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Abstract—Distributed attacks originating from botnet-infected
machines (bots) such as large-scale malware propagation cam-
paigns orchestrated via spam emails can quickly affect other
network infrastructures. As these attacks are made successful
only by the fact that hundreds of infected machines engage
in them collectively, their damage can be avoided if machines
infected with a common botnet can be detected early rather
than after an attack is launched. Prior studies have suggested
that outgoing bot attacks are often preceded by other “tell-
tale” malicious behaviour, such as communication with botnet
controllers (C&C servers) that command botnets to carry out
attacks. We postulate that observing similar behaviour occuring
in a synchronised manner across multiple machines is an early
indicator of a widespread infection of a single botnet, leading
potentially to a large-scale, distributed attack. Intuitively, if we
can detect such synchronised behaviour early enough on a few
machines in the network, we can quickly contain the threat
before an attack does any serious damage. In this work we
present a measurement-driven analysis to validate this intuition.
We empirically analyse the various stages of malicious behaviour
that are observed in real botnet traffic, and carry out the first
systematic study of the network behaviour that typically precedes
outgoing bot attacks and is synchronised across multiple infected
machines. We then implement as a proof-of-concept a set of
analysers that monitor synchronisation in botnet communication
to generate early infection and attack alerts. We show that with
this approach, we can quickly detect nearly 80% of real-world
spamming and port scanning attacks, and even demonstrate
a novel capability of preventing these attacks altogether by
predicting them before they are launched.

I. INTRODUCTION

Network administrators often become aware of botnet infec-

tions only when large-scale attacks, such as high-volume spam

email, are observed. Prior work [9], [13] has suggested that

these attacks are only the final blow in a multi-stage botnet

infection sequence, and are usually preceded by an inbound

exploit, e.g. drive-by download or SSH exploit, malicious

binary download and communication with a command-and-

control (C&C) server. Our intuition is that if these “pre-attack”

stages of a botnet infection occur in a synchronised manner

on multiple hosts, it is highly likely that the hosts are part of a

botnet and may therefore engage in a large-scale attack. At this

point it is possible to raise an early alert for network attacks.

Thus, to achieve this early detection capability, it is first of all

important to empirically investigate the temporal relationship

among botnet infection stages to understand which behaviour

typically precedes attacks. One would then monitor hosts for

synchronised patterns in this behaviour, for example, multiple

hosts contacting the same C&C server. Once such patterns are

discovered, it is possible to generate an alert for attacks that

members of a botnet may already have launched or are soon

to launch.

The idea of observing the network for uniformity in com-

munication patterns, for example similar HTTP requests to

C&C servers, exists in earlier malware detection research [14],

[12]. However such behavioural similarity has been used only

in a limited manner, either as added evidence of an already

suspected infection or to merely discover members of the same

botnet family [10]. To the best of our knowledge it has not

been investigated as an early attack indicator. Furthermore,

there has been little effort to empirically analyse the correla-

tion and temporal relationship between synchronised malicious

activity and outgoing attacks, or to comprehensively study

whether this approach can aid in early detection of attacks.

In this paper, we carry out a systematic study to investi-

gate the important temporal relationship between attacks and

synchronised malicious behaviour, and to investigate the pos-

sibility of quickly detecting attacks based on this relationship.

Our investigation has been conducted on real network traces

containing wide-area-network (WAN) traffic of 380 home and

office networks which show a rich variety of “in-the-wild”

botnet activity, comprising at least 13 known botnet families

including HTTP, peer-to-peer(P2P) and IRC-based botnets. We

first carry out statistical measurements on the dataset to deter-

mine the malicious behaviour that typically precedes attacks,

and verify that the result of our analysis is in agreement with

the behavioural sequence suggested in early botnet studies.

We then build a proof-of-concept set of analysers, based on

network traffic and protocol analysis, that monitor hosts for

synchronisation in the behaviour typically preceding attacks.ISBN 978-3-901882-94-4 c© 2017 IFIP



We study how quickly our analysers are able to identify botnet

infections based on synchronised network activity compared to

a reputable, commercial blacklisting service, and whether they

are able to raise timely alerts of attacks. We even investigate

the novel notion of predicting attacks before they are launched

and present insights into the limitations that must be overcome

to make such predictions possible.

Overall, the key contributions of our work are as follows:

(a) An empirical analysis of the infection sequence of bot-

net malware pertaining to 13 distinct, real-world botnet

families;

(b) A measurement of the communication uniformity ob-

served in botnet infections in our dataset, and a systematic

investigation of the correlation and temporal relationship

between such uniformity and outgoing bot attacks;

(c) A novel approach for early detection of infections and

attacks and experimental evaluation of its accuracy and

usefulness compared to a commercial blacklisting service.

