of the number of resources at 5%, 50% and
95% is also reported in parenthesis.

This data shows a correlation between the size of a page
and the number of resources. There is a wide distribution in
the number of resources within each size-rank. For example, in
the smallest size-rank (A) the number of resources/page varied
between 1 and 39, whereas the largest size-rank (F) ranged
between 49 and 228 resources/page. This suggests that pages
of similar size may have a quite dissimilar composition and it
may not be sufficient to characterise web pages only by their
overall size. However, for simplicity, our experiments consider
only the webpage with median size for each size-rank.

The size of the retrieved resources was also observed to be
correlated to the total web page size, i.e. larger webpages tend

Table I: Webpage size and 5, 50 and 90 percentile of number
of resources per size-rank.

Group Size-Rank Size (KB) and Size (KB) and Size (KB) and
Name (KB) # res. at 5% # res. at 50% # res. at 95%

A 0.05-118 0.05 (1) 23 (6) 109 (39)
B 119-565 129 (3) 325 (21) 532 (67)
C 566-873 567 (6) 690 (25) 846 (69)
D 874-1242 878 (6) 964 (45) 1183 (82)
E 1243-1945 1286 (24) 1546 (55) 1901(119)
F 1946-3315 2070 (49) 2454 (127) 3309 (228)

to transport bigger (and often more complex) resources, such as
video or interactive banners, and tend to cluster multiple items
in a single resource, e.g., using a single javascript file to send
multiple scripts. However, the distribution of resource size has
less spread than the distribution of the number of resources.

Figure 1 categorises the resources by their MIME type. This
result shows the four most common types: text files (HTML),
scripts (javascript), style-sheets (CSS) and images. Images were
by far the most common, forming the main category in each
sizerank. We also observed very few image URLs, suggesting
the dependency graph grows mainly horizontally (i.e. increasing
number of branches originating from a single resource). Other
types include Flash resources, octect-stream and fonts, but these
contributed less than 2% of resources.

Figure 2 shows the distribution of the time spent by the
client to complete transfer of a resource (including computation
time). This figure excludes images because images are terminal
nodes in the dependency graph. We observe that the time
component was often not negligible in comparison to the
transfer time for the resource over a typical network path
RTT (few tens of milliseconds). The total time for web pages
represented by largest size-ranks (E, F) was around or above
one second. This non-negligible latency impacts transport
performance and is therefore discussed later in the paper.

III. TOOLS AND EXPERIMENT SETUP

A. Experimental Testbed

Our performance analysis used a set of three computers
emulating a web client, a network, and a web server. All
computers had a common hardware configuration of 4 GB
RAM and Intel Core 2 Duo processor (2.6 GHz). The network
was emulated by the Dummynet traffic shaper [13], configured
with a bottleneck capacity, delay, buffer size, and packet loss
rate.

We modelled a range of path RTTs representative of both
desktop and mobile users, drawn from a distribution derived
from an empirical study at Mozilla, Table III. Both the client and
server supported TCP (Linux ver 4.2.0-42 and BSD) and SCTP
(under BSD). The multi-streaming web server is described
in section III-C. A custom made client emulated a HTTP/1.1
browser (section III-B), enabling requests with either a number
of parallel TCP connections or a single SCTP connection using
a number of streams. We use different number of concurrent
SCTP streams 1, 6, 18 and 100. We assume this is a suitable
range to support most web pages. More on cost of opening
streams is discussed in Section IV-D. Our experiments used
a maximum of 18 parallel connections 1. The same Initial
Window (IW) was used for TCP and SCTP. The client used an
IW of three packets, recommended by the IETF and common
for windows users. The server used an IW of 10, common for
Linux-based servers, and an experimental IETF specification.
The maximum segment size was 1500 bytes. The experiment
parameters are summarised in Table II.

1Common browsers open up to six connection to a single domain, but
sharding contents across multiple web servers is also common.



