
In-Network Live Stream Processing
with Named Functions

Christopher Scherb
University of Basel, Switzerland

christopher.scherb@unibas.ch

Urs Schnurrenberger
University of Basel, Switzerland
urs.schnurrenberger@unibas.ch

Claudio Marxer
University of Basel, Switzerland

claudio.marxer@unibas.ch

Christian Tschudin
University of Basel, Switzerland

christian.tschudin@unibas.ch

Abstract—Information Centric Networking (ICN) is designed
for content distribution. Therefore, it is a solid basis for data
streaming applications. In general, data streaming applications
have become very popular in networks where many sensors
provide their data. Thereby, users often want to fetch the
information of several data streams and aggregate or analyze
them. Normally, such results are smaller than the input data.
Therefore, it can be beneficial to compute the analysis on a data
source. Especially for sensor devices this may not be possible due
to their limited computation power. Additionally, sensor networks
can be widely distributed, meaning that to compute the analysis
on one sensor device requires to aggregate all streaming data on
it. Hence, it makes sense to aggregate or analyze the streaming
data inside the network. Here Named Function Networking
(NFN) can help. It is an ICN generalization which enables users
to request results of in-network computations. We show how user
defined in-network data analysis can look like in several scenarios
such as analysis of live streaming GPS tracking data. Thereby,
we present how the NFN naming scheme can be used to name
data streams. Furthermore, we address the problem how to enter
an existing data stream.

I. INTRODUCTION

The Web was conceived as a hypertext infrastructure for
rather small documents like Web pages which would be
transferred by the underlying Internet in one go. In the past
ten years, however, streaming has become the dominant mode
of content delivery for two major reasons (beside the classic
streaming applications like telephony): First, documents have
become very large (e.g. movies), mandating a transfer mode
where content is delivered piecewise, and second, an increas-
ingly large number of sensors is attached to the Internet which
generates a continuous flow of items towards the servers that
process these streams. In this paper, we explore how an In-
formation Centric Network, which by design is specialized in
delivering individually-named small data items, can optimally
support streaming of data as well as their processing, leading
to a “stream-aware network”.

Processing data streams inside the network has many poten-
tial benefits and has been proposed since long: In-network data
fusion, for example, suggests that combining the information
from neighboring data sources avoids transferring multiple

streams to maybe several receivers which all would have to
merge the individual streams in a redundant fashion. The
problem, though, is that unlike universal bit transfer, process-
ing is highly application-specific and potentially computation-
ally expensive. In our solution, we expose to the network
the operations on the streams and let the network find out
whether and where in-net processing is feasible, and whether
processing results can be cached instead of being recomputed.
We demonstrate such a system by an number of scenarios of
increasing complexity:

• Data filtering: Transform GPS coordinates of a body
sensor data stream “on the fly”, for privacy reasons.

• Data aggregation: Derive from one data stream another
stream that combines multiple values (e.g. average) at
another rate.

• Data correlation: Detect spatio-temporal events like e.g.
deciding whether two runners are running together.

As we will show, these examples lead to complex imple-
mentation issues like namespace design for the data samples,
lookup services to “connect” to an already ongoing stream,
or the naming of operations on multiple streams. Our system
makes use of named functions, which is a generalization of
the named-data approach of ICN. Our contributions are:

• A methodology for naming streams and their data sam-
ples, amendable to in-network processing and recursive
treatment as yet-another-stream.

• Study on common problems to be addressed, including
- how to identify a position in a data stream
- how to join a live stream
- how to process a data stream
- how to match data parts from different streams

The paper is organized as follows: In Section III we describe
how we apply data streaming in ICN and how to handle
computations on data streams. As a test case we used live
GPS data tracking and perform tests with several applications
inside the NDN testbed. We describe the test scenarios as well
as their behavior in Section IV and the test environment in
Section V. In Section VI we introduce a solution to secure
data streams.ISBN 978-3-901882-94-4 c© 2017 IFIP

II. BACKGROUND

A. Information Centric Networking
All current derivatives of the ICN paradigm according to

Van Jacobson [1] have in common that they address content
directly by name. This is a paradigm shift since users have
simply to ask for a content’s name to get the desired data
instead of going first to a specific network location and
searching there for the data. This shift is mainly legitimized
by changed user demands but also by the wish of overcoming
limitations of the original networking paradigm. Supporting
the understanding of core aspects of this paper, this is shown
for example by three comparisons:

1) Compared to the limited IP address space cardinality (232

for IPv4 and 2128 for IPv6) there is potentially an inexhaustible
amount of names because they can be of arbitrary length.
Moreover, they are extendible and thereby can fulfill additional
functions than just naming or addressing.

