
A Graph Theoretic Approach to
Fast and Accurate Malware Detection

Zubair Shafiq† and Alex Liu‡
†Department of Computer Science, The University of Iowa.

‡Department of Computer Science and Engineering, Michigan State University.

Email: zubair-shafiq@uiowa.edu, alexliu@cse.msu.edu

Abstract—Due to the unavailability of signatures for previously
unknown malware, non-signature malware detection schemes
typically rely on analyzing program behavior. Prior behavior
based non-signature malware detection schemes are either easily
evadable by obfuscation or are very inefficient in terms of storage
space and detection time. In this paper, we propose GZero,
a graph theoretic approach fast and accurate non-signature
malware detection at end hosts. GZero it is effective while being
efficient in terms of both storage space and detection time. We
conducted experiments on a large set of both benign software
and malware. Our results show that GZero achieves more than
99% detection rate and a false positive rate of less than 1%,
with less than 1 second of average scan time per program and is
relatively robust to obfuscation attacks. Due to its low overheads,
GZero can complement existing malware detection solutions at
end hosts.

I. INTRODUCTION

A. Motivation

According to the threat report published by PandaLabs,

a record 73, 000 new malware programs, on average, were

released daily [1]. A recent study of vulnerabilities databases

has shown that approximately 90% of software vulnerabili-

ties were exploited on the disclosure day by malware [19].

Malware detection is difficult because the signature of new

(or previously unknown) malware is not available at time of

malware launch. Malware detection has to focus on end hosts

because network based security appliances, such as firewalls

and intrusion detection and prevention systems, mostly rely

on malware signatures and signature based malware detection

schemes can hardly detect new malware. Existing commercial

anti-virus software available for end hosts primarily rely

on signature based malware detection, which is ineffective.

Recent Conficker and Flashback malware outbreaks have

provided further evidence of the infectiveness of commercial

anti-virus software against new malware attacks [18].

A non-signature malware detection scheme at end hosts

needs to satisfy four requirements: high detection rate, low
false positive rate, low processing and storage complexity,
and robustness to malware obfuscation. High detection rate

is critical because even a single undetected malware program

can infect the host and even disable the malware detection

program. Low false positive rate is desirable because false

alarms are nuisance to users and often cause users to simply

disable the malware detection program. Low processing and

storage complexity is important because end hosts have limited

processing and storage resources. Robustness to malware

obfuscation is crucial because malware often obfuscate itself

when it propagates from one machine to another.

Because signatures of previously unknown malware are

not available, non-signature malware detection has to rely on

program behavior. Prior behavior based non-signature malware

detection schemes fall into two categories: sequence based

schemes and graph based schemes. Sequence based schemes

identify subsequences in instruction sequences of programs

whose presence or absence can be used as a binary foot-

print for malware detection (e.g., [2], [14]). Sequence based

schemes are efficient, but are vulnerable to obfuscation such as

garbage insertion and reordering. Most graph based schemes

store a large number of behavior graphs of known malware,

and for each given program, search the behavior graph against

the database to find similar graphs (e.g., [9], [10], [23]). If

there are known malware behavior graphs that are similar

to the behavior graph of the given program, then the given

program is classified as malware; otherwise, it is classified as

benign software. Such graph based schemes are more robust to

malware obfuscation, but they are inefficient in terms of both

processing speed and storage overheads. Searching a graph

database for graphs similar to a given graph is computationally

expensive.

B. Proposed Approach

In this paper, we propose GZero, a graph theoretic approach

to accurate, efficient, and robust non-signature malware detec-

tion at end hosts. We use a behavior graph called an API call
(or system call in Linux terminology) graph [5]. Given the

API call sequence of a program, we construct an API call

graph where a vertex represents a unique API call and there

is an edge from v1 to v2 if and only if the API call sequence

contains a subsequence of two API calls v1 followed by v2.

Our key insight is that API call graphs of benign and malware
programs have different graph theoretic properties that can be
leveraged to distinguish them. To illustrate this insight, Figure

1 and 2 show timeseries and the radial layouts of the API call

graphs of a benign program and a malware program. We visu-

ally observe interesting patterns in the timeseries and behavior

graph of benign and malware programs. In the timeseries plot

shown in Figure 1, we observe repetitive call subsequence

blocks in timeseries of both benign and malware programs.ISBN 978-3-901882-94-4 c© 2017 IFIP

However, the sizes of blocks are significantly smaller for the

example benign program as compared to the example malware

program. In the radial layout shown in Figure 2, we randomly

choose a call as a center vertex and the remaining vertices are

put in concentric circles based on the distance from the center

vertex. A visual comparison of the two benign and malware

API call graphs highlights interesting differences. For instance,

we note that the degree distribution of the API call graph of

the malware program is significantly more skewed compared

to the API call graph of the benign program. In addition, we

observe significantly deeper branches of vertices in the API

call graph of the example benign program compared to that

of the example malware program.

0 500 1000 1500 2000 2500 3000
Time Index

AP
I C

al
l I

D

(a) Benign

0 500 1000 1500 2000 2500 3000
Time Index

AP
I C

al
l I

D

(b) Malware

Fig. 1. Time series of example benign and malware programs.

(a) Benign (b) Malware

Fig. 2. API call graph of example benign and malware programs.

The basic statistics of the benign programs and malware

programs that we collected also support the above insight.

