
Post Sockets: Towards an Evolvable Network
Transport Interface

Brian Trammell
ETH Zürich

Colin Perkins
University of Glasgow

Mirja Kühlewind
ETH Zürich

Abstract—The traditional Sockets API is showing its age,
and no longer provides effective support for modern networked
applications. This has led to a proliferation of non-standard
extensions, alternative APIs, and workarounds that enable new
features and allow applications to make good use of the network,
but are difficult to use, and require expert knowledge that
is not widespread. In this paper, we present Post Sockets, a
proposed new standard network API, that is designed to support
modern network transport protocols and features, while raising
the level of abstraction and enhancing usability. Specifically,
Post Sockets aims to give portable applications the ability to
use a clear, messages based, interface to multi-path and multi-
stream transports, rendezvous and connection racing, and fast
connection re-establishment.

I. Introduction
Many networked systems use the Berkeley sockets API as

their interface to the transport layer protocols. This API was
highly appropriate for 1980s era Unix, when it was designed,
but is showing its age, and cannot effectively support modern
transport protocols and network environments.
The positive effect that the simplicity of the Sockets API

had on the development of the Internet cannot be understated:
treating a remote endpoint like a file made a network application
programmer out of anyone who knew how to do file I/O. The
network, however, is not a file, and the demands both of current
applications as well as current network conditions stretch this
simplifying assumption to its breaking point.
Specifically, the sockets API doesn’t effectively support

asynchronous message-oriented applications, multi-streaming
and multi-path communications, zero-RTT connection resump-
tion with idempotent data, happy eyeballs and peer-to-peer
rendezvous, and so on. This is not to say that such features
cannot be implemented over the sockets API. Rather, their
implementations are clumsy, complex, and error-prone, and
require specialist expertise. Making effective use of the network
is not accessible to typical developers.
In this paper, we present Post Sockets, a new transport

layer API that is designed to support modern transport
protocols. We describe our motivation and design rationale,
present a brief overview of the key features of the API, and
outline how Post Sockets can support new transport protocol
implementations and applications. This paper does not go into
implementation details that may be handle quite differently
when Post Socket is implemented in a user space library
over the existing API or integrated or partly integrated into

kernel space. Our contributions are: 1) identification of the
limitations of the Sockets API, leading to design rationale and
requirements for a new API; 2) an overview of our proposed
Post Sockets abstract API; and 3) a discussion of how the
Post Sockets API can support new transport protocols; framing
and asynchronous message-oriented transport services; and
rendezvous, connection racing, and resumption.

Post Sockets is not the first proposal for an alternative to the
Sockets API. However, it is novel in that it builds on trends
in network APIs for programming languages and systems, is
fully asynchronous, and supports the range of new transport
protocols under development in the IETF, while raising the
level of abstraction for applications. The key features of Post
as compared with the existing sockets API are:
• Explicit Message orientation, with framing and atomicity
guarantees for Message transmission.

• Asynchronous reception, allowing all receiver-side inter-
actions to be event-driven.

• Explicit support for multistreaming and multipath transport
protocols and network architectures, including protocols
for mobility support.

• Long-lived Associations, whose lifetimes may not be
bound to underlying transport connections. This allows
associations to cache state and cryptographic key material
to enable 0-RTT resumption of communication, and for
the implementation of the API to explicitly take care of
connection establishment mechanics such as connection
racing [1] and peer-to-peer rendezvous [2].

• Protocol stack independence, allowing applications to be
written in terms of the semantics best for the application’s
own design, separate from the protocol(s) used on the
wire to achieve them. This enables applications written to
a single API to make use of transport protocols in terms
of the features they provide, following the ideas in the
IETF Transport Services (TAPS) working group [3].