Experiment parameters
Category Factor Range/value

Network
RTTs 20, 50, 100, 200, 800 ms
Bottleneck Capacity 2, 10, 100 Mbps
Packet loss No loss, 1.5%, 3%

TCP/SCTP
IW client (IW 3), server (IW 10)
CWND validation no
# parallel TCP flows 1, 6, 18
# streams in SCTP 1, 6, 18, 100

Requests Cookie Size NULL, 512 B, 2K

Table II: Experimental parameters

Percentile Desktop RTTs (ms) Mobile RTTs (ms)
5 1 11
25 20 44
50 79 94
75 194 184
95 800 913

Table III: Path RTT from data provided by Mozilla

B. pReplay Web client

Web requests were generated using the pReplay tool2,
developed in C. This uses libcurl [14] to replay HTTP traces
using HTTP/1.1 over TCP or a modified version of phttpget [15]
extended to support SCTP [16]. The tool used a dependency
graph in JSON files that represented the resource requests and
computation times required to process java scripts, CSS etc.
pReplay walks the dependency graph, starting from the first
activity to load the root HTML. When a network activity is
found, pReplay issues a http request using the relevant URL.
For computational activity, the tool optionally waits for a time
determined by the graph. Once an activity completes, pReplay
checks whether all dependent activities have also completed
and then commences the next activity. It finishes only when
all activities in a dependency graph have been visited.

C. Lightweight Web Server

The server was a modified lightweight web server tht-
tpd (tiny HTTP deamon) [17] supporting HTTP/1.1. This work
extended a previous patch that allowed thttpd to be run over
SCTP [18]. The original patch only enabled web traffic to use
a single stream for each SCTP association. This work extended
[18] to enable parallel multi-streaming, with the possibility
to introduce algorithms for sharing transmission opportunities
between parallel streams (i.e., sender scheduling using a round-
robin or another algorithm), and support for interleaving large
objects (i.e., SCTP I-DATA [19]).

IV. RESULTS

This section contains a systematic study of web page load
time (PLT) using HTTP/1.1 over both TCP and SCTP. Our
goal is to understand the conditions that benefit the use of
multiple connections compared to multistreaming. pReplay was
used to measure PLT the time between making the first web
request and the time either the last response is received or
the last computation is completed. The results present data for
an average of 30 runs, plotted with 95% confidence intervals.
Cookies were not found to influence the PLT. We therefore

2Based on Epload [12]

exclude results with different cookie sizes. We only show results
for the websites at the 50th percentile from our web model
(Section. II). The statistics of the sites are described in Table IV.

The dataset processing time [12], was used as an upper
bound to analysing the impact of processing time. Since this
data was collected, advances in client platforms and in the way
resources are parsed and processed have reduced this bound. We
therefore also plot the load times with no additional processing
time, to present a minimum bound. Although we explored all
cases, our experiments did not observe significant differences
among the behaviour for different transport mechanisms for
different bottleneck capacity. The relation between protocol
performances is similar, we therefore only show results for 10
Mbps capacity.

A. Impact of parallelism

Figure 3 shows the impact of PLT with different numbers of
parallel TCP connections compared to a single SCTP connection
supporting multiple streams (100 in this case3). We first discuss
the case of no processing time dependency and no emulated
loss (tail drop loss from router buffers was observed in some
experiments).

Each transport connection independently performed start-
up, congestion control and loss recovery. At any one time,
one transport pipe can only send a single web resource. In
contrast, parallelism allows multiple transport pipes to each
simultaneously send a resource, reducing the PLT when multiple
resources can be sent. Parallelism was introduced using parallel
TCP connections (each independently managing congestion
control) or using multiple SCTP streams (where all streams
shared a single congestion controller).

Figure 3 shows the benefit of increased parallelism. In
general, the PLT improved, except in Figure 3e, where, six
and eighteen connections have a similar PLT. Pages with fewer
resources (see Table IV), may be retrieved from a single server,
and the parallelism may be limited to less than 6 parallel pipes.