For example, the average entropy of API call distributions of

benign programs, which is 0.92, is significantly larger than

that of malware programs, which is 0.57. Intuitively these

are because benign programs tend to have a larger variety

of functionalities than malware programs. Furthermore, the

timeseries of benign and malware programs also support the

above insight. Figures 1 (a) and (b) show the time series plot

of an example benign program and that of an example malware

program, respectively. The API call IDs are assigned based on

the alphabetical order of their names From these two figures,

we observe that the sizes of the repetitive call subsequence

blocks of benign programs are significantly larger than those

of malware programs.
The key idea of GZero is to use a classification model based

on graph theoretic features for classifying a given program

to be either benign or malware. To characterize the graph

theoretic properties of API call graphs, GZero extracts features

at three levels: (1) vertex level, (2) sub-graph level, and (3)

graph level. Vertex level features include degree, path, and

connectivity features. Examples of these three types of features

respectively are degree, diameter, and clustering coefficient.

At the sub-graph level, we identify and extract features based

on the Markov chain model of API call sequences. We

use the typicality of Markov chain states to identify API

call sequences of varying lengths. Typicality is useful for

efficiently identifying a small subset of sequences from a very

large sample space. At the graph level, we extract the features

of clique numbers, average clustering coefficient, diameter, and

average path length. With these extracted features, we build a

Bayesian classifier for efficient malware detection.

The architecture of our approach is shown in Figure 3. In

the graph construction module, we construct a graph based

on the API call sequence of an unknown executable program.

In the feature extraction module, we extracts features from

the constructed graph at three levels: vertex level, sub-graph

level, and graph level. These features act as footprints of the

behavior of an executable program and are leveraged in the

detection module to differentiate between benign and malware

programs. In the graph classification module, we use the

Bayesian classifier trained using a set of known malware and a

set of known benign software to classify the unknown program

to be benign or malware.

C. Comparison to Prior Art

GZero fundamentally differs from prior sequence based

non-signature malware detection schemes in that GZero uses

features extracted from API call graphs whereas those prior se-

quence based schemes use signatures extracted from API call

sequences. Prior sequence based malware detection schemes

are vulnerable to malware obfuscation [16], [21].

GZero differs from many prior graph based malware detec-

tion schemes in that GZero builds a classifier to classify the

API call graph of a program to be benign or malware whereas

those graph based schemes match the API call graph of a

program against a database of a large number of malware API

call graphs to see whether there are similar API call graphs. We

show that GZero is efficient in terms of both storage space and

detection time. From the storage space perspective, GZero is

more efficient than prior graph based schemes because GZero

does not require to store any API call graph database. From the

detection time perspective, classifying the API call graph of

an unknown program using GZero’s classifier is more efficient

than searching a database of many graphs for ones that are

similar to the API call graph.

At a high-level, GZero distills some information from a pool

of known malware and then use this information to classify a

given program as benign or malware. Given behavior graphs of

known benign and malware programs, GZero extracts graph

theoretic features from the behavior graphs of both sets of

programs and use these features to build a classification model.

Each program has one behavior graph where each vertex

represents a distinct API call and there is a directed edge

from vertex v1 to v2 if and only if they correspond to two

consecutive API calls in the API call sequence of the program.

GZero extracts graph theoretic features from its behavior

graph and feeds them to its classification model for classi-

fying the program as benign or malware. Our experimental

evaluation shows that GZero uses less than one second for

both behavior graph extraction and classification. Our results

show that GZero achieves more than 99% detection rate and

Graph
Construction

Graph
Classification

API Call
Sequence

.

.

.

Feature Extraction Benign

Malware

Graph-level
Subgraph-level

Vertex-level

Fig. 3. Architecture of GZero

a false positive rate of less than 1%. GZero achieves high

accuracy, low false alarm rate, and robustness to obfuscation

because the features extracted from multiple levels of API

call graphs contain highly discriminative information. GZero

achieves low processing complexity because it uses a Bayesian

classifier, which is highly efficient. GZero achieves low storage

complexity because it only stores the trained classifier model

in the order of a few kilobytes.

D. Key Contributions

We make three key contributions in this paper.

• First, we propose a API call graphs based classification

model for classifying a given program into benign or

malware categories.

• Second, we propose a rich and discriminative set of graph

based features for classification. Using Markov chains to

model API call sequences and then extracting features

from the model is a highlight.

• Finally, we conducted experiments on a large set of both

benign and malware programs. Our results show that

GZero achieved detection rate of more than 99% and

false alarm rate of less than 1%, with less than one

second of average scan time per program. Furthermore,

GZero’s accuracy degrades slowly for increasing number

of obfuscations.

II. RELATED WORK

Previous non-signature malware detection schemes fall into

two categories: sequence based and graph based.
A. Sequence Based Malware Detection

In [2], Ahmed et al. proposed a runtime malware analysis

and detection tool that detects malware using spatio-temporal

information in API call logs. The spatial information (from

arguments and return values of API calls) and the temporal

information (from sequence of API calls) are further used

to build formal models to distinguish malware from benign

programs. The most discriminative spatial and temporal fea-

tures of the API calls are selected based on information gain,

and are then passed on to the standard machine learning

and data mining classifiers using 10-fold cross validation.

The proposed scheme achieves up to an approximately 98%
detection accuracy. The inherent limitation of this scheme is

that it is vulnerable to even simple obfuscation techniques

due to the use of API call sequences as features [16]. For

a malware program, a crafty malware writer can change its

temporal features by manipulating the API calls sequence of

the malware as well as the spatial features by inserting garbage

API calls with useless arguments.

In [14], Islam et al. proposed a behavior based malware

detection technique, which extracts strings (system call names

and function arguments) from malware and benign trace logs.

The feature vectors are created on the basis of the absence or

presence of a string in a particular file. The scheme achieved

97.3% detection accuracy on their test data set. Similar to the

above scheme in [2], this scheme is also vulnerable to even

simple obfuscation techniques.

