
Predicting SLA Conformance for Cluster-based
Services

Rafael Pasquini∗†§, Farnaz Moradi‡, Jawwad Ahmed‡, Andreas Johnsson‡, Christofer Flinta‡, Rolf Stadler†§
∗ Faculty of Computing (FACOM/UFU), Uberlândia – MG, Brazil – Email: rafael.pasquini@ufu.br
† ACCESS Linnaeus Center, KTH Royal Institute of Technology, Sweden – Email: stadler@kth.se

‡Ericsson Research, Sweden – Email: {farnaz.moradi, jawwad.ahmed, andreas.a.johnsson, christofer.flinta}@ericsson.com
§Swedish Institute of Computer Science (SICS), Sweden

Abstract—The ability to predict conformance or violation for
given Service-level Agreements (SLAs) is critical for service as-
surance. We demonstrate a prototype for real-time conformance
prediction based on the concept of the capacity region, which
abstracts the underlying ICT infrastructure with respect to the
load it can carry for a given SLA. The capacity region is estimated
through measurements and statistical learning. We demonstrate
prediction for a key-value store (Voldemort) that runs on a server
cluster located at KTH.

Index Terms—Capacity Region, Feasible Region, Real-time
Prediction, Statistical Learning, Service-level Agreement (SLA).

I. BACKGROUND/CONCEPTS

Understanding and predicting the performance of telecom
services is intrinsically hard. Such services involve large and
complex software systems that run on general-purpose plat-
forms and operating systems, which do not provide real-time
guarantees. Our approach to performance prediction is based
upon statistical learning whereby the behavior of the target
system is learned from observations. It has been described in
our previous work [1], [2].

Fundamental to this demonstration is the concept of the ca-
pacity region. Given a service and an SLA, the capacity region
characterizes the load that the underlying ICT infrastructure
can carry while conforming to the SLA.

Figure 1 shows the capacity region for read and write
operations performed on a key-value store (Voldemort [3])
running on our testbed at KTH. In this case, the load space
has two dimensions, comprising the rate of read operations
(horizontal axis) and the rate of write operations (vertical axis),
respectively. The (carried) load of the system at any time is
thus a vector in this space. The capacity region is shown in
green and describes all possible load vectors the system can
support while conforming to the SLA.

The red area in Figure 1 describes all possible load vectors
that violate the SLA. The green and red areas combined make
up the feasible region for the service on the given infrastructure
and capture all possible load vectors for which the offered load
is equals to the carried load.

The boundary of the capacity region is the line (manifold)
that separates the green and the red parts of the load space.
It has been learned through measurements, using a classifier.

Fig. 1. The capacity region and the feasible region for a key-value store on
our testbed. The green area defines the capacity region with the load vectors
(read rates, write rates) that the testbed can carry while conforming to a given
SLA. The red area describes the load vectors that violate the SLA. The green
and red areas combined make up the feasible region.

Green dots in the figure show load vectors that conform to the
SLA, red dots show vectors that violate the SLA.

The demonstration shows the behavior of the system under
dynamic load patterns. When the load vector is within the
capacity region, the prototype will predict SLA conformance,
otherwise, SLA violation.

II. TESTBED

The demonstration includes a platform that implements the
above approach in an on-line setting illustrated in Figure 2.
The platform is an extension of the setup described in [1].
A management station provides access to the KTH testbed
and displays measurements and predictions from the platform
running on the testbed.

The testbed is deployed on a server rack in our laboratory
at KTH. It includes ten high-performance machines intercon-
nected by Gigabit Ethernet. Nine of them are Dell PowerEdge
R715 2U servers, each with 64 GB RAM, two 12-core AMD
Opteron processors, a 500 GB hard disk, and four 1 Gb
network interfaces. The tenth machine is a Dell PowerEdgeISBN 978-3-901882-94-4 c© 2017 IFIP



R630 2U machine with 256 GB RAM, two 12-core Intel Xeon
E5-2680 processors, two 1.2 TB hard disks, and twelve 1 Gb
network interfaces. All machines run Ubuntu Server 14.04 64
bits, and their clocks are synchronized through NTP.

The Key-value (KV) store is deployed on six PowerEdge
R715 machines, all of which act as KV store nodes in a peer-
to-peer fashion, running Voldemort version 1.10.22 [3]. Device
statistics are extracted from the kernel of the Linux operating
system that runs on the servers executing the KV store. To
access the kernel data structures, the X sensor accesses the
System Activity Report (SAR), a popular open-source Linux
library [4]. The store is first populated with 10 million unique
keys, selected uniformly at random from a 32-bit key-space.
The size of the stored values is 40960 bytes. Each key-value
pair is stored on three machines in the cluster. Consistent
hashing is used to identify these machines. The KV clients
run the benchmark tool from Voldemort and are deployed on
a separate PowerEdge R715 machine. This machine measures
the response times through the Y sensor and produces load
patterns for experimentation.

The Real-time Analytics Engine is written in Python and
makes use of the scikit-learn package [5]. The classifiers for
both the Load Space and Resource Space are also written using
the scikit-learn package.

Fig. 2. Setup for the demonstration.

III. DEMONSTRATION

The demonstration shows real-time predictions of SLA
conformance or violation and the accuracy of those predictions
for dynamic load patterns, as illustrated in Figure 3. The
management station displays: 1) the learned feasible region in
load space; 2) the learned capacity region in load space and its
mapping into resource space; 3) the trajectories of the system
state in load and resource space; 4) the predictions regarding
SLA conformance or violation; 5) real-time measurements of
read/write response times from a KV client, for both load
space and resource space, used to validate the predictions.

(a) Trajectory of the load vector in the load space. The current response time
is displayed for illustration purposes.

(b) Trajectory of the resource utilization vector in the resource space.

Fig. 3. Two windows of the management station.

ACKNOWLEDGEMENTS

This research has been supported by the Swedish Govern-
mental Agency for Innovation Systems, VINNOVA, through
project SENDATE-EXTEND and by the Swedish Research
Council through the ACCESS Linnaeus Centre.

REFERENCES

[1] R. Yanggratoke, J. Ahmed, J. Ardelius, C. Flinta, A. Johnsson, D. Gill-
blad, and R. Stadler, “Predicting service metrics for cluster-based services
using real-time analytics,” in Network and Service Management (CNSM),
2015 11th International Conference on. IEEE, 2015, pp. 135–143.

[2] ——, “Predicting real-time service-level metrics from device statistics,”
in Integrated Network Management (IM 2015), 2015 IFIP/IEEE Interna-
tional Symposium on, April 2015.

[3] Project voldemort - a distributed database. http://www.project-voldemort.
com/voldemort/.

[4] S. Godard. SAR. http://linux.die.net/man/1/sar.
[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.