II. Overview of the Post Sockets API
Post Sockets replaces the traditional SOCK_STREAM abstrac-

tion with an Message abstraction, which can be seen as
a generalization of the Stream Control Transmission Pro-
tocol’s [4] SOCK_SEQPACKET service. The API is centered
around a Message Carrier which logically group Messages for
transmission and reception. A Carrier can be created actively
via initiate() or passively via a listen(); the latter creates a
Listener from which new Carriers can be accept()ed. ForISBN 978-3-901882-94-4 © 2017 IFIP



Message
basic unit of communication

Message Carrier
carries messages for an association

Listener

re
ad

y(
)

se
nd

()

accept()

initiate()

listen()

Association
durable state between

two endpoints
over multiple paths

Transient Path

Local

Remote

1

n

n

1

n

1

1

n

Policy

Figure 1. Abstractions and relationships in Post Sockets.

backward compatibility, these Carriers can also be opened as
Streams, presenting a file-like interface to the network as with
SOCK_STREAM. Messages may be created explicitly and send()
over the Carrier, or implicitly through a simplified interface
which uses default message properties (reliable transport
without priority or deadline, which guarantees ordered delivery
over a single Carrier when the underlying transport protocol
stack supports it). Whenever a Message is fully reassembled
at receiver side, an asynchronous callback will notify the
application that a received message is ready().
Message Carriers are bound to an long-lived Association

which stores information about the identity of a Local and a
Remote endpoint, as well as cryptographic session resumption
parameters. New Message Carriers will reuse an Association if
they can be carried from the same Local to the same Remote
over an existing or newly found network Path; this re-use of an
Association together with implementation of a Policy or a set
of Policies defined by the application or system may imply the
creation of a new Transient representing a concrete Protocol
Stack Instance (PSI) assigned to an active Carrier.
The relationships among these elements are shown in

Figure 1 and detailed in this section.

A. Message Carrier
A Message Carrier (or simply Carrier) is a transport

protocol stack-independent interface for sending and receiving
Messages between an application and a remote endpoint.
Sending a Message over a Carrier is driven by the application,
while receipt is driven by the arrival of the last packet that
allows the Message to be assembled, decrypted, and passed
to the application. Receipt is therefore asynchronous; given
the different models for asynchronous I/O and concurrency
supported by different platforms, it may be implemented in
any number of ways. The abstract API provides only for a way
for the application to register how it wants to handle incoming
messages.

A Message Carrier that is backed by current transport
protocol stack state (such as a TCP connection) is said to be
active: messages can be sent and received over it. A Message
Carrier can also be dormant: there is long-term state associated
with it (via the underlying Association; see next section), and
it may be able to reactivated, but messages cannot be sent and
received immediately.
To exchange messages with a given remote endpoint, an

application may initiate a Message Carrier given its Remote
and Local identities; this is an equivalent to an active open.
There are four special cases of Message Carriers, supporting
different initiation and interaction patterns:
Listener: A Listener only responds to requests to create

a new Carrier, analogous to a server or listening socket in
the present sockets API. Instead of being bound to a specific
remote endpoint, it is bound only to a local identity. Accepting
an incoming request will fork a fully fledged Message Carrier.

Source: A Source is a special case of Message Carrier over
which messages can only be sent, intended for unidirectional
applications such as multicast transmitters.

Sink: A Sink is a special case of Message Carrier over which
messages can only be received, intended for unidirectional
applications such as multicast receivers.

Responder: A Responder may receive messages from many
remote sources, for cases in which an application will only
ever send Messages in reply back to the source from which
a Message was received. This is a common implementation
pattern for servers in client-server applications.
A Message Carrier may be morphed into a Stream, in

order to provide a strictly ordered, reliable service as with
SOCK_STREAM. Morphing a Message Carrier into a Stream
should return a file-like object as appropriate for the platform
implementing the API. Typically, both ends of a communication
using a stream service will morph their respective Message
Carriers independently before sending any data, based on
application layer knowledge about the configuration used by
the other endpoint. This is mainly for backwards comparability
with existing non-Post-Sockets stacks as well as an easy path for
migration for existing application implementations. If supported
by the underlying transport protocol stack, a Stream may be
forked: creating a new Message Carrier associated with a new
Message Carrier at the same remote endpoint.

B. Message

A Message is an atomic unit of communication between
applications. A Message that cannot be delivered in its entirety
within the constraints of the network connectivity and the
requirements of the application is not delivered at all. Messages
can represent both relatively small structures, such as requests in
a request/response protocol such as HTTP; as well as relatively
large structures, such as files of arbitrary size in a file system.
In the general case, there is no mapping between a Message
and packets sent by the underlying protocol stack on the wire:
the transport protocol may freely segment messages and/or
combine messages into packets.