2) IP addresses identify network locations whereas names
identify content/data. Amongst others, this has direct im-
plications on the forwarding process. Normally, there exists
just one best path to a network location (IP address). In
comparison, identical names - or identical data respectively
- can be available in different network locations, meaning that
there are multiple best paths to the data. Accordingly, the IP
Forwarding Information Base (FIB) contains just one entry
for a certain IP address or prefix while an ICN FIB can have
several entries for one name or name prefix. In doing so, the
problem of multi-path routing is solved very elegantly.

3) A further important reform are standard in-network short-
term caches, referred to as Content Stores (CS). Content Stores
can keep recently seen data for a shorter or longer period
according to an implemented strategy or policy. This is in
strong contrast to IP network which are generally stateless. The
main potential benefits of Content Stores are shorter latency
and less congested channels because data may be available
closer to the consumer thereof. This capability is a requirement
to perform in-network computations because it facilitates the
storage of interim and final results of computations. Note that
results are nothing else than yet another chunk of data.

The following subsection briefly introduces our approach
on how to express network computations.

B. Named Function Networking
In an ICN network, a user can request data by using an

identifier, usually a data name. But this is only a special case
of requesting a result of a computation [2]. The computation
itself is encoded in the name of the Interest message. We
use λ-calculus as encoding since it is a compact way to
represent computations and can be represented as string. The
encoded computations inside the ICN name define a workflow,
while it is possible to call high level functions from within
the λ-calculus. These high level functions are stored in ICN
content objects. Thus, they are seamlessly transferable over
the network.

By manipulating computations inside the network, NFN
is enabled to optimize the location where a computation is

executed by using metrics such as computational load on
a node or channel capacity utilization between nodes [3].
Optimally, a NFN tries to compute a result on the path to
the data sources to reduce the network traffic and to distribute
the computational load. This makes NFN to a good example
for fog computing. But it is possible to pin functions on nodes
so that they cannot be transferred over the network. This might
be required for security or copyright reasons. In this case, the
NFN has to transfer the data to the pinned function.

NFN is compatible to the ICN implementations CCNx and
NDN. Since a λ-expression has no meaning to the routing
system of CCNx or NDN, one of the names of the Interest
message is prepended.

This works since both CCNx and NDN use longest prefix
matching for routing. The first components containing the
prepended data name are valid for the CCNx/NDN routing
system, and all other components are ignored because of the
longest prefix matching. Thus, it is possible to use NFN in a
heterogeneous network where CCNx or NDN nodes store and
forward data and NFN nodes perform computations. In this
paper we represent NFN-functions as pseudo code like:

func <functionname> (<params>):
<functioncode>
return value <....>

In the following, we simplify NFN-names carried by an
Interest to common function call notation

f(param1, param2)

instead of explicitly writing out the λ expressions with a
prepended parameter:

param1 λ x call f x param2

III. DATA STREAMING AND STREAM PROCESSING

In this paper we distinguish between live and on-demand
streaming. While for live streaming there are only the latest
data elements available, for on-demand streaming any data
element is accessible at any time. Live streaming perfectly
fits to ICN, since it offers a efficient way for distributing
content to multiple receivers[4]. Since a data stream is a
sequence of data elements which are accessible over time,
stream processing strongly depends on the representation of
the data elements [5]. In the following we provide a data
elements representation for ICN streams and explain how to
use them in NFN for processing. Thereby, we focus on live
streams. A live stream is a stream which provides the latest
data when they are published. The beginning and the ending
of the stream are unknown. Moreover, an on-demand stream
is a special case of a live stream where each position can be
requested anytime. An on-demand stream can be handled the
same way as a live stream.

A. Streaming in ICN

For data streams it is required that even a single data
element contains certain meaningful information. Thus, each
data element has to be addressable since ICN communication

is receiver driven. In our case, we use a sequence number as
the last part of the name for distinction.

