
Execution State Management in
Named Function Networking

Christopher Scherb
Dept of Mathematics

and Computer Science
University of Basel, Switzerland

Email: christopher.scherb@unibas.ch

Balázs Faludi
Dept of Mathematics

and Computer Science
University of Basel, Switzerland
Email: balazs.faludi@unibas.ch

Christian Tschudin
Dept of Mathematics

and Computer Science
University of Basel, Switzerland

Email: christian.tschudin@unibas.ch

Abstract—This paper introduces a mechanism to steer long-
running in-network computations over ICN, or more specifically,
over an NFN network. NFN (Named-Function Networking) is
an extension of ICN that performs in-network resolution of
expressions instead of mere content retrieval of a single name,
as in ICN. One problem NFN faces are timeout events which
are not discriminative enough to distinguish between healthy and
ongoing computations from blocked threads or from connectivity
problems. Moreover, we would like to change parameters of
a long-running computations on the fly, to fetch intermediate
(approximate) results or to simply cancel/stop/resume a compu-
tation. To this end we introduce Request-to-Compute messages
(R2C) which generalize keep-alive messages. In this paper we
report on experiences with a running prototype (steering a n-
body simulation) and relate R2C to PubSub and Rendezvous
protocols.

I. INTRODUCTION

In today’s Internet, cloud computing has become a dominant
topic: Data storage and computation power are offered as
services and are seamlessly bundled with networking func-
tionality. Especially for small devices with little storage and
computation power it is beneficial to use external resources,
be it the remote cloud or nearby edge servers.

Information Centric Networking (ICN) [1] is an alternative
network pattern to current IP networks. It shifts the focus
from host-centric IP solutions towards fetching content objects
via names in a location-independend way: Provided a simple
name, the network can decide how and from which location
a content object is delivered. Named Function Networking
(NFN) [2] is an extension to existing ICN networks that
enables an ICN to deliver not only data that was already pub-
lished but also on-demand results of computations, whereby
the network can optimize where a computation is executed.
NFN orchestrates computations for a specific user at the edge
of the network as well as for services inside the network [3].

Our first NFN implementation focused on how to en- and
decode a computation inside an ICN name, how to forward
interest message with a computation inside the ICN name,
how to optimize the execution location and later on how to
secure results [4]. One of the discovered shortcomings of
using plain ICN Interest and Data primitives was that there
was no solid mechanism to prevent computations from timing

out. Moreover, once a computation was started there was
no way to interact with it until it returned a result (which
made it hard to debug NFN applications, for example). We
address these problems with the introduction of “request-to-
compute” messages (R2C). This paper describes the mechanics
of R2C messages and shows broad usage for such messages
for moving NFN even closer to the cloud.

II. BACKGROUND

A. Information Centric Networking

Information Centric Networking (ICN) networks are based
on two types of messages: Interests and Content Objects.
While content objects store the actual data, interests are used
to request a content object. To secure the available content
and to prevent users from manipulated content, every content
object is signed by the producer. To fetch a content object,
users express a interest messages and forward them to an
ICN node they are connected to for further processing. The
ICN node itself consists of three important data structures:
the Content Store (CS), the Pending Interest Table (PIT) and
the Forwarding Information Base (FIB). When an ICN node
receives an interest message, it first checks the CS, whether
the available content is already cached. If it finds a matching
content object inside the cache, the interest will be directly
satisfied by replying with the content object. If there is no
matching content object in the CS, the ICN node will check
the PIT. The PIT is used to deduplicate interest messages
and to store a trace to the user who expressed the interest
message. If there is a PIT entry available, the interest message
will be appended and not be forwarded, since the message
has already been forwarded once. If there is no PIT entry
available, the ICN node will lookup the FIB to forward the
message. Thereby, all interfaces with a matching entry could
be used concurrently, but only the first reply message will
be processed. After transmitting an interest message, a node
performs several retransmits, to ensure, that the message was
not lost. If no answer is received in a specific timeout interval,
the PIT entry will be deleted, and no content object will be
returned. When an ICN node receives a content object, it
checks if there is a matching PIT entry. If a PIT entry is
found, the node will reply to all nodes which requested the
content object, otherwise the content object will be deleted.ISBN 978-3-901882-94-4 c© 2017 IFIP



