
Protecting the Long Tail: Transparent Packet
Security in Content-Centric Networks

Christopher A. Wood+

Department of Computer Science
University of California Irvine

woodc1@uci.edu

Abstract—In the Content-Centric Networking (CCN) architec-
ture, content confidentiality is treated as an application-layer
concern. Data is only encrypted if the producer and consumer
agree on a suitable access control policy and enforcement mech-
anism. In contrast, transport encryption in TCP/IP applications
is increasingly opportunistic for better privacy. This type of
encryption is woefully lacking in CCN. To that end, we present
TRAPS, a protocol to enable transparent packet security and
opportunistic encryption for all CCN data. TRAPS builds on
the assumption that knowledge of a name gives one access to the
corresponding content; otherwise, by design, the content remains
encrypted and secure. TRAPS builds on recent advances in
memory hard functions and message-locked encryption to protect
data in transit. We show that the security of TRAPS is dependent
on the distribution of content names and argue that it can be
significantly improved if secure sessions are used to transmit
small pieces of information from producers to consumers. Our
performance assessment indicates TRAPS is capable of providing
opportunistic encryption to CCN without significant throughput
loss for reasonable packet throughput measurements.

I. INTRODUCTION

Content-Centric Networking (CCN) is an emerging net-
work architecture and protocol for transferring named data
between producers and consumers. Unlike traditional IP-based
networks in which hosts are directly addressable, CCN treats
content as a named and addressable entity that can be moved
through the network. Consumers issue requests (interests) for
content with a specific name, which are routed towards content
producers capable of satisfying the requests. The correspond-
ing content carrying the same name1 is then sent to the
consumer along the reverse path of the request. Routers may
choose to opportunistically cache content as it is forwarded
towards consumers. This data-centric model decouples content
from its place of origin, i.e., the producer, thereby enabling
opportunistic content caching within the network. This is
done to optimize bandwidth use, reduce latency, and provide
effective use of available network resources.

Data privacy and confidentiality are two critical challenges
in CCN and related architectures, such as Named Data
Networking (NDN) [1]. While structured and semantically
meaningful names may aid applications, they reveal a great
deal of information to the network. Specifically, names identify
precisely what data a consumer desires. If privacy is desired,
consumers and producers must agree on a way to obfuscate

+Supported by the NSF Graduate Research Fellowship DGE-1321846.
Work was done while this author was at PARC.

1Technically, content objects can carry no name if the corresponding request
specified the hash digest of the content.

application names into network names, i.e., the names encoded
in packets. (See [2] for more information about the distinction
between application and network names.) This is a very
important concept that is worth repeating: applications (and
users) yearn for meaningful names, but such utility has a
negative effect on privacy.

Now consider content confidentiality. If content is sensitive
and must be kept confidential, then it should be properly
protected so as to minimize the risk of disclosure to unau-
thorized parties. Since routers may optionally cache content
in transit, encryption is the de facto approach used to protect
the information contained in such packets. Much like names,
this encryption protection is considered an application-layer
concern; if this type of protection is needed, it is assumed the
application will implement it accordingly.

Confidentiality is necessarily an application-layer function
since it requires some form of authorization. The same is not
true for privacy. In fact, privacy is now considered a necessary
feature for emerging protocols due to growing evidence of
large-scale network packet interception and eavesdropping by
unauthorized entities [3]. Specifically, pervasive eavesdropping
and monitoring is now considered an attack on privacy [4]. To
combat these attacks, ubiquitous and opportunistic encryption
protocols are being standardized for IP-based protocols such
as TCP and DNS, e.g., [5], [6], [7]. Consequently, any viable
IP alternative, especially CCN, should deal with the issues of
privacy in an equally application-agnostic manner. To the best
of our knowledge, there has been no concrete work towards
this goal in the CCN community.

In this work we present TRAPS, a mechanism that enables
transparent packet security for CCN that, unlike traditional
end-to-end encryption mechanisms, does not prohibit packet
caching in the network. TRAPS is built on the premise that
if one knows an application name of content, then it can
obtain and decrypt the data. Otherwise, without knowledge of
the application name, the data remains encrypted and secure.
TRAPS uses application names to create obfuscated network
counterparts and encrypt the corresponding content. Thus,
TRAPS can be implemented entirely within the network stack,
as is done for protocols such as tcpcrypt [6]. Moreover,
TRAPS can be easily extended with stronger end-to-end
encryption that makes knowledge of an application name
insufficient to decrypt content.