Because ICN is receiver driven and has a symmetric In-
terest/Data packet flow, it is required to request each data
element individually by expressing an Interest. The data stream
with the prefix /provider/streams/stream1 can be
requested with the Interest message:

I: /provider/streams/stream1/s4

The component s4 refers to the fourth data element of the
stream. Some ICN implementation use longest prefix matching
for searching the content. In this case, a user can express
a shorter version of the Interest message by removing the
sequence number. In this case, the user would receive an
arbitrary data element of the stream. After receiving one data
element of a data stream, a user has to increase the sequence
number to receive further elements since sequence numbers are
sorted in ascending order. The naming scheme for data streams
is quiet the same as used for VoCCN[6]. We explicitly choose a
common name scheme to stay compatible with existing work.

B. Joining a Stream

The current position of a live stream is unknown in advance,
but it is required to be aware of it in order to join. For the
special case of on-demand streaming a user always starts a
stream by requesting the first part since each part is available.
For live streaming only the contemporary data elements are
available, and maybe some previous data elements, stored in
the network’s content stores. For that reason it is not possible
to start with the first part. Thus, joining a live stream is more
complicated. We propose two ways to join a data stream:
Increasing sequence numbers and manifest files.

1) Increasing Sequence Numbers: For ICN networks using
longest prefix matching for searching the content, it is possible
to join a data stream without adding a sequence or chunk num-
ber. Thereby, the caller will receive an arbitrary part available
in the network. The received content object will contain a
sequence number. By increasing the sequence number until
there is no content object with a higher sequence number
available, it is possible to reach the latest position of the
stream. For live streams which may produce a lot of parts in a
short time period, it may take some time until the user reaches
the latest part. To reduce this effort, the sequence number can
be increased exponentially. Thereby, it is possible to miss the
latest sequence number. If a requested sequence number is not
available, the sequence number can be halved and increased
again. Still, this requires some network communication and in
ICN networks using exact prefix matching this does not work.

2) Stream Manifest Files: An alternative method to join a
live stream is manifest-based. A manifest file contains meta
information about the data stream, e.g. the start time and the
sampling interval. With these information it is possible to
approximate the latest chunk number. Since a manifest file
is usually stored in a data object, it is possible to join the
data stream by only requesting the manifest file. Therefore,

it is required that the manifest file is available for the entire
duration of the stream.

C. Stream Processing with NFN

A stream processing environment computes new streams
from existing ones. The challenge is to setup an environment
where users can deploy their own processing functions and are
not restricted to the reuse of existing functions. This is where
NFN can demonstrate its strengths. A user defines his own
computations and NFN will find a location to execute them.
For stream processing, the result of a NFN computation will
be cached and can be reused. Because a new stream is created
this way, it is possible to chain NFN computations. To identify
the data element of the stream on which the computation is
defined, it is required to add the sequence number or a range
of sequence numbers. The name of the new stream will be the
name of the computation (a λ-expression). The data element
of the stream is identified by the input sequence numbers.
When a computation is defined on multiple data streams, the
sampling rate can be changed. Depending on the computation
itself, a new result is available every time when one of the
streams publish a new element or only when multiple did.

To describe a data stream computation we use a graphical
representation as shown in Figure 1 where a processing
function combines several input streams to one output stream.
The output stream can also be the input for another processing
function. Our graphical representation focuses on input data,
the processing function and the output data because NFN hides
the network from a user.

Fig. 1. Stream processing schema

Just as ICN, NFN relies on a receiver driven approach. As
Figure 2 shows, each processing of a part must be triggered
by a request of a client.

A client expresses an Interest message which contains a
program encoded in λ-calculus. This program consists of a
function call processingFunc on a part of a data stream
Stream1. The part is identified by using the sequence number
seqNum:

I: processingFunc(
/provider/streams/stream1/s4,
/provider/streams/stream2/s7,
/provider/streams/stream3/s1, ...)

The Interest message is routed towards the data, the function
code is fetched, and the computation is executed next to the
data source (red/left part). The processing function has to
request the relevant data parts from the data source (blue/right
part).