B. Named Function Networking

ICN usually retrieves content that was beforehand made
available for retrieval. NFN extends the capabilities of ICN
by allowing to request content through “recipes” based on
named functions and named parameters. Thereby, content
retrieval becomes a special case of functional programming
in NFN. NFN interests request a computation (or its cached
result) in form of a λ-expression. Such an expression can
reference other content objects and portable functions to be
applied to them. The network is responsible for obtaining the
required content, optimizing the execution location based on
resource availability and mobility, running the computation,
and returning the results to the client. In NFN the concept of
thunks was introduced to prevent timeouts. Thereby, a client
could ask for an estimation on how long the computation
may take and the timeout intervals of the PIT entries will
be adjusted accordingly.However, if the computation requires
more time than the estimation, the result cannot be delivered
anymore.

III. CONTROLLING COMPUTATIONS IN NFN

In the past, our NFN implementation was only able to
start a computation and to wait until it finished. Since the
computation was running inside the network, a user had no
access to some sort of “Process Control Block (PCB)” as it
exists for example in UNIX. Furthermore, since a user only
received the final result, remote-debugging a computation was
very tedious.

Request-to-Computation (R2C) messages are an extension
to NFN which enable the user to access the PCB and to
interact with it. Also, the R2C messages can be used to
request intermediate results: The main use case is to obtain the
current state of long running computations (e.g. simulations)
but also for fetching debug information. In the following we
present our approach to controlling and managing network
computations in NFN using R2C messages.

A. Request-to-Computation Messages (R2C)

When accessing or changing a computation in the network,
there are mainly two things to specify: The identity of the com-
putation to be controlled (whose potentially multiple execution
sites are unknown to the requestor) and what we request from
it. We map R2C messages to ordinary ICN Interest and Data
messages as we have already done with NFN messages. In
Figure 1 we see an outer, long-lived NFN-request that starts the
computation and returns the final result. Inside this transaction
there can be multiple short-term R2C exchanges that enable
to steer the ongoing computation.

Technically, ICN interests are flagged as being R2C mes-
sages by an additional name-component
/somePrefix/call <funcname> <params>/

R2C/<command_and_params>/NFN
By relying on longest prefix matching—which is common in

ICN networks—it is possible to add the NFN (and R2C) suffix
without affecting the routing. The prepended routable prefix
and the computation expression identify which computation

Client NFN-Node

interest:NFN-computation
running computation

interest:R2C-command
R2C-reply/ack

running computation

content:result

Fig. 1. Schema of NFN with R2C-messages

is addressed while additional name components at the end
can be used to specify the command and parameters that “the
computation” should receive.

R2C messages are forwarded the same way as ICN or NFN
interests. Thus, we use the same mechanisms (i.e retransmits)
to prevent packet loss. If there nevertheless is a packet loss,
the same user driven recovery is required as for any other ICN
packet. Every R2C message is confirmed by a ACK message.

B. Request-to-Computation Commands

In the following we give an overview of implemented R2C
commands and how they operate.

1) Start/Stop : The simplest command is to start a new
computation. This function was already available by sending
am ordinary NFN-interest
call <funcname> <params>/NFN

Additionally, to be consistent with the R2C commands, a
computation can now be started using the interest:
call <funcname> <params>/R2C/start/NFN

Both interests have exactly the same behavior. After having
started a computation—especially if it is a long running
computation—a user may realize that the result is no longer
needed and could be stopped. This is achieved through the
stop command:
call <funcname> <params>/R2C/stop/NFN

When such an interest message is received, the computation
is aborted and there is no way to restart the computation
again. However, the results of subcomputations which have
already been completed will still be available inside the
network’s cache. If a computation is stopped while waiting
for the results of subcomputations, the subcomputations also
have to be stopped (using R2C messages, too). Furthermore,
it is possible that multiple users request to start the same
computation. In this case NFN pools the requests and the
computation is only executed once. This is achieved by adding
all incoming interests to the PIT. To prevent that a computation
is stopped by one user while other users are still waiting for
the computation to terminate, the computation is not stopped
until all PIT entries are removed. Thus, a stop message does
not abort the computation directly, but only removes the
corresponding PIT entries if appropriate.