However, parallelism also came with a cost:

• For a transport protocol with an independently managed
congestion control (TCP), a higher sending rate can induce
congestion leading to collateral damage to other flows
sharing the bottleneck (which we did not consider further
in our experiments).

• For a multi-streaming transport protocol using shared con-
gestion control (in this case, SCTP) each stream contributes
to the capacity of the association. This increases congestion
window growth, reducing the PLT (Figure 3). This also
reduces the throughput when congestion is experienced.

3results with other numbers of streams were omitted for better readability.

Table IV: Statistics for the web pages in experiment

Page Res. Count Page Size (KB) ≈ Av. Res. Size (KB)

Google 8 74 9
Dmm 21 330 15

Siteadvisor 40 701 17
Amazon 53 977 18
Pinterest 6 1548 258
Mediafire 75 2474 33
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Figure 3: PLT for 10 Mbps capacity, no loss, without processing time.

This will have the positive effect of reducing collateral
damage between streams, i.e. is more friendly to other
network traffic.

In most cases, (except for the google sites in Figure 3a),
a multi-streaming approach provided a smaller PLT than the
N parallel TCP pipes, which suffer overhead from setting-
up multiple connections, and self-induced congestion from
concurrency. For small pages, (e.g. google in Figure 3a), the
combined IW provided by N TCP connections provides a
benefit over the single IW with multi-streaming.

Figure 3 shows a higher PLT at a larger RTT. However,
multi-streaming shows benefit for higher RTT paths, where
connection overhead is important. For example, in Figure 3f,
when RTT increases from 200 ms to 800 ms, PLT increases
over 282% using 18 TCP parallel connections, compared to
229% using multi-streaming.

Web page structure also plays a key role in determining the
PLT. When there is no parallelism, the number of resources
influences PLTs more than the overall page size. This may be
seen in Figure 3d, for 1 TCP, where the Amazon page (with a
larger number of smaller resources) complete much later than
the Pinterest page in Figure 3e (with fewer larger resources),
(see Table IV). Parallelism alleviates this by reducing the head-
of-line dependency delay for pages with many resources. As can
be seen, the PLT for Amazon is lower than the PLT for Pinterest
when multi-streaming or N parallel TCP connections are used.
The larger PLT for Pinterest in Figure 3e, is limited by the size
of individual resources for the high RTT scenario (800 ms),
where additional parallelism can offer benefit. Performance

using HTTP/1 could be improved in this case by Spriting the
images (dividing a single image into multiple resource files).

B. Impact of processing time at the client

Next, we examine the impact of processing times influences
on the PLT, Figure 4.

The additional processing time does not significantly
increase the PLT of a single connection (1 TCP). The request
overhead for each resource dominates. Parallelism eliminates
this, therefore the processing delay has a direct impact on the
PLT (Figure 4), for both parallel flows and multi-streaming,
since it resulted in greater temporal dependency between
resources from the web model [12]. These results may present
an upper bound, since we expect advances in web page design
and client processing since this model was published.

C. Impact of loss

Our results also consider packet loss (e.g., from link effects
such as interference on wireless). Figure 5 therefore considers
the impact of a simple loss model on the PLT. Loss for a
single TCP flow (1 TCP), results in head of line retransmission
delay and reduced congestion window. The PLT is reduced by
parallelism. Only the TCP connection(s) that experience loss
are impacted by loss recovery, the throughput of other parallel
flows is unchanged.

In contrast, using multi-streaming head-of-line blocking
only impacts a stream the experiences loss, although any loss
impacts the congestion window for all streams sharing an
association. This more conservative congestion control, results
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Figure 4: PLT for 10 Mbps capacity, no loss, with processing time.
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Figure 5: PLT for 10 Mbps capacity, 1.5% packet loss, without processing time.

in a higher PLT. (Note: the authors understand that this result
could be different if loss was a result of congestion, where
reducing the overall capacity consumed by a web client could
help reduce future loss).