Clients Processing Source

processingFunc(Stream1, seqNum)

/captured/data

(unprocessed)

(processed)

Fig. 2. Requesting a single part of a processed data stream

We assume that the source of the data stream has no
computation unit. Thus, it is not required that a publisher has
high computation power to publish a data stream in different
formats to many users, such as it is required in the current
Internet. YouTube needs high computation power to transcode
a video stream to different resolutions for different devices.
When processing a data stream in NFN, the goal of the
network is to find a processing unit as close as possible to
the data source. This way, the probability that other requests
can be satisfied by a cached result is increased.

IV. GPS STREAM PROCESSING WITH NFN

In the following we demonstrate the behavior of NFN based
on live streaming GPS tracking data. We show that NFN
provides a simple possibility for personalized in-network data
stream processing. With mobile data connection, it is possible
to stream GPS position data live to the Internet where other
people can view the current position. We choose a scenario
where GPS sports watches or a smartphone app is used to
track a running workout. We have three processing functions.
We start with a simple example which is used to filter personal
information out of a GPS stream. We continue with computing
the running distance where data has to be aggregated over a
time period. Lastly, we detect if two runners are running close
to each other. In that case, data of multiple sensors have to
be combined. We assume that a data element contains exactly
one GPS tracking data point.

A. Filtering

Activity tracking produces data which most people do not
want to be released to the public. Nevertheless, users might
want to share the workouts they performed. For example,
personal time-location data might reveal individual habits and
indicate a person’s place of residence, work or recreational
activities. On the other side, refusing to contribute personal
data often means to forgo useful applications. We think that for
many users providing filtered data is a viable middle course.
Filtering means to reduce the information content of certain
data by still preserving enough information to run certain
applications. By translating the workout in a way that the
starting point is on the origin of the geographical coordinate
system, all personal location information is removed. The
sole track information is much more difficult to misuse for

unintended purposes. The gps_origin_filter take one
input data stream and the result will be a second stream. This
is exactly the scenario we described in Figure 2. The filter
requests the first data point and subtracts it from the data point
to be filtered.

B. Aggregation

In order to analyze data of a sensor, the challenge is to col-
lect the data in an efficient way. We demo data aggregation in
our streaming based NFN scenario by computing the distance
completed by a runner. Figure 3 shows the processing function
receiving multiple data elements over time and combines them
to an aggregated result.

Fig. 3. Time wise data aggregation from streaming data elements

This is done by adding up the differences between the single
GPS data points. Therefore, it is required to know the current
and the last data points as well as the already covered distance.
We propose a NFN function that collects a certain number of
data points and computes the distance between them:

aggregate(stream, s4, s321)

where stream is the data stream, s4 is the start position and
s321 is the end position. The function aggregate has to
request all parts between the start and the end position. For
a live stream, it is required that the starting point is available
in the moment the computation starts. The NFN function can
aggregate the data points of the available parts while waiting
for new data points to be published. This behavior can be
achieved by splitting the aggregation to a sub problem:

aggregate(stream, s4, s321) =
aggregate(stream,s4, s320) +
aggregate(stream, s320, 321))

This way, it is not required to store every data point lo-
cally, but only the intermediate result. The output of the
data stream aggregate(stream,s4, s320) become the
input for computing the next element of the data stream
aggregate(stream, s4, s321).

C. Simple Event Detection

Event Detection names the task to supervise data stream(s)
in order to notify if certain pattern(s) occur [7]. Such a
scenario is described in Section III where multiple input data
streams are combined. During a marathon race, two persons
may run together unless one becomes faster. If the distance
between two runners is smaller than a threshold, they are
still running next to each other (Algorithm 1, line 9). The
input for this computation are two data streams and the

position (sequence number) pos1 in the data stream s1.
It is important to choose the right sequence number for the
other data stream s2. The timestamp of the GPS data points
should be as close as possible, otherwise we would not detect
if both runners are running together. Therefore, the function
detect_together has to find a matching data point given
the position in one stream. By requesting the last few data
points (line 6) of the second runner, it is possible to find the
closest data point (line 7). The function request_latest
(line 3) performs an operation to find the latest data element in
a stream (see III-B) while the function request just requests
a data element given a certain sequence number.

Algorithm 1 Event Detection: Are two athletes running close
at a certain point in time?