2) Pause/Resume : Pausing a computation can be useful
for stream processing, which can also be considered as a long-
running computation. In case the user pauses the video, it does
not make sense to continue the computation since the partial
results of the conversion only stay inside the network’s cache
for a limited time:
call <funcname> <params>/R2C/pause/NFN

To continue the video the user resumes the computation:
call <funcname> <params>/R2C/resume/NFN

If there are multiple PIT entries for a result of a computation
it is required to fork the computation when a pause request is
received. Thus, it is possible to satisfy the pause request which
returns a unique handle while not affecting other requests.
The PIT entry for which the pause request was issued will
be changed to point to the forked computation state and
will be paused until a resume command is received. After
receiving the resume command, the corresponding interest will
be satisfied by the forked computation.

3) Get Intermediate Result : During long-running com-
putation, intermediate results are a way to fetch the current
computation state. Therefore, an additional function is added
to NFN: A NFN developer can explicitly publish an interme-
diate result via the executing NFN node. These intermediate
results are identified by ascending numbers. To fetch an
intermediate result, a user has first to learn whether there is
already data to be fetched, which can be done with the method
call <funcname> <params>/R2C/

intermediateResultAvailable/NFN
This method returns a number X that identifies the latest
available intermediate results and permits to fetch it. To fetch
an intermediate result the parameter X is given to the R2C
function getIntermediateResult:
call <funcname> <params>/R2C/

getIntermediateResult X/NFN.
The function intermediateResultAvailable deliv-

ers live results to the user. When called multiple times, it could
return different results. Therefore, it does not fit to the common
ICN principles of immutable data, since it acts as latest version
service. To avoid conflicting versions of the same data, the
data created by intermediateResultAvailable are
not cached. This exception is reasonable, since the function
intermediateResultAvailable only delivers meta
data, about which intermediate results are available, while
on the other hand the function getIntermediateResult
provides concrete data objects, which are immutable.

By writing the current state of the computation as interme-
diate results, a user has the possibility to fetch information
about the computation, which are required to debug an in-
network computation. Thus, writing an intermediate result
which contains the current state of the computation is similar
to setting a breakpoint in a debugger.

4) Timeout prevention : Timeouts in the PIT lead to
deletion of the reverse path: If a long-running computation
exceeds that PIT timer, no results will be returned although it
was computed.

We address this problem by introducing R2C keep-alive
messages. Shortly before a timeout would occur, a R2C keep-
alive message is issued:
call <funcname> <params>/R2C/

keep-alive/NFN
If the compute server receives a keep-alive message, it will
check whether the computation is still being executed and
if it is, the keep-alive message will be answered with an
empty content object. The PIT entry will only be deleted if
no response is received to a keep-alive message within the
common timeout interval. Usually, the node closest to the
client will issue the first keep-alive message. All other nodes
on the route to the computation node will see the keep-alive
messages and update their PIT, without sending own keep-
alive messages.

C. Controlling Fan-out

Forwarding a request for a NFN result can lead to mul-
tiple computations being started if there are multiple FIB
entries which match the same prefix. Starting a computation
on multiple nodes is a waste of computational resources.
Additionally, the client has no information about how many
nodes are running the computation and it cannot verify that all
computations were notified by an R2C message. To address
this in the case of duplicate FIB entries, the NFN forwarding
engine can be optimized to choose one of them and only if
the computation fails and no result is received (this can be
monitored by using the keep-alive-messages), the other entry
is selected. To find the running computation, it is required
to track the forwarding state and attach the selected FIB
entry to the PIT. As soon as the computation is notified, the
downstream entity will receive an ACK message.

IV. VALIDATION THROUGH PROTOTYPES

In order to understand the impact and usefulness of the
proposed R2C messages we implemented prototypes for use
cases in three different areas: a physics n-body simulation,
a PubSub application and a Rendezvous protocol supporting
server and client mobility.

Our goal was not to perform any benchmarks (comparing
the performance of our system with similar applications) but
rather to verify functional correctness and versatility. All test
runs were using the simple environment shown in Figure 2.

Client Network Relay

NFN-node 1

Network Relay

NFN-node 2

Relay

NFN-node 3

Fig. 2. The simple environment used during our evaluation.



A. Physics Simulations
Simulations are usually high performance applications– in

our case a physics n-body simulation where particles subject
to gravity float in space and eventually collide, forming bigger
particles and ultimately stars. We chose this kind of simulation
because requesting the state of the simulation at any point
of the computation gives a meaningful result (that can be
visualized). Moreover, intermediate results can be used to
checkpoint the intermediate state of the computation. Finally, it
is a perfect case for exercising the R2C’s keep-alive messages.