We demonstrate that the vast majority (up to 96%) of

the infected hosts in our dataset demonstrate some level of

synchronisation in various kinds of malicious behaviour, and

that this synchronisation is correlated with attacking behaviour

for at least 83% of the hosts. We also show that with this

approach, at least 91% of the time, we were able identify

infections no later than a commercial blacklisting service.

Most importantly, we empirically validate the early attack

detection potential of our approach by detecting 77% of attacks

almost at launch-time, and show that even with our proof-of-

concept implementation, it is sometimes possible to predict

attacks before they occur; we present also our insights into the

prediction problem and possible future directions for making

it possible. As a further contribution, the scripts used for

the analysis of synchronised behaviour will be released as a

proof-of-concept open-source implementation to foster future

research in the area by using and extending our work.

The remainder of this paper is organised as follows. Sec-

tion II presents related work in this area; Section III presents

an empirical analysis of temporal relationships among vari-

ous infection stages; Section IV outlines our approach and

algorithms; Section V presents the experimental setup and the

issues we want to investigate; Section VI discusses the results

of the investigation, and Section VII concludes the paper.

II. RELATED WORK

Given the damaging potential of botnet attacks if left

unchecked, the problem of quick detection and mitigation

has received attention from security researchers. A common

solution has been to improve the speed of network analysis

tools and algorithms, for example by deploying parallel and

distributed detection systems [20], exploiting parallelisation at

the hardware level [18], or designing speedier algorithms for

existing techniques such as faster pattern or rule matching [22].

Our work takes an approach that is orthogonal to these

efforts; instead of trying to speed up existing techniques, we

explore a different approach to early attack detection by using

the uniformity expected from botnet communications as an

indicator of a widespread infection and possible attacks.

Botnet detection research has frequently exploited botnets’

behavioural uniformity in the past. A common detection

approach is to train machine learning classifiers to identify

typical patterns of botnet communication. Hosts are declared

malicious if their communications match the learned patterns,

which may be defined in terms of packet header attributes

(for example protocol or size) [25], DNS activity [21], or P2P

traffic characteristics [23]. Such solutions are only successful

if future botnets follow past behavioural patterns that the

classifiers were trained on. In this work, we overcome this

limitation by relying on the tendency of botnets to engage

in similar malicious communications, an invariant property

that is not likely to change as the botnets evolve. In this

regard, our work is inspired by prior research that considers

traffic similarity itself as an indicator of infection. Gu et. al.’s

BotMiner [12] clusters hosts based on similar communica-

tion traffic as well as similar malicious traffic; cross-cluster

correlation identifies as bots the hosts that share both similar

malicious activities and similar communication patterns. As

similarity can be coincidental, some approaches tighten the

criteria and look for synchronisation in network behaviour,

which implies the presence of common entities (e.g. DNS

queries, connection endpoints, attack victims etc.) in different

hosts’ communication. An example is BotSniffer [14] which

detects C&C communication channels in network traffic by

monitoring the command-response patterns of hosts that con-

nect to with the same IRC and HTTP servers.

However, while these approaches have inspired our work,

no prior research has proposed using synchronised behaviour

as an indicator of upcoming attacks, nor empirically studied

the relationship between botnet attacks and synchronised be-

haviour on real-world data. We present the first such study,

and in addition, investigate the novel capability of using

the uniformity of botnet communication to not only detect

but also to predict attacks. To the best of our knowledge,

the only recent work on attack prediction [15] was limited

to monitoring network links for the coordination traffic that

precedes distributed denial of service (DDoS) attacks. In this

work, we investigate a general solution rather than focusing

on a specific attack.

III. INVESTIGATING THE TEMPORAL RELATIONSHIP

AMONG INFECTION STAGES

A. Dataset Description

We carry out our study on a real user dataset obtained from

a large Internet Service Provider that serves both business and

home clients, shared with us by the SysNet research lab [5].

It is a high-volume trace 500 GB in size, and was collected

for approximately 8 hours (439 minutes) on 18 September

2012, on a full working day, at the B-RAS (Broadband Remote

Access Server) of the ISP. It represents wide-area (WAN)

traffic from 380 home or small enterprise networks, each

assigned a different public IP address. The trace is in the form

of PCAP files, containing full packets flowing to and from each



TABLE I: Description of botnet families in our dataset and number of hosts infected by each.