B. Graph Based Malware Detection

1) Control Flow Graph Based Schemes: In [9], Christodor-

escu et al. proposed a malware detection scheme called Static

Analyzer for Executables (SAFE) to detect malicious patterns

in executables using static analysis. For each known malware

program, SAFE generates an annotated Control Flow Graph

(CFG) from the assembly code of the program where each

vertex corresponds to an assembly instruction. Given a new

program, SAFE first generates its annotated CFG and then

searches it against a large database of the annotated CFGs of

malware programs for similar ones. SAFE requires to store

a large database of malware CFGs and also has high search

overhead.

In [10], Christodorescu et al. proposed a semantics aware

malware detection scheme. For each known malware pro-

gram, this scheme generates templates, which are instruction

sequences described using variables and symbolic constants,

from the assembly code of the program. A template describes a

specific semantic behavior. Given a new program, this scheme

first generates templates and then searches them against a

large database of templates generated from known malware

programs. The main advantage of this scheme over SAFE

is that templates focus on program semantics and describe

program behaviors at a higher level than annotated CFGs,

which leads to better detection accuracy. Compared to GZero,

this scheme shares the above limitations of SAFE.

2) Dependency Graph Based Schemes: In [15], Kolbitsch

et al. proposed a malware detection scheme that use API

call graphs. For each known malware program, this scheme

generates a dependency graph where each vertex is an API

call and each directed edge from vertex v1 to v2 if and only

if the API call corresponding to v2 has a data dependency on

the API call corresponding to v1. For each new program, this

scheme first generates its dependency graph and then maps this

graph against a large database of dependency graphs generated

from known malware programs to find similar ones. Compared

to GZero, similar to the schemes in [9], [10], this scheme also

has the above mentioned two limitations.

The other scheme in this category is HOLMES proposed

by Fredrikson et al. [13]. HOLMES uses graph mining and

concept analysis algorithms to analyze a set of malicious and

benign programs, extracts significant malicious and benign

behaviors, and creates optimally discriminative specifications.

We have given the detailed comparison between GZero and

HOLMES in Section I.

C. Other Related Work
Observing the dependency graphs generated by [13] are

too big, Chen et al. proposed a graph mining algorithm for

generating small graphs that can be used as the summary

of large graphs [8]. The focus of this work is on reducing

graph sizes. In [4] and [3], Bayer et al. proposed an automated

tool for generating human readable reports on the behavior of

programs. The report is generated by tracking API calls made

by a program focusing on file, registry, service, process, and

network activities. The focus of this work is to facilitate mal-

ware analyst to understand the behavior of malware programs.
In [23], Yin and Song proposed a taint graph based malware

detection technique called Panorama, which is based on the

observation that malware (such as spyware, keyloggers, and

rootkits) often accesses and processes user’s private informa-

tion, which is not intended for them. Panorama works by

running the sample program in an emulator that contains a test

engine, which runs test scripts while the sample program is

running. These test scripts introduce important taint informa-

tion (like password input, TCP/UDP/ICMP traffic etc). The test

engine monitors the activities of the sample program and the

overall system under observation. The activities or behavior of

the program in a system wide context is further represented

in the form of graphs, in which the vertexes represent system

calls and the edges represent the data dependency between two

system calls. The focus of Panorama is to facilitate malware

experts and security analysts to understand malware behavior.

It is designed for off-line detection and analysis of malware,

whereas GZero is designed for online detection.

III. PROPOSED APPROACH

In this section, we present the details of the three key

modules of GZero: graph construction, feature extraction, and

graph classification.

A. Graph Construction
Given a sequence of API calls 〈a1, a2, · · · , am〉 of an

unknown program, we construct the API call graph as follows.

For each unique API call ai (1 ≤ i ≤ m) in the given

sequence, we create a vertex denoted V (ai). For any two

consecutive API calls aiai+1 in the given sequence, if ai and

ai+1 are two unique API calls, then we create a directed edge

from vertex V (ai) to vertex V (ai+1).
Table I shows a segment of an API call sequence of a worm

named as Shorm.110 and Figure 4 shows the API call graph

constructed from this API call sequence. The API call trace of

this malware program contains a sequence of 1145 API calls in

total. This partial sequence shows 59 API calls that highlight

the behavior of the malware. In this sequence, the malware

program reads some file attributes and then reads and writes

to the registry. Modifying the registry allows the malware to

add itself to the system startup so that it is executed whenever

the system is restarted. It also creates a process thread on the

infected system to keep itself alive.

TABLE I
API CALL SUBSEQUENCE FOR SHORM.110 WORM

No. ID API Name No. ID API Name

1 162 GetFileAttributesW 31 4 HeapAlloc

2 4 HeapAlloc 32 3 HeapFree

3 3 HeapFree 33 12 LocalFree

4 48 LoadLibraryExW 34 12 LocalFree

5 4 HeapAlloc 35 12 LocalFree

6 3 HeapFree 36 4 HeapAlloc

7 10 RegOpenKeyExW 37 10 RegOpenKeyExW

8 4 HeapAlloc 38 4 HeapAlloc

9 3 HeapFree 39 3 HeapFree

10 7 RegQueryValueExW 40 10 RegOpenKeyExW

11 4 HeapAlloc 41 4 HeapAlloc

12 3 HeapFree 42 3 HeapFree

13 11 RegCloseKey 43 3 HeapFree

14 1 LocalAlloc 44 4 HeapAlloc

15 10 RegOpenKeyExW 45 10 RegOpenKeyExW

16 4 HeapAlloc 46 4 HeapAlloc

17 3 HeapFree 47 4 HeapAlloc

18 7 RegQueryValueExW 48 3 HeapFree

19 4 HeapAlloc 49 3 HeapFree

20 3 HeapFree 50 3 HeapFree

21 11 RegCloseKey 51 35 CreateProcessW

22 12 LocalFree 52 2 IsBadReadPtr

23 9 GetCurrentThread 53 2 IsBadReadPtr

24 10 RegOpenKeyExW 54 2 IsBadReadPtr

25 4 HeapAlloc 55 2 IsBadReadPtr

26 3 HeapFree 56 2 IsBadReadPtr

27 8 RegSetValueExW 57 164 GetLongPathNameW

28 4 HeapAlloc 58 4 HeapAlloc

29 3 HeapFree 59 5 IsBadWritePtr

30 11 RegCloseKey

1

162

3

4

5

7

8

9

10

11

12

2

48

35

164

Fig. 4. API call graph for Shorm.110 worm

B. Feature Extraction

We characterize API call graphs using the features that cap-

ture their structural properties at different levels of granularity.