Fig. 3. Different intermediate states of our n-body simulation

An n-body simulation computes the position of particles
based on gravity, movement and the previous state. Given a
matrix of the position, weight and velocity of a certain number
of particles at t0 the n-body simulation computes the positions,
weights and velocities at t1. If two particles collide, they will
be merged into a new particle with the joint weight and mean
velocity of the collided particles. After computing t1 out of t0
it is possible to use t1 to compute t2. Every state tn is stored
as an intermediate result. Thus, the user can access all past
states of the computation.

After the first step is computed, it is possible to fetch the
result, to verify that the computation runs correctly and to
visualize the result. In fact we could visually verify that the
computed results are meaningful as is shown in Figure 3. To
this end we defined a NFN computation that creates an image
out of a state tk. Combining the simulation function with
the visualization part demonstrated at the same time function
chaining with intermediate results: Assuming (in Fig. 2) that
NFN-node 1 stores the visualize function, NFN-node 2
stores the input data and NFN-node 3 stores the simulate
function, we can express the interest message
i1=call /visualize (call

/simulate /firstParticleState m)
where m gives the number of iterations that should be com-
puted. Figure 4 depicts the workflow. First, the interest is
forwarded to NFN-Node 1 where the outer computation can
be executed. Next, the inner call
i2=call /simulate /firstParticleState m

is forwarded to a location where the input data file
/firstParticleState is stored (NFN-Node 2) and the
function /simulate is fetched with interest i3 from NFN-
node 3 (not visualized in Figure 4), so that it is possible to
start the inner computation. Meanwhile, the outer computation
awaits intermediate results. As soon as they are available, it
fetches the intermediate results and creates an image. There-
fore, it is required to periodically check if an intermediate

Client NFN-Node 1 NFN-Node 2

interest:i1

interest:i2

interest:i3

simulate

R2C:keep-alive

R2C:still-alive

R2C:iRA

R2C:available:n

R2C:iRA

R2C:available:n
R2C:gIR(n)

R2C:interm.result n

visualize

R2C:keep-alive

R2C:still-alive

R2C:iRA

R2C:available:n
R2C:gIR(n)

R2C:interm.result n

Simulation LoopSimulation Loop

content:result

content:result

Fig. 4. Long-running n-body simulation in NFN using the R2C
extension. NFN-Node 1 stores the function visualize and NFN-
Node 2 the input data file firstParticleState. Interest i3
is used to fetch the function simulate from NFN-node 3. iRA
stands for intermediateResultAvailable and gIR for
getIntermediateResult. n is the number of the latest available
intermediate result. The simulation loop runs for a specific number of
simulation steps, m in our example.

result is available. The image is returned as intermediate result
to the user (who also has to periodically check if a result is
available). When the m-th state is computed, the Simulation
Loop will be left and the last result state is returned as the
final result. The outer function visualize is stopped as
soon as the final result of the inner computation is received
and the last image is computed and sent to the user. During
the computation, it is required to use timeout prevention (keep-
alive messages), since the computation requires more time than
the typical timeout interval.

B. Publish/Subscribe

Publish/Subscribe (PubSub) is a common pattern to dis-
tribute irregularly published content to multiple receivers. In
the following we demonstrate how long-running computations
and intermediate results can be used to express the PubSub



pattern. PubSub can be seen as middleware which informs
a user if a new result or dataset is available. Thereby it is
not required that the consumer and the publisher are directly
connected or available at the same time. In NFN, a publisher
can start a computation which will act as a kind of middleware
and “buffer”. The computation periodically checks if there is
new content published and fetches it as soon as it is available.
New content is stored as an intermediate result. As a subscriber
goes online, it checks if there are new intermediate results
available. Since NFN uses the PIT to pool duplicated interests,
multiple consumers can subscribe to the same content while
the “middleware computation” is only running once. Note
that each consumer pulls items at its own pace by requesting
intermediate results with next number needed for its sequence.
To unsubscribe, a consumer simply stops the computation.

Mapped to the test scenario in Figure 2, the client (sub-
scriber) issues a PubSub computation which will be executed
on NFN-node 1 while NFN-node 2 operates as the publisher.