Family Number of

Hosts

Possible infection vector Description

blackenergy 8 Distributed via drive by download or spam (no self propagation) Used for DDoS, information stealing and malware distribution

capability; commanded by HTTP-based centralized C&C.

dirtjumper 3 Wide variety – exploit, drive by download or distributed by

malware

It is a DDoS toolkit with large number of variants (e.g. Pandora

and Di botnet spawned from it), mostly with HTTP-based C&C.

graybird 2 Various Windows exploits depending on version; e.g. Hupigon

uses IE vulnerability when compromised website accessed

Spyware Trojan with a centralised IRC or custom protocol based

C&C.

gumblar 59 Various exploits, especially Acrobat or Flash from websites

hosting infected Javascript

Centrally commanded for information stealing and delivering

other malware; uses stolen FTP credentials to infect websites.

haxdoor 8 Bundled download through other applications, or various browser

exploits triggered from spam or blog links

IRC-based keylogging Trojan to steal banking information

hitpop 1 Often downloaded by Trojans as payload bundled with other

malware

HTTP-based C&C server usually commands DDoS attacks

mpack 15 Varies widely Malicious toolkit from which a variety of botnets are spawned

(e.g. Srizbi botnet; generally hosted on infected websites

optima 4 Drive by download among other possibilities Centralized HTTP-based C&C commands DDoS attacks

pincher 21 Trojan possibly distributed as bundled download Runs C&C server on TCP port 81 and is used for Information

stealing; also possibly used as malware dropper (installs other

malicious files)

torpig 1 Drive by download; exploits Adobe/Java vulnerabilities and in-

stalls Mebroot rootkit

Used for man in the browser phishing attacks for financial data

stealing

tsunami 4 Not associated with any particular infection vector IRC based Trojan with DDoS capability

zonebac 27 No particular vector; drive by download possible Backdoor Trojan; lowers browser security settings; uploads sen-

sitive information about host; could install additional malware

network. The ground truth information was provided as a one-

time sample by the reputable security company Team Cymru

[7]. The company maintains a proprietary threat repository of

known C&C servers identified with the help of a chain of

globally-deployed sensors. They provided a blacklist in the

form of an hourly updated list of C&C servers that were

being actively contacted by hosts from the monitored region

during the data collection period. All hosts in the trace that

perform bidirectional communication with an IP in that C&C

list were flagged as bots. Based on this ground truth, 107 (out

of 380) hosts were infected. The 107 infected hosts represent

at least thirteen different botnet families. Table I (taken from

our earlier work [11]) shows the names of these families

and the number of hosts infected by each. As some ‘’hosts”

(identified by public IP addresses) in fact represent more than

one machine behind a Network Address Translation device,

they may be infected by more than one kind of botnet. The

total of Table I does not therefore add to 107.

We acknowledge that the dataset, collected in 2012, is a few

years old and does not necessarily represent modern botnets,

especially mobile malware. However, owing to policy, ethical

and privacy restrictions in obtaining a real user dataset, we

leave for future work repeating our experiments on more recent

data.

B. Empirical Analysis of Behaviour Leading to Attacks

Prior studies [9], [13] have suggested that bots follow

a well-defined sequence, starting with an incoming exploit,

which if successful will result in a malicious binary download,

followed by communication with a C&C server and then an

outgoing attack, such as malware propagation, spam, or port

scans. One of the earliest analyses of this sequence, presented

in [9], is shown in Fig. 1. Another analysis of this sequence

was presented in the seminal work by Gu et. al [13] and

is shown in Fig. 2. We observe from the figure that the

typical behaviour immediately preceding outgoing attacks is

communication with a C&C server and a binary download.

The key idea of our analysis is to investigate, based on a new

dataset of botnet infections, whether real-world botnet attacks

are indeed preceded by these behaviours. For this study, we

defined four distinct high-level behavioural stages described in

Table II to represent a complete footprint of a botnet infection.

To detect which of these stages were exhibited by infected

hosts in our dataset, we used Snort [19], an open-source

intrusion detection system. Snort applies a set of rules and

signatures to network traffic to detect behaviour pertaining

to malware infections. It generates an alert for each rule

that is triggered by a malicious event observed in the traffic.

We used well-tested rules from EmergingThreats [1] and

Talos [6], as well as from the industry-standard commercial

botnet detection tool, BotHunter [13]. The accuracy of BotH-

unter’s rules has been validated over multiple datasets by other

researchers [13], [16]. We were therefore able to detect each

stage of infection using a comprehensive set of signatures and

heuristics, and find this labelling reliable for the purpose of

this study.

We ran Snort over the traces of the infected machines in

the dataset and mapped the alerts in the output log to one

of the four defined malicious stages. We thus converted the

output logs to sequences of the four stages, with one sequence

generated against each host and each sequence covering the

duration of eight hours. Table III presents a sample of the gen-

erated sequences. While botnets carry out a range of attacks,

in this work we restrict our scope to spam campaigns and port

scanning, as present rulesets are not capable of detecting any



Fig. 1: Rajab et. al botnet infection sequence. Fig. 2: Gu et. al botnet infection sequence.

TABLE II: Description of stages of malicious behaviour defined for our empirical analysis.