1 f u n c t i o n d e t e c t t o g e t h e r (s1 , s2 , pos1) :
2 d1 = r e q u e s t (s1 , pos1)
3 pos2 = r e q u e s t l a t e s t (s2) . pos
4 c l o s e s t P t = r e q u e s t (s1 , pos2)
5 f o r i in 0 . . 5 :
6 d2 = r e q u e s t (s2 , pos2−i)
7 i f d2 . t s−d1 . t s < c l o s e s t P t . t s−d1 . t s :
8 c l o s e s t P t = d2
9 i f d1 . gps − c l o s e s t P t . gps < t h r s h l d :
10 re turn t r u e
11 end f o r
12 re turn f a l s e
13 end f u n c t i o n

V. DEPLOYMENT

Since ICN and NFN rely on named data objects and
streams, and not on nodes in the network, the topology of the
underlying network is completely hidden to the user. The user
expresses a computation such as on a local computer and the
network resolves it. To verify our test scenarios, we made use
of the NDN testbed. Thereby, we connected a NFN node to
the testbed node of the University of Basel (UB). To issue our
Interest messages, we connected to the node of the University
of California, Los Angeles (UCLA). The testbed node of the
UCLA forwards the Interest messages to the node of UB and
to our NFN node. The NFN node initiates the computation by
requesting the required data from the data streams. We added
the data streams on the node of the UB. The computation is
executed on the NFN node in the network and only the result
is transferred over the testbed. Figure 4 shows the topology of
the test setup.

VI. SECURE STREAMING

In several cases it is required to secure a data stream.
For example, in the introduced use cases it makes sense to
secure streams consumed by a gps_origin_filter since
the unfiltered content (Figure 5, lower right part in green)
should not be publicly accessible. To overcome this issue, the
consumed and unfiltered stream delivers only parts which are

Fig. 4. NDN testbed topology with NFN node

symmetrically encrypted with a certain key (chosen by the
capturing device). An instance of the gps_origin_filter
can request that symmetric key by sending the public key
of an available public/private key pair (Figure 5, upper right
part in blue). If the public key is contained by a list of
trusted identities, the symmetric key is encrypted therewith
and returned. The requesting consumer is able to encrypt the
symmetric key by making use of the locally available private
key.

A function holding a trusted public/private key pair needs
to be pinned down on a certain node. This avoids that
privileged identities travel through the network. However it
is still possible to distribute the computations in the network
by setting up several instance of gps_origin_filter.

Clients Filtering Source

gps_origin_filter(...)

/prefix/key/<pubKey>

(symKey, secured)

/prefix/captured/data

(unfiltered, secured)

(filtered, plain)

Fig. 5. Secured streaming

VII. DISCUSSION & FUTURE WORK

We propose an approach for data stream processing which
is based on NFN. Instead of loading a data stream to a client
and processing it there, we perform in-network operations.
There are different data stream processing models where fixed
processing units are installed. In that case, the user has to
choose one of the available processing units and use available
functions. NFN enables users to define in which way the
data stream should be processed. By optimizing the location
of the data stream processing using mobile function code,
NFN ensures that data is processed on the direct network
path from the data source/producer to the data requester. This

reduces the network load compared with classic approaches
where that data stream has to be transmitted over specific
processing units. Mobile code can be distributed and different
computations can be distributed to multiple nodes, similar to
S4 [8]. Moreover, the computation can be changed during the
data stream, since all requests are receiver driven.

Thereby, some of the key features of ICN are preserved.
The data can be received from any node storing or caching
the data. Furthermore, data and results of processing can be
cached in the network. The disadvantage of receiver driven live
stream processing is that the computation is only initialized if
there is a request to do so. Hence, (intermediate) results are
generally not precomputed as soon as new input data becomes
available.

Since NFN relies on ICN names to express computation,
a solid naming scheme for data streaming is required. Our
naming scheme is very similar to those used in VoCCN [6].
Transferring the naming scheme of a static data stream to a
dynamic NFN stream is straight forward. As long as we can
address a position in a data stream using ICN names, we can
just wrap NFN computations around it. This is one of the
key properties in NFN to be compatible with existing ICN
solutions. Nevertheless, it is required to define a mechanism
how a live stream can be joined, since the current position is
unknown. An additional challenge are multiple data streams
with different sampling rates used as input of a computation.
In this case, either a directory with current positions or user
knowledge over the sampling rates is required.