C. Rendezvous protocol for Terminal Mobility

ICN networks naturally enable (consumer) client side mo-
bility: After changing location, a client can just retransmit an
interest message to continue fetching data. However, there is
no native mechanism for (producer) server mobility in ICN.
One way of supporting mobility is by using a non-mobile way-
point e.g. rendezvous extension for HIP [5]. The server regis-
ters with its current prefix/address on the waypoint node. Every
time the server changes its location, it will update the entry on
the waypoint node. Thus, the client can ask the waypoint to
get the server address and to request data. The disadvantage
of this mechanism is that special infrastructure/middleware is
required. As already shown in the previous example, NFN with
R2C messages can be used to replace common middleware. In
our test scenario, in order to offer a service, a mobile server
(NFN-node 2) will start a computation which runs on NFN-
node 3 and creates intermediate results with the current prefix
(address) of the server. Since the latest intermediate result
should contain the current prefix/address of the server, the
server has to update the computation on NFN-node 3 every
time it changes it’s location. To do so, the computation awaits
a message from a server. This message can also be a R2C
message (see Section V-A). Using the intermediate results we
avoid a single content object containing the server address.
Thus, the data objects itself remain immutable, while only
the function intermediateResultAvailable contains
mutable data (see Section III-B3).

By requesting the latest intermediate result, the client can
fetch the current server address to request the actual data.
It is also possible that the client creates its own waypoint-
computation to enable bidirectional mobile data transfer. This
mechanism could be used to create peer-to-peer applications.

V. EXTENDED USAGE OF R2C MESSAGES

In the following we will present further extensions to the
R2C system to show the capability of this concept. Addition-
ally, we show how existing concepts can be implemented by

using NFN without changing the network nodes itself, based
on the extensions we propose.

First we show how R2C commands could be used to
influence a computation during runtime.

Next we discuss a extension to the intermediate results to
make them more flexible and to fit requirements application of
some application. Later, we propose a way how to implement
the concepts of segments and versions with the R2C extension.

A. Dynamic Programming
In some cases, a user starts a computation and later on

decides to change some of its parameters, based on inter-
mediate results. This can be achieved by structuring the
computation into runs where the controller fetches the result
of a run, decides how to continue and then starts the next
run. Using R2C messages (and without having to resort to
self-contained runs, but instead referring to existing execution
state in the network), the developer of a long-running named
function would insert blocking stages at the end of a run: The
computation would be put on hold, waiting for the intermediate
result to be fetched and waiting for a subsequent resume
command. By sending the R2C command
call <funcname> <params>/R2C/continue(

<new computation> )/NFN
the execution is resumed by using the instructions (and pa-
rameters) from <new computation>.

B. Fetchable Names for Intermediate Results
Previously, we focused on numbers to identify intermediate

results. Thus, when requesting an intermediate result, a number
was given to the function getIntermediateResult as
parameter. A further extension to the intermediate results is
to publish the intermediate results by using an ICN name.
Instead of the number, a NFN function developer could
also specify the name of the intermediate result explicitly
to better match requirements of the applications. In this
case, a intermediateResultAvailable request has
to return a list of all available results instead of the num-
ber of the latest intermediate result and the parameter of
getIntermediateResult will be the name of the inter-
mediate result that should be fetched. Additionally, it the name
could be used to fetch the result directly by using this name
instead of calling getIntermediateResult.

C. R2C commands for “strategies”
One further use case of R2C commands (which we did not

implement, yet) would be to transfer a running computation to
another provider or to influence how to distribute a computa-
tion in the network. This opens up the prospect of emulating
“ICN strategies” by using NFN computations. For example,
one could easily change e.g. the ICN forwarding or caching
strategy by just deploying a different computation [6] i.e., the
network’s behavior is considered as long-running computation.
Thus, the creation of overlay networks is possible as we shown
in our PubSub example. It is also feasible to use computations
to create networks for the usage in data centers, where special
forwarding and replication strategies are required [7].



D. Segments as Partial Results

In ICN it is common practice to split large content objects
into segments. A segment is identified by a segment-id, either
stored in a name component or in meta data while the last seg-
ment is marked by using a last-segment identifier [8]. This way
it is possible to transmit live streams even if the last-segment
id is unknown when the transmission is started. In the context
of NFN, a segment can be seen as a partial result and would
be handled by the mechanics of retrieving intermediate results:
The consumer can reconstruct the original large content object
by combining all partial results. That is, the producer splits the
content in multiple intermediate results instead of segments.
Since intermediate results are numbered, comparable to seg-
ments, the translation of names is straight forward. Similarly,
the R2C command intermediateResultAvailable
replaces the last-segment identifier. Note that this is not a 1:1
mapping (since in classic ICN the last-segment information is
a marker in the name of the last segment while in our R2C
case we have to use intermediateResultAvailable),
but the overall behavior remains the same.