State Description of Behaviour

Inbound Exploit Includes the following: an incoming port scan aimed at discovering a vulnerable service; an
exploit targeting application or OS vulnerabilities for gaining “backdoor” access or remote
execution privileges; social engineering where users are tricked into compromising on usual
security practices, e.g. clicking on an intriguing spam link; and drive-by downloads.

Binary Download Download of a malicious piece of code or an executable, which may be disguised.

C&C Discovery and Communication Attempts to contact the Botnet’s C&C server and exchanges with the discovered C&C server.

Outgoing Attack Any attack on other entities, e.g. phishing, malware propagation, DDoS or spam.

other attacks. However, these attacks are important to capture

and mitigate as early as possible as they are the most likely to

cause malware propagation and hence growth of the botnet.

We answer the question of which behaviour is most likely

to precede attacks in real botnet infections by observing

the occurrence of each behavioural stage i in the data, and

calculating the frequency fi→j with which it led to every other

stage j as follows:

fi→j =

∑
Ni→j∑
Ni

(1)

where:∑
Ni→j is the number of times a stage i led immediately to

a stage j;∑
Ni is the number of times stage i occurred in total,

regardless of which stage it led to.

We calculate the value fi→j for all possible pair-wise se-

quences of the behavioural stages, or behavioural transitions.

The objective is to investigate which stages lead to the attack

stage most frequently. Table IV shows the frequencies of

occurrence we obtained for each behavioural transition, with

each cell [i, j] representing the value fi→j , or the frequency

with which stage j was seen immediately after stage i. We

highlight the top-3 values in the table showing the most

likely transitions. The key result from this investigation is that

the outbound attack stage (the column headed ”Attack”) is

preceded with the highest probabilities by the C&C commu-

nication stage, followed by the Binary Download stage, which

is in agreement with prior studies.

IV. DETECTION APPROACH AND ANALYSERS

A. Overview of Approach

Our approach is based on monitoring hosts for synchronisa-

tion in the behavioural stages known to precede botnet attacks.

The empirical evidence presented in Section III suggests that

these are most likely to be the C&C communication and binary

download stages respectively. In our current work, however,

as we present only a proof-of-concept implementation of this

approach, we focus on detecting only synchronised C&C

communication. It may be argued that it is sufficient to observe

a single host engaging in C&C communication in order to raise

an early attack alarm. However, the additional constraint of

observing the communication from multiple machines would

reduce false alarms, as synchronised malicious activity is a

much stronger indicator that a coordinated attack will originate

from the botnet. Our goal now is to investigate whether bots

show a significant level of synchronisation in their C&C

communication preceding attacks, and whether such synchro-

nisation can be used to detect the bots at an early stage of

infection, to detect attacks quickly, or even to predict attacks

before they occur.

We define synchronised behaviour as an occurrence where

two or more hosts communicate with common entities, e.g.

query the same URL, and define three different indicators



TABLE III: Example of sequences of behavioural stages observed in dataset.

IP Event Sequence

a.a.a.a 2:CNC, 3:CNC, 4:ATTACK, 7:EXPLOIT, 9:CNC, 13:BINARY, 16:EXPLOIT, 18:ATTACK, 23:CNC, 25:ATTACK, 27: BINARY...

b.b.b.b 0:EXPLOIT, 6:EXPLOIT, 7:BINARY, 19:ATTACK, 23:CNC, 26: BINARY, 27:ATTACK, 29:EXPLOIT, 30:BINARY, 36:CNC...

c.c.c.c 1:ATTACK, 2:ATTACK, 6:EXPLOIT, 7:BINARY, 9:CNC, 10:ATTACK, 11:CNC, 14:EXPLOIT, 18:BINARY, 19:CNC, 21:ATTACK...

of synchronised C&C Communication in terms of directly

observable network attributes. We implement analysers to

monitor the network and generate an alarm when each in-

dicator is observed. We then analyse the temporal relationship

between the alarms indicating synchronised behaviour and

attacks (with which we labelled our dataset using Snort as

discussed in Section III).

B. Description of Analysers

a) Domain Generation Algorithm (DGA) Analyser: This

analyser aims to discover botnets running domain generation

algorithms (DGA) to discover their C&C servers. DGA is

a common technique used by botnets to hide their C&C

servers, in which the server hides behind an ever-changing

domain name. Bots algorithmically generate and try to resolve

a number of domains, only one of which is registered as

the C&C server. This mapping changes every day or few

hours. Thus DGA behaviour is characterised by many, often

repeating, failed DNS queries. The DGA analyser looks for

instances of the same DNS query generating an NXDomain

(non-existent domain) response on multiple machines. Ordi-

narily, an NXDomain response would follow a user error such

as in misspelling a web address, so it is highly unlikely that the

same NXDomain is seen on multiple machines. It is therefore

a strong indicator of synchronised malicious behaviour. The

DGA analyser generates an alarm for each host whose failed

DNS queries also failed on other machines.