In-network data processing reduces the load on the network
and on client devices. Especially for mobile devices it is
beneficial to use as less own resources as possible because
computation and power capacity are limited. Thus, it is re-
quired to deliver preprocessed data in a way that as little
client-side resources as possible are used. With NFN, users
get the possibility to precisely express their personal needs.

Up to this point we examined only a secured transmission
between the data source and the processing/filtering node.
That is why we assume that filtered data can be accessible
for everyone. To protect data and to restrict the access to
authorized persons, it is required to encrypt the data between
the processing/filtering node and the users as well. This was
not the focus of this paper since there are already concepts
available how manage the access to results of NFN compu-
tations [9]. Nevertheless, the example showing how to secure
the communication between data source and processing node
demonstrates that the NFN access control mechanism also
applies to stream processing given that we use a regular NFN
name scheme.

VIII. CONCLUSION

Flexible in-network data stream processing is a challenging
task. In this paper we showed how NFN can be used for stream

processing. NFN is a generalization of ICN that enables the
user to request results from the network. Moreover, NFN hides
the network in a way that users can express computations
similar as on a local computer. Thus, the network itself decides
where the computation is executed and it can optimize its
load. We introduced a simple data streaming model where
single data elements are identified with sequence numbers.
By processing one data stream with a function, a new data
stream is created. This new data stream can be used as input
for another processing function. Handling stream processing
becomes very similar to local workflow management. A user
defines the input data stream and the computations to be
applied. The network will deliver the result. It is not required
to download the streaming data first or to connect to a remote
machine to compute the result. To test our implementation, we
used live tracking data from GPS devices. Thereby, we focused
on three test applications: data filtering, data aggregation and
event detection in live streams. Since ICN networks are usually
receiver driven, our data filtering implementation relies on a
pull based approach. The goal for the data filtering operation
was to reduce the information content in a way that the user’s
privacy is protected. Therefore, it was required to introduce a
security mechanism to prevent unauthorized users to request
the original data.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proc. of the 5th
Int. Conf. on Emerging Networking Experiments and Technologies, ser.
CoNEXT ’09. New York, NY, USA: ACM, 2009, pp. 1–12.

[2] C. Tschudin and M. Sifalakis, “Named Functions and Cached Computa-
tions,” in CCNC, 2014 IEEE 11th, 2014.

[3] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, “An Information
Centric Network for Computing the Distribution of Computations,” in
Proc. of the 1st Int. Conf. on ICN, ser. ICN ’14. ACM, 2014.

[4] C. Westphal, S. Lederer, D. Posch, C. Timmerer, A. Azgin, W. S. Liu,
C. Müller, A. Detti, D. Corujo, J. Wang, M.-J. Montpetit, and N. Murray,
“Adaptive Video Streaming over Information-Centric Networking (ICN)
– RFC 7933,” Internet Engineering Task Force, 5177 Brandin Court
Fremont, California 94538 USA, Tech. Rep., aug 2016.

[5] H. Xu, Z. Chen, R. Chen, and J. Cao, “Live Streaming with Content Cen-
tric Networking,” in Networking and Distributed Computing (ICNDC),
2012 3. Int. Conf. on, Oct 2012, pp. 1–5.

[6] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart,
J. D. Thornton, and R. L. Braynard, “VoCCN: Voice-over Content-Centric
Networks,” in Proc. of the 2009 workshop on Re-architecting the Internet.
ACM, 2009, pp. 1–6.

[7] L. Probst, I. Giangreco, and H. Schuldt, “PAN – Distributed Real-Time
Complex Event Detection in Multiple Data Streams,” in Distributed
Applications and Interoperable Systems. Springer, 2016, pp. 189–195.

[8] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
Stream Computing Platform,” in 2010 IEEE Int. Conf. on Data Mining
Workshops, Dec 2010, pp. 170–177.

[9] C. Marxer, C. Scherb, and C. Tschudin, “Access-Controlled In-Network
Processing of Named Data,” in Proc. of the 2016 conference on 3rd ACM

Conf. on Information-Centric Networking. ACM, 2016, pp. 77–82.