Some ICN implementations use catalog files (also called
manifests) to describe the segmentation of data. if required, a
pointer to the next catalog file (this property enables streaming
by using catalog files). A user first requests a catalog file
which contains pointers to the actual segments and, Since
intermediate results with R2C are enumerated and require
special calls to getIntermediateResult also indicating
the name of the original computation, it is not possible to
directly use such numbers in catalog files. However, using
explicit ICN names for intermediate results, as explained in
Section V-B, one can again populate catalogs without having
to refer to the computation that created these segments.

E. Versions as Provisional Results

Versions and R2C semantics also work well together: Ver-
sions are a natural way of looking at intermediate result. For
example, the accuracy of simulation results increases with
every iteration, leading every time to an “improved result”.

We can use R2C commands as a replacement of the classic
ICN version field meant to work around the cryptographic
binding between a name and the chunk’s content: New content
leads to a new name with a changed version field. In classic
ICN, the new version is indicated by an increasing integer
number or by a timestamp that follows the segment identifier.
The monotonically increasing version number can be directly
mapped to the numbering of intermediate results (and the
R2C command intermediateResultAvailable en-
ables users to discover the latest version of a data object). To
deal with timestamps, it is required to know which timestamps
are available. By explicitly naming intermediate results (see
Section V-B) intermediateResultAvailable will re-
turn a list of intermediate results. If the names of the interme-
diate results contain timestamps, this becomes a list of all
available timestamped versions. In other words, versioning
with timestamps can be mapped to the R2C concept of
intermediate results, too.

F. Iterators

While ICN segment and version fields are packet-level
concerns, the higher-level picture is that the network should
provide support for iterators at the level of programming
languages. This doesn’t come as a surprise given NFN’s
functional spirit: The R2C commands are generic enough to
support iterating both along the segment dimension (including
streaming of data) as well as over the versions of a specific
chunk. We have not yet explored this mapping to a high-level
programming language, though.

VI. CONCLUSIONS

In this paper we introduced the concept of Request-to-
Computation (R2C) messages to manage the state of a NFN
computation. In previous NFN versions it was only possible to
start a computation and wait for a result. The R2C extension
enables users to control the computation when it is executed
inside the network. This is not only required to abort com-
putation, but also for debugging, timeout prevention, fetching
intermediate results and client-side computation steering. The
R2C extension can also be used to express classic ICN
concepts like content segmentation or chunk versioning in a
novel way, potentially even replacing them.

In order to validate the R2C concept, we applied it to
a physics n-body simulation (to verify intermediate results
and timeout prevention), a Publish/Subscribe scenario (to use
computations as in-network buffers) and a mobility waypoint
(to keep a mobile server’s connectivity state).

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/1658939.1658941

[2] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, “An information
centric network for computing the distribution of computations,” in Proc.
of the 1st International Conference on Information-centric Networking,
ser. INC ’14. ACM, 2014, pp. 137–146.

[3] H. Zhang, Z. Wang, C. Scherb, C. Marxer, J. Burke, and L. Zhang,
“Sharing mhealth data via named data networking,” in Proceedings of
the 2016 conference on 3rd ACM Conference on Information-Centric
Networking. ACM, 2016, pp. 142–147.

[4] C. Marxer, C. Scherb, and C. Tschudin, “Access-controlled in-network
processing of named data,” in Proceedings of the 2016 conference on 3rd
ACM Conference on Information-Centric Networking. ACM, 2016, pp.
77–82.

[5] J. Laganier and L. Eggert, “Host identity protocol (hip) rendezvous
extension,” 2008.

[6] C. Scherb, M. Sifalakis, and C. Tschudin, “A packet rewriting core
for information centric networking,” in Consumer Communications &
Networking Conference (CCNC), 2016 13th IEEE Annual. IEEE, 2016,
pp. 67–72.

[7] D. Mansour and C. Tschudin, “Towards a monitoring protocol over
information-centric networks,” in Proceedings of the 2016 conference on
3rd ACM Conference on Information-Centric Networking. ACM, 2016,
pp. 60–64.

[8] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, Jul. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2656877.2656887