b) Failed Connection Analyser: Botnet malware some-

times ships with a hard-coded list of IP addresses that it tries

to connect to; only one of those addresses is the actual C&C

server. Thus, only one of the connections is successful. This

analyser looks for multiple machines experiencing the same

TCP connection failures. To reduce false positives, we filter

connections to private (local) IP addresses (e.g. those starting

with 192.168), on the assumption that a C&C server will

need to be globally accessible and will usually not be running

behind a private IP address.

c) Blacklisted Host Contact Analyser: This analyser

pulls publicly available URL and IP blacklists from well-

reputed security companies and monitors for multiple ma-

chines contacting the same blacklisted host. It monitors both

outgoing TCP connections to blacklisted IP addresses and

HTTP connections to as well as DNS queries for blacklisted

URLs. Instead of relying on a single blacklist, for increased

sensitivity we combine blacklists from the following services:

PalevoTracker [3], ZeusTracker [8], SpyeEyeTracker [4], and

MalwareDomainList [2]. We additionally use blacklists in-

cluded with BotHunter[13] as it is a well-reputed botnet

detection software. Blacklists change continuously as some

TABLE IV: Proportions of all behavioural transitions observed

in the dataset.

Exploit Binary C&C Attack

Exploit 0 0.219 0.313 0.469

Binary 0.013 0 0.257 0.730

C&C 0.007 0.129 0 0.864

Attack 0.012 0.308 0.680 0

malicious servers and domains are taken down and others

added every day. As our dataset was collected in September

2012, in our current implementation we used blacklists that

were downloaded in the same month for maximum accuracy

in detecting communication with servers that were blacklisted

at the time.

We implemented the analysers using Java code on top of the

Bro network analysis framework [17]. Bro ships with many

scripts for protocol analysis and allows for adding custom

scripts. We used all the base Bro functionality, along with

a DNS failure analysis script from BotFlex, an open source

tool that uses heuristics to detect the different stages of botnet

behaviour [16]. We then implemented each analyser as a

Java program that post-processed the event logs generated by

Bro. As a contribution to the research community, we will

release our analysis code as a guideline for implementing other

synchronised behaviour analysers.

V. EXPERIMENTAL SETUP

We now present three research considerations, each pertain-

ing to a different aspect of our approach. The first is concerned

with investigating the correlation between a bot infection and

synchronised behaviour, the second sets a minimum criteria

for the usefulness of our approach, and the third deals with

the temporal relationship between synchronised behaviour and

attacks.

A. Correlation between behavioural synchronisation and in-

fection of hosts

We evaluate the correlation between infection and synchro-

nised behaviour by taking the alarms raised by our analysers

as an infection declaration. That is, when an analyser raises an

alarm for synchronised behaviour being observed on a group

of hosts, we label each of the hosts as infected, and then

evaluate the accuracy of the labelling. Our main concern is

whether our analysers generate alarms for only infected hosts

or also falsely raise alarms for benign hosts. If this approach

results in a high rate of true positives (TPR), it will indicate

a strong correlation between infection and synchronisation, as

most hosts engaging in synchronised behaviour are infected.



Although we are effectively using – and evaluating – the

analysers as detection algorithms, it is important to note that

the aim is not to propose this approach as a botnet detection

solution, but merely to investigate this important correlation.

B. Minimum usefulness criterion: early infection detection

potential

We test the early infection detection capability of our

analysers compared to a commercial C&C blacklist, i.e., can

the analysers detect an infection before a blacklist service

detects C&C communication? Note that infection detection

refers only to identifying that a host is infected with botnet

malware, regardless of whether or not it is engaging in attacks;

thus, it is different from attack detection. This is important

because C&C communication is certainly not the first stage in

a bot’s infection sequence, being preceded instead by inbound

exploit and malware download, and it may be followed very

quickly by an outgoing attack. An analyser that is not able

to raise an alarm until after the C&C Communication stage

cannot aid in effectively apprehending attacks.

We use the same Team Cymru blacklist that was used

to label our dataset, and for each host, we record as the

blacklist detection time the timestamp of the first instance of

bidirectional communication with a server on the blacklist. We

denote this blacklist detection time as tB , and the time that

each analyser Ai first raised an alarm as tAi
. The detection

delay of the analyser is then computed as

DelAi
= tAi

− tB (2)

We declare an analyser to have good early infection detection

potential if DelAi
≤ 0 for most hosts, i.e., the analyser raises

alarms no later than the blacklist detection time. Note that this

only forms a minimum criterion for an analyser’s usefulness;

ideally, an analyser should be able to raise an alarm before

a blacklist can. Thus, we also investigate strictly early alarm

generation potential of our analysers in Section VI-C.