More specifically, we extract graph theoretic features at three

levels: vertex level, sub-graph level, and graph level.

1) Vertex Level Features: We extract three types of vertex-

level features: degree, path, and connectivity. Degree features

include: in-degree, out-degree, degree, and reciprocity. Path

features include: betweenness centrality and closeness central-

ity. Connectivity features include: number of triangles, clus-

tering coefficient, and eigenvector centrality. These features

are separately computed for each vertex. Below we formally

define each of the above features.

• Degree: The degree of a vertex is defined as the number

of edges incident on it. The degree δi of a vertex vi is

defined as:

δi =

∣∣∣∣∣∣

⋃

∀j=i∨k=i

ejk

∣∣∣∣∣∣
, (1)

where ejk denotes an inwards or outwards edge between

vertices vj and vk.

• In-Degree: The degree of a vertex is defined as the

number of inwards edges incident on it. The in-degree

δ↓i
of a vertex vi is defined as follows.

δ↓i
=

∣∣∣∣∣
⋃

∀k=i

ejk

∣∣∣∣∣ (2)

• Out-Degree: The degree of a vertex is defined as the

number of outwards edges incident on it. The out-degree

δ↑i
of a vertex vi is defined as follows.

δ↑i
=

∣∣∣∣∣∣

⋃

∀j=i

ejk

∣∣∣∣∣∣
(3)

• Reciprocity: The reciprocity of a vertex is defined as the

ratio of its out-degree to its in-degree. The reciprocity Ri

of a vertex vi is defined as:

Ri = δ↑i/δ↓i =

∣∣∣∣∣∣

⋃

∀j=i

ejk

∣∣∣∣∣∣
/

∣∣∣∣∣
⋃

∀k=i

ejk

∣∣∣∣∣ , (4)

where ejk denotes an inwards or outwards edge between

vertices vj and vk.

• Number of Triangles: A triangle is defined as the subset

of any three vertices in a graph that are completely

connected. The triangle count Δi of a vertex vi is defined

as the number of triangles that contain the given vertex

as one of their vertices. Let Γi denote the set of vertices

that a vertex vi is connected to then its triangle count Δi

is defined as:

Δi =

∣∣∣∣∣∣

⋃

vj ,vk∈Γi

ejk

∣∣∣∣∣∣
(5)

• Clustering Coefficient: The clustering coefficient of a

vertex is defined as the ratio of the number of triangles

that the vertex is a part of to the total number of possible

triangles. Let δi denote the degree of a vertex and Ti

denote the number of triangles that contain the vertex.

The clustering coefficient Ci is defined as:

Ci =
Δi(
δi
2

) =
2Δi

δi(δi − 1)
(6)

• Eigenvector Centrality: The eigenvector centrality of a

vertex is a measure of its importance in a network. Let

W denote the adjacency matrix of the graph G where

wi,j is 1 if an edge exists between vertices vi and vj ,

and 0 otherwise. Eigenvector centrality ei of vertex vi is

defined as:

ei =
1

λ

N∑

j=1

wi,jxj (7)

where λ is the principal eigenvalue of matrix W.

• Betweenness Centrality: The betweenness centrality of a

vertex is defined as the fraction of all pair shortest paths,

except those originating or terminating at it, that pass

12 21 30 39 48
0

0.2

0.4

0.6

0.8

Out−degree

Pr
ob

ab
ilit

y

Benign
Malware

(a) Out-degree

75 160 245 330 415
0

0.2

0.4

0.6

0.8

Number of Triangles

Pr
ob

ab
ilit

y

Benign
Malware

(b) Number of Triangles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

Clustering Coefficient

Pr
ob

ab
ilit

y

Benign
Malware

(c) Clustering Coefficient

0.58 0.64 0.70 0.77 0.83
0

0.1

0.2

0.3

0.4

0.5

Closeness Centrality

Pr
ob

ab
ilit

y

Benign
Malware

(d) Closeness Centrality

Fig. 5. Distribution of some vertex level features for LocalAlloc API call.

through it. Let Pjk denote the shortest path from vertex

vj to vertex vk, where Pjk = (vj , vl, vm, vn, ..., vk). The

betweenness centrality bi of a vertex vi is defined as:

bi =
2I(Pjk, i)

|V |(|V | − 1)
, (8)

where I(Pjk, i) is an indicator function such that

I(Pjk, i) = 1 when vi ∈ Pjk and I(Pjk, i) = 0 when

vi /∈ Pjk.

• Closeness Centrality: The closeness centrality of a ver-

tex is defined as the average length of shortest paths to all

vertices reachable from it. Let |Pij | denote the shortest

path length from vertex vi to vertex vj . The closeness

centrality ci of a vertex vi is defined as:

ci =

∑N
j=1 |Pij |
|V | (9)

Figure 5 shows the distribution of four example vertex level

features for API call LocalAlloc: out-degree, number of

triangles, clustering coefficient, and closeness centrality. This

particular API call allocates the specified number of bytes

from the heap and is important for memory management. We

observe significant distinction between distributions of benign

and malware programs for all of these vertex level features.