Our intended contributions are three-fold:
• The first lightweight, application-transparent “transport”

security protocol for CCN.
• End-host network stack modifications necessary to sup-

port TRAPS.ISBN 978-3-901882-94-4 c© 2017 IFIP

• Analysis of TRAPS security subject to passive eaves-
droppers and the performance overhead incurred by end-
hosts.

Organization. Section II presents an overview of CCN. Sec-
tion III motivates the need for TRAPS. Section IV discusses
the TRAPS threat model. The cryptographic primitives under-
lying TRAPS are described in Section V. Section VI presents
the TSec protocol and briefly addresses its security claims.
The performance overhead introduced by these changes is
studied in Section VII. We finally conclude with a discussion
of related work in Section VIII and avenues for future work.

II. CCN OVERVIEW

This section provides an overview of the CCN architecture
and data transfer protocol. It can be skipped without loss of
continuity.

A. Architecture and Protocol Description
Unlike IP, which focuses on addressable end-hosts, CCN

emphasizes named and addressable data. This subtle difference
has strong implications on the underlying communication
mechanisms. To obtain content, a consumer issues a request,
called an interest, specifying the name of the desired content.
The name is a structured, hierarchical name, much like a URI.
For example, the name of a file belonging to the UCI Sprout
Lab might be named /edu/uci/ics/sprout/team. An
interest is routed, based on its name, towards an authoritative
producer of the content rather than a destination address.

As the interest traverses the network, each router examines
the name to determine if it has a copy of the content stored in
its Content Store (CS), or cache. If it does, the router transmits
the matching content object in reply to the interest. (An interest
matches a content object if (a) their names are equal or (b)
if the interest carries the hash digest of the content object.
Due to (b), content may actually nameless since it is not
needed to verify authenticity.) Otherwise, the router records
some state derived from the interest (e.g., the arrival interface)
in a Pending Interest Table (PIT) so as to provide a reverse
path to the requester. Finally the router transmits the interest to
the next hop(s) specified in its Forwarding Information Base
(FIB). A FIB is a routing table that maps hierarchical name
prefixes to outbound interfaces. The router uses longest-prefix-
matching (LPM) to index into the FIB to determine the set of
possible interface(s) to which the interest should be forwarded.
If a router R receives an interest that cannot be satisfied from
the cache, and R has already forwarded a previous interest
for the same name upstream, it updates the corresponding PIT
entry with the new arrival interface. When a content response
is then returned to the router, it is forwarded to all downstream
interfaces listed in the corresponding PIT entry. In doing so,
R may cache the content in anticipation for of a future interest
for the same name.

Beyond the pull model that guarantees symmetric interest
and content flow, content-centric traffic in CCN has strong
security implications. Notably, security is coupled to content
rather than its distribution channel. All sensitive content must
therefore be encrypted in a meaningful way so as to ensure
confidentiality2. Content integrity and origin authenticity are

2Other techniques exist for maintaining content confidentiality. We discuss
these in Section III.

/a/b/c

inner FLIC nodes
(nameless)

data leaves

data

root FLIC node
(named)

Fig. 1: Sample FLIC tree.

typically ensured via digital signatures generated by producers.
This is not a requirement, though, as the authenticity of content
may be ascertained by checking the cryptographic hash digest
of the content that is returned. Specifically, if an interest carries
the hash digest of the expected content, the validity of the
resultant content can be checked by comparing its hash against
that which is provided in the interest.

B. Additional Message Constructs
Interests and content objects are the base for different types

of messages in CCN. Manifests are a special type of content
object used to convey hash digests to consumers. The latter
use these hash digests to create interests that carry a name and
hash digest for more efficient verification. FLICs are one type
of Manifest structure for CCN [8]. A FLIC packet is part of a
network-level collection of content objects. Each FLIC node
in a collection contains a list of hash digests that are used
to construct interests for specific content objects. Each name
and hash digest pair is called a pointer. (We often use the
term locator to describe these names since the hash is the real
identity of the content.) FLIC nodes may contain or encode
pointers to normal content objects (data leaves) or other FLIC
nodes, thus creating a DAG structure with a single root and
normal content objects as the leaves. Typically, inner-nodes in
this DAG are nameless and only the root node has a name.
However, the latter is not mandatory. Consumers resolve FLIC
root nodes to data leaves by performing an in-order depth-first-
search of the pointers in a FLIC node, as shown in Figure 1.