C. Correlation and temporal relationship between attacks and

behavioural synchronisation

We investigate two aspects: (a) the correlation between

attacks and behavioural synchronisation, i.e., how often hosts

that launch attacks also show synchronised behaviour; and

(b) the temporal relationship between attacks and behavioural

synchronisation, i.e., whether synchronised behaviour occurs

before, at the same time as, or after attacks are observed.

Specifically, we ask ourselves the following questions:

1) In what proportion of hosts do we observe synchronised

behaviour but no attacks? (Question 1)

2) In what proportion of hosts do we observe synchronised

behaviour as well as attacks at any time before or after

the synchronised behaviour? (Question 2)

3) In what proportion of hosts do we see some form of

synchronised behaviour that occurs strictly before an

attack? (Question 3)

4) Which analysers are the most (and least) effective at

generating early warnings? (Question 4)

The first two questions aim to investigate whether this ap-

proach could be misleading by generating warnings of attacks

that never materialise. The third question aims to investigate

whether this approach can actually help us generate early

warnings for attacks, and the fourth question aims to point

out the best behavioural indicator of upcoming attacks.

VI. RESULTS AND DISCUSSION

We now present the results from the three experiment cate-

gories described in Section V, i.e., pertaining to the correlation

between behavioural synchronisation, infection and attacks,

and the early infection detection potential of our analysers.

A. Correlation between behavioural synchronisation and in-

fection

As discussed in Section V-A, we investigate this correlation

by presenting an analysis of the accuracy of our approach in

detecting infections, irrespective of the presence or time of

attacks. The idea is to get a measure of how frequently each

type of synchronised behaviour that we analyse is associated

with infections. We measure accuracy in terms of a confusion

matrix, declaring a true positive if an analyser generates at

least one alarm for a host that is actually infected (according

to the ground truth) and a false positive if the alarm is for

a host that is actually benign. Similarly, a true negative is

declared if an analyser never raised an alarm for a benign

host, and a false negative if an alarm was never raised for an

infected host. We calculate these metrics individually for each

detector and also for a combination of all analysers - i.e. we

consider an alarm to have been raised for a host if any one

analyser raised an alarm.

Tables V, VI, VII and VIII show the confusion matrices with

and detection rates obtained. The confusion matrices show

the absolute number of hosts that were classified malicious

or benign - for example, the ”Malicious, Malicious” cell in

the matrices represents the number of actually malicious hosts

that were also classified malicious. We observe that the highest

true positive rate (TPR) of 96% is obtained by the Failed

Connection analyser, indicating that failed connections to the

same destination is a behaviour commonly found in diverse

botnet types, as our dataset contains a variety of IRC, P2P

and HTTP botnets. The TPR for the blacklist analyser follows

closely at 93%, but the DGA analyser lags behind at 85% TPR,

which suggests that many botnets may not show synchronised

failed DNS queries. This is not surprising because the DGA

analyser is relevant only for botnets that use domain generation

algorithms. Monitoring for synchronised behaviour using all

analysers can yield up to 97% TPR, but at the cost of a

high 27% false positive rate (FPR). FPR for the individual

detectors is close to 15%, which is fairly high. These results

demonstrate that synchronised behaviour is often, but not

necessarily, correlated with botnet infections; some legitimate

hosts may also coincidentally show such synchronisation. For

example, this may happen when a server commonly accessed

by legitimate hosts (such as an internal file server) is down.



TABLE V: NX Domain Analyser detection accuracy.

Predicted

Malicious Benign

A
ct

u
a

l Malicious 92 15

Benign 34 239

Detection Rates

TPR 0.85

TNR 0.87

FPR 0.14

FNR 0.14

Accuracy 0.87

TABLE VI: Blacklist Analyser detection accuracy.

Predicted

Malicious Benign

A
ct

u
a

l Malicious 99 8

Benign 40 233

Detection Rates

TPR 0.93

TNR 0.85

FPR 0.14

FNR 0.07

Accuracy 0.87

TABLE VII: Failed Connection Analyser detection accuracy.

Predicted

Malicious Benign

A
ct

u
a

l Malicious 103 4

Benign 42 231

Detection Rates

TPR 0.96

TNR 0.85

FPR 0.15

FNR 0.03

Accuracy 0.88

TABLE VIII: All analysers combined detection accuracy.