2) Sub-graph Level Features: Let 〈a1, a2, · · · , am〉 be an

API call sequence and G = (V,E) be the corresponding graph

that we construct from it. For any subsequence 〈x1, x2, ..., xn〉,
where n ≤ m, let P (x1, x2, ..., xn) denote the probability

of finding 〈x1, x2, ..., xn〉 in 〈a1, a2, · · · , am〉. Let k be the

total number of unique API calls in 〈a1, a2, · · · , am〉, which

is equal to |V |. Here k also represents the sample space size

of each xi (1 ≤ i ≤ n). The size of the sample space for

subsequence 〈x1, x2, ..., xn〉 is kn. Here P (x1, x2, ..., xn) can

also be represented as the joint probability P (x1∩x2...∩xn).
Using Bayes theorem, this joint probability can be defined by

a combination of the conditional and marginal probabilities.

Specifically,

P (x1 ∩ x2... ∩ xn) = P (x1|x2... ∩ xn)P (x2... ∩ xn).

In fact, the conditional probability contains more precise

information due to its reduced sample space compared to

the joint probability. These conditional n-gram probabilities

can be conveniently represented using a discrete time Markov

chain of order n − 1 containing kn−1 states. Note that each

conditional n-gram sequence corresponds to a unique state

in the multi-order Markov chain. Now let a binary indicator

random variable Ii, i = 1, 2, ..., kn−1 represent the presence

of a state in Markov chain, where kn−1 is the total number of

states of the Markov chain of order n− 1. Hence, P (Ii = 1)
represents the probability for the presence of state Xi.

It is important to select an appropriate order for a Markov

chain model. It is also important to note that we are typically

interested in employing a single Markov chain to model a set

of multiple sequences S. Here let |S| denote the size of the

set of sequences that we want to model. For each sequence,

autocorrelation is a well-known heuristic for selecting appro-

priate order for its Markov chain model [7]. For a given lag

t, the autocorrelation function of a sequence, Sm (where m is

the index), is defined as:

ρ[t] =
E{S0St} − E{S0}E{St}

σS0
σSt

, (10)

where E(Si) and σSi
respectively represent the expectation

and standard deviation of S at lag i. The value of the auto-

correlation function lies in the range [−1, 1], where |ρ[t]| = 1
indicates the perfect correlation at lag t and ρ[t] = 0 means

no correlation at lag t. The minimum value of lag tmin for

which ρ[tmin] falls inside the 95% confidence interval band

is selected to be the appropriate order for a Markov chain.

For a set of multiple sequences, let T denote the set of

selected orders as per the aforementioned criterion. We select

the maximum value in T, denoted by Tmax, as the order of a

single Markov chain model that we want to employ.

The number of states in a Markov chain increases expo-

nentially for higher orders and so does the complexity of the

underlying model. Furthermore, higher order Markov chains

require a large amount of training data to identify a subset

of states that actually appear in the training data. In other

words, a Markov chain model trained with limited data is

typically sparse. To overcome these challenges, we combine

multiple states in a higher order Markov chain to reduce its

total number of states. We are essentially using states from

lower order Markov chains as we combine different states in

a multi-order Markov chain.

Now, we also need to establish a criterion to combine states

in a multi-order Markov chain. Towards this end, we use the

typicality of Markov chain states as the criterion. Typicality

allows us to identify a “typical” subset of Markov chain states

by generating its realizations [7]. Before delving into further

details, we first state the well-known typicality theorem as

follows: For any stationary and irreducible Markov process X
and a constant c, the sequence x1, x2, ..., xm is almost surely

(n, ε)-typical for every n ≤ c logm as m → ∞. A sequence

x1, x2, ..., xm is called (n, ε)-typical for a Markov process X
if P̂ (x1, x2, ..., xn) = 0, whenever P (x1, x2, ..., xn) = 0, and
∣∣∣∣
P̂ (x1, x2, ..., xn)

P (x1, x2, ..., xn)
− 1

∣∣∣∣ < ε, when P (x1, x2, ..., xn) > 0.

0 0.2 0.4 0.6 0.8 1

0.001

0.02

0.25
0.50
0.75

0.98

0.999

Data

Q
ua

nt
ile

 P
ro

ba
bi

lit
y

(a) Benign transition matrix

0 0.2 0.4 0.6 0.8 1

0.001

0.02

0.25
0.50
0.75

0.98

0.999

Data

Q
ua

nt
ile

 P
ro

ba
bi

lit
y

(b) Malware transition matrix

Fig. 6. Q-Q probability plot of sub-graph level features.

Here P̂ (x1, x2, ..., xn) and P (x1, x2, ..., xn) are the empirical

relative frequency and the actual probability of the sequence

x1, x2, ..., xn, respectively. In other words,

P̂ (x1, x2, ..., xn) ≈ P (x1, x2, ..., xn).

This theorem shows us a way of empirically identifying

“typical” sample paths of arbitrary length for a given Markov

process. Based on this theorem, we generate realizations (or

sample paths) of arbitrary lengths from the transition matrix of

the Markov process. By generating a sufficiently large number

of sample paths of a given length, we can accurately identify

a relatively small subset of sample paths that are typical.

Using this methodology, we select a subset of top-10000
typical states X10000 as potential features, whose lengths vary

in the range [0,Tmax]. To further cut down the number of

sub-graph level features (up to 100), we use an information-

theoretic measure called information gain to rank features [11].