Applications can register callbacks to be asynchronously
notified of three events on Messages they have sent: that the
Message has been transmitted, that the Message has been
acknowledged by the receiver, or that the Message has expired
before transmission/acknowledgment. Not all transport protocol
stacks will support all of these events.
A Message has the following properties that allow the

application to specify its requirements if applicable:
Lifetime: A wallclock duration before which the Message

must be available to the application layer at the remote end
or otherwise will be useless. As soon as it is know that a
lifetime cannot be met, the Message is discarded. Messages
without lifetimes are sent reliably if supported by the transport
protocol stack. Lifetimes are also used to prioritize Message
delivery. Lifetimes may also be signaled to path elements by
the underlying transport, so that path elements that realize
a lifetime cannot be met can discard frames containing the
Messages instead of forwarding them.
Antecedents: Other Messages on which it depends, which

must be delivered before it (the successor) is delivered.
Niceness: A priority among other messages sent over

the same Message Carrier in an unbounded hierarchy most
naturally represented as a non-negative integer. By default,
Messages are in niceness class 0 which is highest priority. By
prioritization of certain messages against others, e.g., blocking
of smaller, latency-sensitive messages by large non-latency-
sensitive messages can be avoided. Niceness may be translated
to a priority signal for exposure to path elements (e.g., DSCP
code-point) to allow prioritization along the path.

Immediacy: Marking a message as immediate signals to the
transport protocol stack that its application semantics require it
to be sent out immediately, instead of waiting to be combined
with other messages or parts thereof (i.e., for media transports
and interactive sessions with small messages). This allows
the receiver make effective use of messages in the event
of packet loss when messages do not have any Antecedents
and therefore can be delivered independently [5], e.g., when
applying application level Forward Error Correction (FEC).
Such a restriction can either be expressed on a per-message
base or as a policy for all messages send over a Carrier.
Idempotence: If marked as idempotent the underlying

transport protocol stack knows that its application semantics
make it safe to send in situations that may cause it to be
received more than once (i.e., for 0-RTT session resumption
as in TCP Fast Open, TLS 1.3, and QUIC).

Messages may also have arbitrary properties which provide
additional information on how they should be handled.
The sending transport uses the message properties, along

with information about the properties of the Paths available,
to determine when to send which Message down which Path.

C. Transient
A Transient represents a binding between an active Carrier

and the instance of the transport protocol stack that implements
it. A Transient contains ephemeral state for a single transport
protocol stack over a single Path at a given point in time. A

Carrier may be served by multiple Transients at once, e.g., when
implementing multi-path communication such that the separate
paths are exposed to the API by the underlying transport
protocol stack. Each Transient serves only one Message Carrier,
although multiple Transients may share the same underlying
protocol stack; e.g., in a multi-streaming protocol.

Transients are generally not exposed by the API, though they
may be accessible for debugging and logging.

D. Association

An Association contains the long-term state necessary to
support communications between a Local and a Remote
endpoint, such as cryptographic session resumption parameters
or rendezvous information; information about the policies con-
straining the selection of transport protocols and local interfaces
to create Transients to carry Messages; and information about
the Paths through the network available between them. Three
inputs are needed to establish an Association: a remote, a local,
and a policy.
A Remote represents information required to establish and

maintain a connection with the far end of an Association:
name(s), address(es), and transport protocol parameters that
can be used to establish a Transient; transport protocols to use;
information about public keys or certificate authorities used to
identify the remote on connection establishment; and so on.
Each Association is associated with a single Remote, either
explicitly by the application (when created by the initiation of
a Carrier) or a Listener (when created by forking a Carrier on
passive open).
A Remote may be resolved, which results in zero or more

Remotes with more specific information. For example, an
application may want to establish a connection to a website
identified by a URL. This URL would be wrapped in a
Remote and passed to a call to initiate a Carrier. The first pass
resolution might parse the URL, decomposing it into a name, a
transport port, and a transport protocol to try connecting with.
A second pass resolution would then look up network-layer
addresses associated with that name through DNS, and store
any certificates available from DANE. Once a Remote has been
resolved to the point that a transport protocol stack can use it
to create a Transient, it is considered fully resolved.
A Local represents all the information about the local

endpoint necessary to establish an Association or a Listener:
interface, port, and transport protocol stack information, as
well as certificates and associated private keys to identify it.