Predicted

Malicious Benign

A
ct

u
a

l Malicious 105 2

Benign 74 199

Detection Rates

TPR 0.97

TNR 0.73

FPR 0.27

FNR 0.02

Accuracy 0.80

B. Minimum Usefulness: Early infection detection potential

For this analysis, we divided the data into short time

windows of thirty minutes and ran our analysers over each

host’s traffic in each window. For each host, we marked

the detection time tAi
for each analyser as the window in

which it first generated an alarm for the host. We calculate

the blacklist detection time tB by mapping the exact time

for the first detected C&C communication to the window

it falls in. As specified in Section V-B, detection delay is

then computed as DelAi
= tAi

− tB . The Early Alarms

bar in Fig. 3 shows the percentage of early alarms for each

analyser Ai, which represents the percentage of hosts for

which DelAi
≤ 0, i.e. where the time of the first alarm from

the analyser at least matches the blacklist detection time. In

the figure, All Combined represents the percentage of hosts

where tAi
of any one analyser was less than the blacklist

detection time. We observe that for the majority of hosts, our

analysers were able to match blacklist detection time. The

Blacklist Analyser matched the blacklist detection time for

78% of hosts, and the Failed Connection analyser followed

closely at 75%; even the lowest performing DGA analyser

matched blacklist detection times for 71% of hosts. When

all analysers were run together, the number of hosts showing

early infection detections climbed to 91%. We reiterate that

this part of our analysis serves only to verify that a minimum

usefulness criterion is met; the next section shows the results

for strictly early alarms. Given that the current implementation

is merely a proof-of-concept and analyses only three kinds of

synchronised behaviour, the results show that this approach

has good early infection detection potential and only rarely

exceeds the blacklist detection time.

C. Correlation and temporal relationship between attacks and

behavioural synchronisation

We now consider the core investigation of our empiri-

cal study: the extent to which attacks are correlated with

synchronised behaviour, and the temporal relationship they

bear. The temporal relationship is important to study because

it determines whether observing synchronised behaviour can

enable generating early alerts of attacks that are taking place,

as well as predictions of attacks before they occur. Similar to

the previous experiment, we again divide the trace into short

time windows (30 minutes). We obtain the time of attacks

from the Snort-labelled event sequences used for the empirical

analysis presented in Section III, and for each host, mark the

window in which we see the first instance of attack as the time

of attack tatt. We then compare this time with the first-alarm

time tAi
of each analyser Ai and compute a detection delay

as: DelAi
= tAi

− tatt Good early attack detection potential

of our approach is indicated if DelAi
≤ 0 for most hosts;

this would mean that we are able to generate alerts for attacks

either before the attack or very soon after it occurs. On the

other hand, a potential for attack prediction is only indicated

if DelAi
< 0 for most hosts, as the alarm has to come strictly

before an attack for it to qualify as a prediction.

We now answer the questions from Section V-C as follows:

• Question 1: The False Alarms bar in Fig. 3 shows the

percentage of infected hosts for which attack alarms are

generated by an analyser but attacks do not materialise.

The analysers show similar performance with false alarms

between 12 and 16 percent. The maximum false alarm

rate is 16% when using all analysers combined; while

this does represent a rather large number of false alarms,

it is offset by the potential gain of apprehending attacks

early and can be handled in practice by defining a suitable

policy for responding to alarms. For example, instead

of blocking hosts as a result of attack alarms, which

would lead to the falsely identified legitimate hosts being

blocked as well, an ISP or network administrator could

rate-limit the hosts and generate a warning to disinfect

the system.

• Question 2: This concerns the true alarm rate, i.e. in-

stances where we see alarms from our analysers for hosts

that are actually carrying out attacks. The True Alarms

bar in Fig. 3 shows that in the majority (> 83%) of the

cases, alarms are generated for hosts that are engaging in

attacks. The DGA analyser generates the maximum true

alarms (more than 86%) with the Failed Connection and



Blacklist analysers following closely at 85% and 84%.

We conclude from the answers to questions (1) and (2)

that a significant correlation exists between attacks and

synchronised behaviour.

• Question 3: This question addresses the issue of how

often alarms occur strictly before attacks, at almost

the same time as attacks, and after attacks have been

launched. The Early or Same Time Alarm bar in Fig. 4

shows that when using all analysers we are able to

generate alarms before or very close to the beginning

of the attack (i.e. in the same thirty-minute window) for

77.1% of the hosts, while there is no host for which

the alarm comes strictly after the attack. The DGA

and Failed Connection analysers, when running alone,

generate same-time alarms for about 63% of the hosts,

while for the Blacklist Analyser this value is limited to

58%. Unfortunately, the Early Alarm bar in the same

figure shows that all three analysers generate strictly

early attack alarms for only 15% of the hosts, and when

we use all analysers together, we are able to generate

strictly early alarms for 20% of the hosts. The proof-of-

concept implementation, therefore, has very limited attack

prediction capability.