Information gain is used to quantify the differentiation power

of features, which are Markov chain states in our case. In this

context, information gain is the mutual information between a

given feature Xi and the class variable Y . For a given feature

Xi and the class variable Y , the information gain of Xi with

respect to Y is defined as:

IG(Xi;Y) = H(Y)−H(Y |Xi), (11)

where H(Y) denotes the marginal entropy of the class variable

Y and H(Y |Xi) represents the conditional entropy of Y given

feature Xi. In other words, information gain quantifies the

reduction in the uncertainty of the class variable Y given

that we have the complete knowledge of feature Xi. For our

application, the class variable Y is {Benign,Malware}. Using

information gain, we finally select a subset of top-100 typical

states X100 as features.

Recall we can identify a typical sample paths of the Markov

chain model of API call graphs. We use the presence or

absence of these typical sample paths as sub-graph level binary

features. Here we are interested in studying the distribution

of their empirically estimated probabilities. Ideally, we want

the sample paths in the typical set to have high probabilities.

Figure 6 show the Q-Q probability plot of sub-graph level

features. We observe that most sample paths have moderate to

high occurrence probabilities, which is desirable. This shows

that we can successfully capture variable length Markov chain

sample paths.

3) Graph Level Features: Graph level features capture

the properties of the complete graph, whereas the vertex

1 2 3 4 5
0

0.2

0.4

0.6

0.8

Clique Number

Pr
ob

ab
ilit

y
Benign
Malware

(a) Clique Number

0.56 0.62 0.69 0.76 0.82
0

0.1

0.2

0.3

0.4

Average Clustering Coefficient

Pr
ob

ab
ilit

y

Benign
Malware

(b) Average Clustering Coefficient

1 2 3 4 5 6
0

0.2

0.4

0.6

Diameter

Pr
ob

ab
ilit

y

Benign
Malware

(c) Diameter

1.86 1.96 2.07 2.17 2.28
0

0.1

0.2

0.3

Average Path Length
Pr

ob
ab

ilit
y

Benign
Malware

(d) Average Path Length

Fig. 7. Distribution of some graph level features.

level features capture the properties of individual vertices.

We capture four graph level features: clique number, average

clustering coefficient, diameter, and average path length.

• Clique Number: A clique is a sub-graph such that all

vertices in it are directly connected to each other by an

edge. The clique number ω of a graph is defined as the

total number of vertices in its largest clique.

• Average Clustering Coefficient: The average clustering

coefficient C̄ of a graph G(V,E) is defined as:

C̄ =
1

|V |
|V |∑

i=1

Ci (12)

• Diameter: The diameter D of a graph G(V,E) is defined

as:

D(G) = max
∀j,k

(|Pjk|), (13)

where Pjk is the shortest path length between vertices vj
and vk.

• Average Path Length: The average path length l of a

graph G(V,E) is defined as:

l(G) =

∑
∀j,k(|Pjk|)

|V |(|V | − 1)
, (14)

where Pjk is the shortest path length between vertices vj
and vk.

Figure 7 shows the distributions of graph level features

for both benign and malware programs. We observe that API

call graphs of benign programs tend to have larger values of

average clustering coefficient compared to malware programs.

Recall from Section III that the average clustering coefficient

measures the connectivity of a graph, where a larger value

indicates more connectivity. This observation means that the

API call graphs of benign programs are more tightly connected

than those of malware programs. As tightly connected graphs

have smaller average path lengths and diameters, we observe

that the API call graphs of benign programs have smaller

average path lengths and diameters than those of malware

programs. The above observations are due to the fact that

the malware programs tend to call some API sequences

over and over again. For example, in the API call sequence

in Table I, we observe that the subsequence HeapAlloc

→ HeapFree → RegQueryValueExW show up in the

sequence many times. Actually this subsequence appears more

often in the complete API call sequence for worm Shorm.110.

Because such repetition does not contribute much to adding

new edges, the API call graphs of malware programs are less

tightly connected than those of benign programs.

C. Graph Classification

We now present our graph classification method that uses

the three levels of features that we extract from API call

graphs. We select Naı̈ve Bayes algorithm as the machine

learning classifier for graph classification because it is a light-

weight probabilistic classifier that has been widely used for

problems like text and malware classification and is also

known to outperform more complex techniques in terms

of accuracy [22]. We train the algorithm using two sets

of probabilities: the prior, which represents the marginal

probability P (Y) of the class variable Y , and the a-priori

conditional probabilities P (Xi|Y) of the features Xi given

the class variable Y . For continuous features, Naı̈ve Bayes

uses Gaussian distributions and estimates its parameters from

the data to compute these probabilities [6]. These probabilities

can be computed from the training set. Given an unknown

API call graph with observed features Xi, i = 1, 2, ..., n,

the a-posteriori probability P (Y |X(n)) can be computed

for both classes Y ∈ {Benign,Malware}, where X(n) =
(X1, X2, ..., Xn) is the vector of observed features in the test

cascade under consideration:

P (Y |X(n)) =
P (X(n), Y)

P (X(n))
=

P (X(n)|Y)P (Y)

P (X(n))
. (15)

The Naı̈ve Bayes classifier then combines the a-posteriori

probabilities by assuming conditional independence among the

features as follows:

P (X(n)|Y) =

n∏

i=1

P (Xi|Y). (16)

Although the independence assumption among features makes

it feasible to evaluate the a-posteriori probabilities with much

lower complexity, it is unlikely that this assumption truly

holds all the time in reality. We mitigate the effect of the

independence assumption by pre-processing the features using

the Karhunen-Loeve Transform (KLT) [12], which is closely

related to the Principal Component Analysis (PCA). KLT is

a non-parametric method that transforms the features into a

domain where they are perfectly uncorrelated. The feature

transformation helps in reducing dependency among distinct

features, which in turn improves the performance of classifi-

cation algorithms.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness, efficiency, and

robustness of GZero. To evaluate GZero, we collected a data

set containing a total of 564 benign programs of various types

(such as games, word processors, archivers, web browsers,

system utilities, and file sharing softwares) and 14,215 diverse

malware programs (from http://openmalware.org/).