Also, FLICs may contain optional metadata fields such
as DataDigest to indicate the cryptographic hash of the
data contained in all of the children pointers3, as well as
DataSize to indicate how many data bytes are contained
in all of the children pointers. With knowledge of the total
number of bytes in a FLIC node, as well as the size of data
contained in each node, a consumer can randomly seek to
different offsets in the collection.

III. SEPARATING PRIVACY AND CONFIDENTIALITY

Privacy and confidentiality are pervasive problems in CCN.
While they may seem to be orthogonal issues, they often stem
from the shared property that some parts of a packet are not
protected with encryption unless explicitly done so by the
application. Cleartext packet data (and metadata) can reveal
details about the producer and intent of the data contained in a
content message. It can also leak information about the content
requested by a particular consumer. One goal of TRAPS is to
provide a transparent mechanism to deter or prevent such types
of inference. In this section, we review previous proposals
of content confidentiality and problems of name privacy to
motivate the need for TRAPS.

3This is similar to a Merkle tree digest.

A. Confidentiality Conundrum

The purpose of content confidentiality is to prevent unau-
thorized parties from accessing protected or sensitive content.
This can be done by protecting content with some form
of request-based access control scheme [9]. Other (albeit
insecure) possibilities include specifying little or no cache
time for content objects in the network. Assuming routers
are honest, this means that all interests would be routed to
the content producer, who could then determine the access
rights to content on a per-interest basis. This would require
consumers to provide some form of unforgeable identity or
authentication token that could be used by the producer to
make this authorization decision. The effect of caching on
limited availability can therefore be perceived as a (weak)
network-layer confidentiality enforcement mechanism.

A more intuitive approach in CCN is to encrypt the content
under keys only available to authorized parties. Smetter et al.
[10] presented a group-based access control scheme based
on the old version of the CCN architecture (CCNx 0.x)
[11]. Misra et al. [12] proposed a group-based access control
procedure in CCN that uses broadcast encryption [13], [14],
[15] to encrypt per-content decryption keys. Ion et al. [16] gave
an attribute-based access control scheme for ICNs that applies
attribute-based encryption [17], [18] for a similar purpose.
Wood et al. [19] presented an access control scheme using
proxy re-encryption to personalize cached content objects to
each user. Kurihara et al. [20] designed an encryption-based
access control framework using CCN manifests to implement,
specify, and help enforce access policies. Their framework can
be used to instantiate any one of the previously mentioned
solutions. NAC [21] gave an alternative to [20] that uses name
conventions to construct the names of per-content decryption
keys.

While application encryption is by and large the de facto
way of protecting content, it is not the only layer at which
encryption may be performed. In general, the CCN architec-
ture lacks a form of encryption that (a) does not involve or
require any application input and (b) is implemented above
the network layer. To the best of our knowledge, there is
no protocol for enabling such transparent encryption between
consumers and producers. We claim that a protocol that would
allow this type of encryption is both necessary and timely
given that CCN and related architectures are maturing and
targeted to replace IP.

B. Pitiful Privacy

Privacy is often an overlooked property in CCN. Many
applications rely on well-formed, deterministically gener-
ated, and meaningful names to ease the application bur-
den. For example, in the NDN-RTC application [22], names
for audio segments are given names of the following
format: <prefix>/ndnrtc/user/<username>/streams/
audio0/<bitrate>/.... This leaks an unnecessary amount
of information about the contents and subjects of a conver-
sation. Indeed, overcoming this privacy challenge has deep
implications on how names are conveyed to the network. Ghali
et al. [23] confirmed (often unstated) intuition that names must
be indistinguishable from random strings in order to guarantee
some measure of privacy. Their results show that any technique
which can decouple application names, such as the NDN-RTC

name above, from those which are carried inside packets will
help improve privacy. This idea forms the basis of TRAPS.