A Policy describes restriction and requirements from the
application to select and configure Transients for a communica-
tion between a Local and a Remote. For instance, an application
may require or prefer certain transport features [3] in the PSI(s)
used by the Transient(s) for a given Message Carrier. It may also
prefer Paths over one interface to those over another (e.g., WiFi
access over LTE when roaming on a foreign LTE network, due
to cost). Policy information, encapsulating application intent
and constraint, is thus expressed as implementation-specific
configuration for the Message Carrier and the Transient(s).



Transient

PSI

TCP

IPv6

802.3

TransientTransient

PSI

Transient

PSI

TCP

IPv4

802.11

PSI

TCP

IPv6

802.11

(a) Transient bound to a PSI (b) Carrier multiplexing over
a multistreaming protocol

TLS

DTLS

UDP

IPv6

SCTP

802.3

Carrier Carrier Carrier Carrier

(c) Multicandidate communication
during association establishment

TLS TLS

Figure 2. Protocol stack instances; multistreaming and happy-eyeballing

E. Path
A Path represents information about a single path through

the network known by an Association, in terms of source and
destination network and transport layer addresses within an
addressing context, and the provisioning domain [6] of the local
interface. This information may be learned through a resolution,
discovery, or rendezvous process (e.g., DNS, ICE), by active
or passive measurements taken by the transport protocol stack,
or by some other path information discovery mechanism.

The set of available properties is a function of the transport
protocol stacks such as the MTU, expected one-way delay, ex-
pected probability of packet loss, expected maximum available
data rate or reserved data rate.

III. Protocol Implementation using Post Sockets
Post Sockets describes an abstract API that is intended to

be broadly useful for applications, and that can support a wide
range of transport protocols and services. The API we propose
is deliberately tightly coupled with applications in a number
of places, since many of the protocols of interest also exhibit
similarly tight coupling [7]. In the following, we outline how
support for new protocols can be added to Post Sockets. The
intent is to provide an extensible library of protocols that
applications can use.

A. Protocol Stack Instance (PSI)
A PSI encapsulates an arbitrary stack of protocols (e.g.,

TCP over IPv6, SCTP over DTLS over UDP over IPv4). PSIs
provide the bridge between the interface (Carrier) plus the
current state (Transients) and the implementation of a given set
of transport services [3]. A given implementation makes one
or more possible protocol stacks available to its applications.
Selection and configuration among multiple PSIs is based on
system-level or application policies, as well as on network
conditions in the provisioning domain in which a connection is
made. For example, figure 2(a) shows a TLS over TCP stack,
usable on most network connections. Protocols are layered to
ensure that the PSI provides all the transport services required
by the application. A single PSI may be bound to multiple
message carriers, as shown in figure 2(b): a multistreaming
transport protocol like QUIC or SCTP can support one carrier

per stream. Where multistreaming transport is not available,
these carriers could be serviced by different PSIs on different
flows. On the other hand, multiple PSIs are bound to a single
transient during establishment, as shown in figure 2(c). Here,
the losing PSI in a happy-eyeballs race will be terminated, and
the carrier will continue using the winning PSI.

B. The Message-based API, Parsing, and Serialisation
The byte stream API provided by TCP sockets is a mistake.

We are aware of no protocol, except perhaps for an echo server,
for which a byte stream is the correct transport abstraction: all
impose some structure, some meaning, onto the byte stream.1
Protocols are specified in terms of state machines acting on
semantic messages, with parsing the byte stream into messages
being a necessary annoyance, rather than a semantic concern.

Transports other than TCP recognise this. UDP, SCTP, and
DCCP are all message-oriented. QUIC is stream oriented, but
is usually used with HTTP framing that provides messages
over the QUIC channel, and there are efforts to use the multi-
streaming features of QUIC to provide message framing. Post
Sockets follows this trend, and exposes a message-based API to
applications as the primary abstraction, offering a stream-based
API for ease of porting and backwards compatibility only.