D. Discussion of the Experiment Setup

A key benefit of multistreaming is the lightweight cost
for additional streams, and this allows flows to open as many
streams as they need. Our use of SCTP therefore considered
a larger number of streams (100) compared to the maximum
number of TCP connections (18). The memory allocated by
each TCP/SCTP connection consists of a Transmission Control
Block (TCB) of about 700 B, which is is more than needed
for an SCTP stream ( 32 bytes) [20]. Although the TCB for

SCTP can be twice as large as for TCP, this cost is amortized
across the number of streams used.

We did not consider alternative ways to serve the original
content, such as domain sharding, or image spriting, which
scatters the content across multiple servers. This can have the
effect of increasing parallelism, but equally reduces opportun-
ities for multi-streaming. (Using a single origin server is also
recognised as best practice for HTTP/2 [21], to exploit the
benefits of multi streaming).

Our performance analysis only consider pseudo-random
link loss, although we did observe some loss from self-induced
congestion. Based on the way parallel connections and a single
connection with parallel streams work during packet loss, a
different scenario involving concurrent traffic where for example



bottlenecks are not empty when a web request is made would
lead to different PLT values. Future research will explore the
effect of a range of congestion bottlenecks.

E. From Transport Mechanisms to web Transport Protocol

The approach taken by this paper has been to evaluate
transport mechanisms to understand their contribution to web
page load time. We used a data-driven workload, because we
understood already that the performance would be dependent on
the structure of the requested web page. Our results commented
on how mechanisms were impacted by the level of parallelism
and RTT.

There are many obstacles to introducing new transport
mechanisms, and it is even harder to achieve widespread de-
ployment of new transport protocols. The architecture developed
in NEAT [22] can provide much needed flexibility to introduce
new mechanisms and enables a gradual deployment of a new
protocol, not previously possible with existing protocol stack
designs. In this paper, SCTP was used as a standard mechanism
for multistreaming that may be leveraged by a web client.
SCTP could also provide additional benefits if deployed for
web clients, including multi-homing reliability in case of path
failure.

An important next step for our work would be to understand
how transport mechanisms are impacted by more complex work-
loads. At the time of writing, almost 1/8 of web servers have
introduced HTTP/2 support. This makes significant changes
to the way the transport is used (building on multistreaming
discussed in this paper), and to how resources are mapped to
the transport.

V. CONCLUSION AND FUTURE WORK

This paper explored key transport mechanisms including
multistreaming, parallelism, shared and individual congestion
control to evaluate their impact on web performance. The
mechanisms were explored across a range of network and
application scenarios using a tool developed to replay a set of
pre-established web page models. This was used to evaluate
the benefit of multistreaming. This was seen to significantly
improve overall web performance. Multistreaming enabled rapid
utilisation of available link capacity and reduced web load
time for web pages with a large size objects or larger web
pages, benefiting from shared congestion control. However,
multistreaming proved detrimental over a path with high loss.
Even a single lost packet in an SCTP connection stalls all of
the multiplexed streams over that connection. This also applies
to streams in HTTP/2 when a loss happens in underlying TCP.
QUIC [23] solves this using UDP as the underlying transport
supporting out-of-order delivery – a single lost packet for
N concurrent HTTP connections will only stall 1 out of N
streams. Besides, losses experienced by the shared congestion
of multistreaming limit the growth of the congestion window,
and lead to an increase in the page load time.

Future work needs to develop the understanding of the
impact of specific transport mechanisms, and the merits and
demerits of combining mechanisms within an alternate web
transport protocol, for example, comparing SCTP and QUIC.
A deeper understanding of the performance implications for
HTTP/1.1 can also provide a good technical basis for examining
how transport design impacts the performance of HTTP/2.
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