• Question 4: Regarding the best and worst analysers for

generating early warnings, as we observe exactly the

same performance across analysers (15% of attacks pre-

dicted accurately before they occur), there is no difference

in early warning capability. Regarding attack warnings

that are generated very close to but not before the time

of the attack, the Blacklist analyser performs slightly

worse; it is also the only analyser which generates a small

percentage (2%) of late alarms.

Overall, our approach appears to be promising for detecting

attacks quickly after they are launched; even the proof-of-

concept implementation, which is limited to analysing be-

havioural synchronisation only for the C&C communication

stage, is able to detect 77% of attacks at the same time or

very close to the time that they are launched. However, for

predicting attacks, a significant improvement is needed, as

currently we are only predicting 20% of attacks well before

they occur. We believe that an improvement in this capability

can be achieved by monitoring more kinds of behavioural

synchronisation at all stages of infection, and particularly at

the earliest inbound exploit and binary download stages.

D. Summary of Findings

This empirical study is an effort towards understanding

the behavioural synchronisation observed in botnets and its

correlation with attacks. We have not presented a compre-

hensive botnet detection or attack prediction solution; rather

the contribution of this work lies in our measurement-driven

analysis of real-world botnet activity and the investigation

of the potential of our proposed approach. Nevertheless, our

findings and conclusions summarised below can be of practical

benefit in fostering future research in this area.
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Fig. 3: Early Alarms: percentage of hosts on which infections

were detected no later than a commercial blacklist. True

Alarms: percentage of hosts showing synchronised behaviour

as well as attacks. False Alarms: percentage of hosts showing

synchronised behaviour but no attacks.
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Fig. 4: Percentage of hosts showing “true” alarms that come

before, with and after attacks

1) Based on a dataset of 380 hosts including 107 machines

infected with a diverse range of botnets, we verified the

popular understanding that C&C communication is the

behaviour that most commonly precedes outgoing attacks

by bots; 86.4% instances of C&C communication were

followed by attacks in our dataset.

2) The majority of bots engage in some form of syn-

chronised behaviour; 96% bots in our dataset showed

synchronisation in failed connections. However, synchro-

nisation in C&C communication cannot be used alone as

a measure of detecting botnets as it is highly susceptible

to false alarms; 27% of hosts showing at least one form of

synchronised behaviour in our dataset were not infected.

3) Monitoring a network for behavioural synchronisation

can prove useful in identification of infections; we were

able to identify 91% of infections at the same time or

earlier than a commercial blacklisting service.



4) The majority of bots that launch attacks also show some

form of synchronised behaviour (83% in our dataset);

however, generating attack warnings on the sole basis of

synchronised C&C communication can yield some false

alarms (16% in our dataset).

5) Finally, while we were able to detect 77% of attacks very

close to the time they are launched, predicting attacks

strictly before they occur requires further work. For

the present, our proof-of-concept implementation only

achieves a prediction capability of 20%.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work we presented an empirical analysis of the

synchronised behaviour that is observed from the members

of a botnet and studied the temporal relationship between

synchronised behaviour and attacks. As a proof-of-concept

implementation, we designed a number of analysers that

monitor a network for synchronised C&C communication, and

investigated the potential of using synchronised behaviour as

an indicator of infection as well as of upcoming attacks. Using

traffic from 107 botnet infections representing 13 different

botnet families, we compared the detection accuracy of our

approach with a commercial blacklist and showed that it

achieved at least comparable accuracy. We also showed that

83% of hosts that engaged in attacks also showed some form

of synchronisation in their C&C communication, and that with

this approach, we were able to quickly detect 77% of attacks.

However, as our current implementation detects synchronised

behaviour within a very limited scope, we were only able to

predict 20% of attacks strictly before they occurred.

This brings us to a discussion of open problems for future

research. The main limitation of our current work is the

limited scope of synchronised behaviour; instead of monitoring

synchronisation in only C&C communication, considering

earlier infection stages such as incoming exploits and binary

downloads, which are usually expected to occur before C&C

communication, should assist in generation earlier warning of

attacks. This would require a dataset that captures the complete

infection footprint and the full duration of botnet infections, a

property that is rarely found in datasets such as ours capturing

in-the-wild botnet activity, as some hosts may already be

infected when the trace capture is started. For example, one

possible direction is to investigate whether multiple hosts

compromised by the same exploits (e.g. a particular OS

vulnerability) engage in attacks in future. It would also be

worthwhile to use a more recent dataset, perhaps including

mobile botnets, and analyse whether the same behavioural

patterns are observed. Furthermore, we leave as future work

a comparison of the accuracy and timeliness of detection of

synchronised behaviour using our analysers with other similar

solutions, such as BotMiner and BotSniffer [12], [14], which

also detect synchronised C&C communication patterns as one

indicator of a widespread infection, because these solutions are

not available publicly and require significant implementation

effort. In addition, comparing the running time of our analysers

with these solutions remains as future work.
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