There are other benefits of providing a message-oriented
API beyond simply framing PDUs [8]. These include:
• the ability to associate deadlines with messages, for
transports that care about timing;

• the ability to provide control of reliability, choosing what
messages to retransmit in the event of packet loss, and
how best to make use of the data that arrived;

• the ability to manage dependencies between messages,
when some messages may not be delivered due to either
packet loss or missing a deadline, in particular the ability
to avoid (re-)sending data that relies on a previous
transmission that was never received.

All require explicit message boundaries, and application-level
framing of messages, to be effective. Once a message is passed
to Post Sockets, it can not be canceled or paused anymore but
prioritization as well as lifetime and retransmission management
will provide the protocol stack with all needed information
to send the messages as quickly as possible without blocking
other transmission unnecessarily. Post Sockets provides this by
handling message, with known identity (sequence numbers, in
the simple case), lifetimes, niceness, and antecedents.
Transport protocols such as SCTP provide a message-

oriented API that has somewhat similar features. However,
they limit this to framed blocks of bytes. This is an advantage
compared to a stream API, since framing is a frequent source
of bugs in application code, but is still lacks semantic richness.
Our intent with Post Sockets is to go beyond the existing
message APIs, and raise the level of abstraction and support
processing messages, rather than framed chunks of bytes.

1An FTP data channel might be regarded as a protocol use of a byte stream,
but we believe it’s correctly interpreted as a structured transfer of an object
representing a single file, with out-of-band control.



trait ProtocolStackInstance<PDU> {
...
fn send(pdu : &PDU) -> Result<(), IoError>;
fn recv() -> PDU;
...

}

trait MessageCodec<PDU> {
fn encode(&self, pdu : &PDU, buffer : &[u8]);
fn decode(&self, data : &[u8]) ->

Result<(Option<PDU>, &[u8]), ParseError>;
}

Figure 3. Post Sockets message-oriented API

Post Sockets is primarily intended to be used with a high-
level systems programming languages (e.g., Swift, Go, Rust),
rather than as a low-level C API. In such languages, we expose
a semantically meaningful object-based API. That is, we push
message parsing and serialisation down into the PSI, and let
applications send and receive strongly typed data objects. Our
approach is to raise the semantic level of the transport API:
applications should send messages in the form of meaningful,
strongly typed, data; parsing and serialising such data is the
job of the protocol stack instance, not the application.

There are two parts to our API, shown in Rust-like pseudo-
code in Figure 3. The protocol stack instance itself has send()
and recv() functions as normal, except that those functions
take and return high-level data objects. The protocol stack
instance is parameterised by the type of the PDUs, and takes and
returns objects of that type, rather than byte buffers. To support
this, we also provide a MessageCodec API. An implementation
of this trait is passed to the Protocol Stack Instance. This
implement an encode() function that takes a PDU and buffer,
and serialises the PDU into that buffer according to the protocol
format. It also implements a decode() function that takes a
pointer to a buffer of data received from the network, and
returns either an optional PDU along with any outstanding data
remaining to be parsed, or an I/O error.
By supplying parsing and serialisation via the

MessageCodec API, and changing the send() and recv()
functions to take polymorphic high-level data types, we raise
the level of abstraction of the API. Passing references ensures
this is a zero-cost abstraction, with no unnecessary data copies.
The result is flexible, safe and easy to use, and efficient.

C. Associations, Transients, Racing, and Rendezvous
As the network has evolved, even the simple act of estab-

lishing a connection has become increasingly complex. TCP
clients now regularly race multiple connections, for example
over IPv4 and IPv6. The choice of outgoing interface has
also become more important, with differential reachability and
performance from multiple interfaces. Name resolution can also
give different outcomes depending on the interface the query
was issued from. Finally, but often most significantly, NAT
traversal, relay discovery, and path state maintenance messages
are an essential part of connection establishment, especially
for peer-to-peer applications.

Post Sockets accordingly breaks communication establish-
ment down into multiple phases:

1) Gathering Locals: The set of possible Locals is gathered.
In the simple case, this merely enumerates the local interfaces
and protocols, and allocates ephemeral source ports for transi-
ents. For example, a system that has WiFi and Ethernet and
supports IPv4 and IPv6 might gather four candidate locals
(IPv4 on Ethernet, IPv6 on Ethernet, IPv4 on WiFi, and IPv6
on WiFi) that can form the source for a transient.