The number of API calls that we logged per program is on

the order of tens of thousands, but the number of unique API

calls is only 237.

A. Effectiveness

We evaluate the effectiveness of GZero using the 5-fold

cross-validation process in our experiments. Specifically, we

divide the data set of benign programs into 5 subsets and

so does for the data set of malware programs. We reported

results based on the average of 5 runs, where in each run 4
subsets are used for training and the left over subset is used for

testing. To systematically evaluate the effectiveness of these

feature sets in classifying benign and malware programs, we

first conduct experiments using stand alone feature sets and

then evaluate their all possible combinations. We characterize

the classification performance in terms of false positive rate

(fraction of benign programs falsely detected as malware

programs) and true positive rate (fraction of malware programs

correctly detected as malware programs). Both true positive

and false positive rates are jointly incorporated in a single

metric called Area Under ROC Curve (AUC). The AUC for

an ideal classifier is 1.0. We select ROC operating point during

the training phase to keep the false positive rate below 1%. An

alternate measure of classification performance is precision,

which is defined as the number of true positives divided by

the sum of the number of true positives and false positives.

Table II shows the effectiveness of GZero using different

feature sets in terms of AUC, true positive rate, false positive

rate, and precision. Among stand alone feature sets, sub-

graph features provide the best classification performance.

It is followed by the vertex feature set and then the graph

feature set. We think the sub-graph feature set outperformed

the graph feature sets because it captures more detailed

information than graph-level features. Moreover, the vertex

feature set is relatively sparse than the sub-graph feature set.

We also observe that using combinations of feature sets does

improve the classification performance. The best classification

performance is achieved when all feature sets are combined.

Note that using all feature sets consistently provides the best

classification performance in terms of all metrics compared

to otherwise. Using all feature sets, GZero achieves a true

positive rate, a false positive rate, and a precision of 99.6%,

0.9%, and 99.4%, respectively.

TABLE II
EFFECTIVENESS OF GZERO USING COMBINATIONS OF FEATURE SETS.

Feature AUC True Positive False Positive Precision
Set Rate Rate

Graph 0.865 0.855 0.145 0.881
Vertex 0.989 0.979 0.021 0.987

Sub-graph 0.990 0.985 0.017 0.990
Vertex, 0.990 0.981 0.019 0.990
Graph

Sub-graph, 0.992 0.987 0.015 0.991
Graph

Vertex, 0.996 0.988 0.016 0.992
Sub-graph

All 0.997 0.996 0.009 0.994

B. Efficiency

We conducted experiments on a desktop PC with AMD

Phentom II 3.01 GHz processor and 12.0 GB DRAM. Overall,

our proposed approach takes less than a second on average to

scan a given program. Thus, GZero can be efficiently deployed

at end hosts. The efficiency of GZero can be separately

analyzed for three modules: graph construction, feature extrac-

tion, and detection. Unlike existing dependency graph based

malware detection schemes that need to track data dependency,

the graph construction module in GZero simply maps an API

call sequence into a graph, which can be efficiently done in the

order of milliseconds. The feature extraction module of GZero

only extracts a handful of features from the constructed API

call graph. The complexity of feature extraction is primarily

dependent on the size of the API call graph in terms of number

of vertices. In our evaluations, we found that all of the three

feature sets takes less than half a second on average for a given

program. For detection, GZero uses the Bayesian classifier

instead of other more complex machine learning algorithms,

such as support vector machines, because of its efficiency. We

observed that it takes less than a hundredth of a second on

average to classify the feature set of a given program.

C. Robustness

We evaluated the robustness of GZero to obfuscation at-

tempts by an attacker. We use the following obfuscation

techniques to generate the obfuscated variants of all benign

and malware programs in our data set.

• Garbage insertion: This technique adds garbage API calls

at random locations in the program trace. In effect, edges

between randomly selected vertices are added to the API call

graph.

• Reordering: This technique swaps random API calls in the

program trace. In effect, random edges in the behavior graph

are re-wired.

For systematic robustness analysis, we have created ob-

fuscated versions of our data sets by performing varying

number of these obfuscation operations. These obfuscation

operations make API call graphs random; thus, we expect the

effectiveness of GZero to degrade for increasing obfuscation

operations [17], [20]. Figure 8 shows the effectiveness of

GZero on obfuscated data sets. The x-axis represents the per-

centage of total API calls for each program that are obfuscated.

For example, 50% of garbage insertion for a program trace

consisting of m API calls means that m/2 garbage API calls

were randomly inserted in the original trace. Likewise, 50%

of reordering for a program trace consisting of m API calls

means that m/2 API calls were swapped with other randomly

selected calls in the original trace. Comparing garbage inser-

tion, reordering, and their combination, we note that GZero is

less robust to reordering than garbage insertion. We observe

that combining garbage insertion and reordering has a minor

impact as compared to standalone obfuscation techniques. This

observation indicates that reordering impacts the underlying

API graph structure more than garbage insertion.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1
Ar

ea
 U

nd
er

 R
O

C
 C

ur
ve

 (A
U

C
)

Obfuscations (%)

Garbage Insertion
Reordering
Garbage Insertion + Reordering

Fig. 8. Effectiveness of GZero in response to obfuscation.