If NAT traversal is required, the process of gathering locals
becomes broadly equivalent to the ICE candidate gathering
phase [2]. The endpoint determines its server reflexive locals
(i.e., the translated address of a local, on the other side of a
NAT) and relayed locals (e.g., via a TURN server or other
relay), for each interface and network protocol. These are added
to the set of candidate locals for this association.
Gathering locals is primarily an endpoint local operation,

although it might involve exchanges with a STUN server to
derive server reflexive locals, or with a TURN server or other
relay to derive relayed locals. It does not involve communication
with the remote.

2) Resolving the Remote: The remote is typically a name
that needs to be resolved into a set of possible addresses that
can be used for communication. Resolving the remote is the
process of recursively performing such name lookups, until
fully resolved, to return the set of candidates for the remote of
this association.
How this is done will depend on the type of the Remote,

and can also be specific to each local. A common case is
when the Remote is a DNS name, in which case it is resolved
to give a set of IPv4 and IPv6 addresses representing that
name. Some types of remote might require more complex
resolution. Resolving the remote for a peer-to-peer connection
might involve communication with a rendezvous server, which
in turn contacts the peer to gain consent to communicate and
retrieve its set of candidate locals, which are returned and form
the candidate remote addresses for contacting that peer.

Resolving the remote is not a local operation. It will involve
a directory service, and can require communication with the
remote to rendezvous and exchange peer addresses. This can
expose some or all of the candidate locals to the remote.

3) Establishing Transients: The set of candidate locals and
the set of candidate remotes are paired, to derive a priority
ordered set of Candidate Paths that can potentially be used to
establish a connection.

Then, communication is attempted over each candidate path,
in priority order. If there are multiple candidates with the same
priority, then transient establishment proceeds simultaneously
and uses the transient that wins the race to be established.
Otherwise, transients establishment is sequential, paced at a rate
that should not congest the network. Depending on the chosen
transport, this phase might involve racing TCP connections to
a server over IPv4 and IPv6 [1], or it could involve a STUN
exchange to establish peer-to-peer UDP connectivity [2], or
some other means.



4) Confirming and Maintaining Transients: Once connectiv-
ity has been established, unused resources can be released and
the chosen path can be confirmed. This is primarily required
when establishing peer-to-peer connectivity, where connections
supporting relayed locals that were not required can be closed,
and where an associated signalling operation might be needed
to inform middleboxes and proxies of the chosen path. Keep-
alive messages may also be sent, as appropriate, to ensure
NAT and firewall state is maintained, so the transient remains
operational.

By encapsulating these four phases of communication estab-
lishment into the PSI, Post Sockets aims to simplify application
development. It can provide reusable implementations of
connection racing for TCP, to enable happy eyeballs, that
will be automatically used by all TCP clients, for example.
With appropriate callbacks to drive the rendezvous signalling
as part of resolving the remote, we believe a generic ICE
implementation ought also to be possible. This procedure can
even be repeated fully or partialy during a connection to enable
seamless hand-over and mobility within the network stack.

IV. Related Work
Post Sockets is by far not the first attempt to modernize

the Berkeley Sockets API; we refer the reader to section IV.B.
of [9] for a current survey of this work. Most of this work,
in the interests of easier deployability, has been explicitly
evolutionary, and we take particular inspiration from some
of these. SCTP [4] provided an API [10] adding sequential
packet service and notifications to the Sockets API, which we
see as a first step in the direction of Post Sockets. Message-
oriented communication with antecedent-based ordering was
implemented in TCP Minion [11]. Looking further back,
dynamic instantiation of protocol stacks has been well-explored
by the active networking community; e.g. by the Autonomic
Networking Architecture [12].

V. Conclusions and Outlook
In this work we presented Post Sockets, a new standard

network API, providing a higher layer of abstraction that
enables application developers easier access to novel transport
features provided by new protocols. A key goal of Post Sockets
is to raise the bar for all at once, rather than relying on
education and incremental software updates to slowly bring
support for modern connection establishment to applications
over a period of many years. Post provides a message based
interface, with asynchronous message reception, to multi-
path and multistreaming protocols and integrates services for
connection establishment and resumption. Thereby we provide
the necessary hooks to allow effective use of the modern
networking, and to provide generic services that can be shared
across different classes of application. Post Sockets is a richer
API than the traditional Sockets interface, but does little that is
not part of existing applications. Rather it exposes the features
of those applications, abstracts them, and makes them easily
reusable. As Post Sockets semantics can be accessed on different
levels of abstraction, e.g., also supporting the well-known byte

stream interface and providing different interaction patterns,
it supports a broad variation of applications. Post Sockets
message-based interface requires, in addition to the actually
transport protocol stack, a framing protocol. Where appropriate
existing framing protocols such as HTTP can be used when
integrated in to the protocol stack underneath the Post Sockets
API. Alternatively a generic light-weight framing protocol
could be develop for Post Socket’s needs. However, this require
some capability negotiation with the other endpoint to detect
if this framing and thereby Post Sockets in support, while
otherwise Post Socket can be used independent of the transport
stack implementation of the other endpoint. Post sockets can
be implemented as an abstraction layer on top of the current
socket API in user space. However, the long term goals is
the replacement of the Berkley socket API in kernel space,
which may enable to more efficient integration of feature that
currently not provided in the kernel network stack.

VI. Acknowledgements
This work is partially supported by the European Commission

under Horizon 2020 grant agreement no. 688421 Measurement and
Architecture for a Middleboxed Internet (MAMI), and by the Swiss
State Secretariat for Education, Research, and Innovation under
contract no. 15.0268. This support does not imply endorsement. We
are grateful to participants in the IETF Transport Services working
group, for feedback on early versions of these ideas. The work was
further developed in a workshop held at ETH Zürich in February
2017, attended by the authors as well as Tommy Pauly, Michael Welzl,
Gorry Fairhurst, Anna Brunstrom, Marwan Fayed, Michael Tuexen,
Zdravko Bozakov, Eric Vyncke, Mikael Abrahamsson, Erik Kline,
and Basile Bruneau.

References
[1] D. Wing and A. Yourchenko, “Happy eyeballs: Success with dual-stack

hosts,” IETF, RFC 6555, April 2012.
[2] J. Rosenberg, “Interactive connectivity establishment (ICE): A protocol

for network address translator (NAT) traversal for offer/answer protocols,”
IETF, RFC 5245, April 2010.

[3] G. Fairhurst, B. Trammell, and M. Kuehlewind, “Services provided
by IETF transport protocols and congestion control mechanisms,”
Working Draft, IETF, RFC 8095, March 2017. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-taps-transports-14.txt

[4] R. Stewart, “Stream Control Transmission Protocol,” Internet Requests
for Comments, IETF, RFC 4960, September 2007. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4960.txt

[5] M. Handley and C. Perkins, “Guidelines for writers of RTP payload
format specifications,” Internet Requests for Comments, IETF, BCP 36,
December 1999.

[6] D. Anipko, “Multiple provisioning domain architecture,” IETF, RFC
7556, June 2015.

[7] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a
new generation of protocols,” in SIGCOMM. Philadelphia, PA, USA:
ACM, 1990.

[8] S. McQuistin, C. S. Perkins, and M. Fayed, “Implementing real-time
transport services over an ossified network,” in Applied Networking
Research Workshop. ACM/IRTF/ISOC, July 2016.

[9] G. Papastergiou et al., “De-ossifying the internet transport layer: A survey
and future perspectives,” IEEE Communications Surveys Tutorials, vol. 19,
no. 1, 2017.

[10] R. Stewart, M. Tuexen, K. Poon, P. Lei, and V. Yasevich, “Sockets API
extensions for the stream control transmission protocol (SCTP),” Internet
Requests for Comments, RFC, RFC 6458, December 2011.

[11] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford, “Fitting
Square Pegs Through Round Pipes: Unordered Delivery Wire-Compatible
with TCP and TLS,” in NSDI. USENIX, 2012.

[12] A. Keller, T. Hossmann, M. May, G. Bouabene, C. Jelger, and C. Tschudin,
“A system architecture for evolving protocol stacks,” in ICCCN, 2008.