We note that the degradation in GZero’s effectiveness is

gradual for increasing levels of obfuscation. For instance, the

effectiveness of GZero at 100% obfuscation reduces AUC val-

ues of 92.6% and 85.1% for garbage insertion and reordering,

respectively. At 200% obfuscation rate, the effectiveness of

GZero further reduces AUC values of 76.5% and 61.1% for

garbage insertion and reordering, respectively. For much more

obfuscation operations (e.g., up to 500%), the AUC values

near the 50% mark, which represents a random classifier. We

note that at high levels of obfuscation, a program’s API call

graph is very much randomized and its underlying behavior is

impacted. Thus, a program will likely not run and may lose

its core functionality at these high levels of obfuscation.

V. CONCLUSION

In this paper, we propose GZero, a non-signature malware

detection approach that uses a classification model based on

graph theoretic features extracted from API call graphs. We

gain two key insights from this study. First, benign programs

and malware programs do exhibit different graph theoretic

characteristics on their API call graphs. Second, the three

levels of graph theoretic features that we extract from API

call graphs indeed can be used to effectively and efficiently

distinguish malware from benign software. Our experimental

results show that GZero achieves more than 99% detection

rate and a false positive rate of less than 1%. Furthermore,

GZero is efficient in terms of time and storage; thus, it can

complement existing malware detection solutions at end hosts

due to its low overheads.

In this work, we focused on optimizing the performance of

GZero in terms of its effectiveness and efficiency. We ended up

using a bucket list of standard graph features, without worrying

about any behavior insights for specific features. Although

providing domain-specific insights into the proposed features

may be useful to understanding why certain features perform

as well as they do, we believe that the domain-agnostic nature

of the features is actually an advantage because it confirms

our earlier hypothesis that API call graphs of benign and

malware programs have different graph theoretic properties.

Thus, the research community can use GZero as a blueprint

and propose additional features to improve its performance for

specific design goals (e.g., efficiency vs. robustness).

ACKNOWLEDGMENT

Zubair Shafiq’s work is partially supported by the National

Science Foundation under Grant Numbers CNS-1464110,

CNS-1524329, and CNS-1617288. Alex Liu’s work is partially

supported by the National Science Foundation under Grant

Numbers CNS-1318563, CNS-1524698, and CNS-1421407,

the National Natural Science Foundation of China under Grant

Numbers 61472184 and 61321491, and the Jiangsu Innovation

and Entrepreneurship (Shuangchuang) Program.

REFERENCES

[1] Pandalabs annual report. http://press.pandasecurity.com/press-
room/reports/.

[2] F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq:. Using spatio-
temporal information in API calls with machine learning algorithms
for malware detection. In ACM Workshop on Security and Artificial
Intelligence (AISec), pages 55–62, 2009.

[3] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool for analyzing
malware. In European Institute for Computer Antivirus Research Annual
Conference (EICAR), 2006.

[4] U. Bayer, A. Moser, C. Kruegel, and E. Kirda. Dynamic analysis of
malicious code. Journal in Computer Virology, 2(1):67–77, 2006.

[5] D. Bilar. On callgraphs and generative mechanisms. Journal in
Computer Virology, 3(4):285–297, 2007.

[6] R. R. Bouckaert. Naive Bayes Classifiers That Perform Well with
Continuous Variables. In 17th Australian Joint Conference on Artificial
Intelligence, 2004.

[7] P. Bremaud. Markov Chains. Springer, 2008.
[8] C. Chen, C. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han.

Mining graph patterns efficiently via randomized summaries. In ACM
Conference on Very Large Data Bases, 2009.

[9] M. Christodorescu and S. Jha. Static analysis of executables to detect
malicious patterns. In 12th USENIX Security Symposium, pages 169–
186, 2003.

[10] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant.
Semantics-aware malware detection. In IEEE Symposium on Security
and Privacy, pages 32–46, 2005.

[11] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991.

[12] R. Dony. The Transform and Data Compression Handbook, Chapter 1.
CRC Press, 2001.

[13] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan. Synthe-
sizing near-optimal malware specifications from suspicious behaviors. In
IEEE Symposium on Security and Privacy, pages 45–60, 2010.

[14] R. Islam, R. Tian, L. M. Batten, and S. Versteeg. Differentiating malware
from cleanware using behavioural analysis. In IEEE International
Conference on Malicious and Unwanted Software, pages 23–30, 2010.

[15] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang. Effective and efficient malware detection at the end host. In
USENIX Security Symposium, pages 351–366, 2009.

[16] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu. Shadow attacks:
Automatically evading system-call-behavior based malware detection.
Journal in Computer Virology, 8(1-2):1–13, May 2012.

[17] M. Musale, T. H. Austin, and M. Stamp. Hunting for metamorphic
javascript malware. Journal of Computer Virology and Hacking Tech-
niques, 2014.

[18] P. Porras, H. Saidi, and V. Yegneswaran. An analysis of conficker’s logic
and rendezvous points. Technical report, SRI International, February
2009.

[19] M. Shahzad, M. Z. Shafiq, and A. X. Liu. A large scale exploratory
analysis of software vulnerability life cycles. In 34th International
Conference on Software Engineering (ICSE), pages 771–781, 2012.

[20] S. M. Sridhara and M. Stamp. Metamorphic worm that carries its
own morphing engine. Journal of Computer Virology and Hacking
Techniques, 9(2):49–58, 2013.

[21] A. Srivastava, A. Lanzi, and J. Giffin. System call API obfuscation.
In 11th International Symposium On Recent Advances In Intrusion
Detection (RAID), volume 5230 of Lecture Notes in Computer Science,
pages 421–422, 2008.

[22] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2011.

[23] H. Yin and D. Song. Panorama: Capturing system-wide information flow
for malware detection and analysis. In ACM conference on Computer
and Communications Security (CCS), pages 116–127, 2007.