IV. THREAT MODEL

In recent years, the trend towards transparent, ubiquitous,
and opportunistic encryption continues to grow [5], [6]. How-
ever, to the best of our knowledge, there is no such protocol
analog in CCN or related architectures. Opportunistic encryp-
tion is not straightforward when the primary security focus is
on data rather than privacy (and the channels through which
data flows).

As the name suggests, the goal of TRAPS is to transpar-
ently encrypt packets to improve data privacy – not confiden-
tiality. Our adversary A is one which attempts to learn the
identity (application name) of encrypted content. A is active
and has the ability to compromise any router in the network.
A can perform any action usually allowed to compromised
routers. Unlike standard encryption protocols, such as TLS
[24], wherein there is assumed to be a global PKI or possibly
shared secrets between trusting parties, we choose to restrict
our notion of “transparent” to one in which we rely on neither.
As such, the security of TRAPS cannot depend on pre-
configured certificates or previously exchanged secrets. (We
explicitly omit a design requiring key exchange protocols for
TRAPS since it implies a connection. As we will discuss later,
a goal of TRAPS is to not break the data-oriented nature of
transmission in CCN.) Rather, TRAPS depends on implicitly
shared knowledge between consumers and producers. Since
there are no cryptographic secrets shared a priori, the security
of TRAPS is a function of the amount of work expended by
A to learn this shared information. By default, TRAPS is not
intended to be computationally or information-theoretically
secure such as is the case with TLS [24]. A powerful enough
adversary could break it, but at a cost that is a design
parameter for the protocol.

V. CRYPTOGRAPHIC PRELIMINARIES

TRAPS builds on a couple of new of cryptographic prim-
itives. The first of which are memory-hard functions (MHFs)
[25]. A MHF is a function which, on a random access
machine, requires S(λ) space and T (λ) operations to compute,
where S(λ) · T (λ) ∈ Ω(λ2) and λ is the security parameter.
Optimally, a MHF requires just as much space as it does
operations. MHFs are intentionally expensive to compute since
they are meant to deter one from computing massive numbers
in parallel with custom hardware.

Another primitive we rely upon is so-called convergent or
message-locked encryption (MLE) [26]. A MLE scheme is
one where the (symmetric) key used to encrypt and decrypt
a message is derived from the message itself. In [26], the
symmetric key k for message M is derived as k = H(M),
where H is a suitable cryptographic hash function, such as
SHA256. To encrypt a message M , one then computes a tag
T = H(k) and ciphertext C = Enck(M), and then produces
the (C, T) tuple. Decrypting and verifying a ciphertext value
(tuple) requires one to decrypt the ciphertext, re-derive the
tag, and then check for equality. This MLE scheme is deter-
ministic and therefore enables secure de-duplication; identical
messages will be encrypted to identical ciphertexts. TRAPS
exploits this property for a large class of traffic – specifically,
static data.

VI. TRANSPARENT PACKET SECURITY IN CCN
In this section we describe the TRAPS protocol and how

it sets out to achieve the security goal outlined in Section IV.
But first, we must be clear about the requirements of TRAPS:
R-1 TRAPS should be completely transparent to applications.

Neither consumers nor producers should be required
to opt in to the protocol. However, the protocol may
be exposed to applications to enable stronger security
properties.

R-2 TRAPS should not require consumers or producers to
share any cryptographic secrets or perform any sort of
key establishment.

R-3 TRAPS should not break the data-centric and request-
based model of CCN. As a result, features such as caching
should still work with TRAPS.

R-4 The security of TRAPS should be a tunable parameter
that has a reasonable default and, if desired, can be
decided upon by the producer and conveyable to the
consumer. Moreover, consumers and producers should be
able to opt-out of TRAPS if desired.

The core idea of TRAPS is that implicit knowledge of a
name is considered to be a shared secret between a consumer
and producer. Consumers know a priori what content they wish
to request, whereas producers know what (static) content they
provide and are willing to publish. In TRAPS, knowing a
name is sufficient to decrypt a packet. Without the name, the
data remains encrypted. Thus, the name can be thought of
as a sort of password needed to access the underlying data
in a packet. From this name, cryptographic secrets can be
derived that protect both the name and corresponding data.
An eavesdropper who sees a protected request and response
learns very little. Moreover, they would have to expend a
non-negligible amount of effort, in terms of computation and
memory resources, to learn the underlying data.

A. Protocol Overview
At a high level, TRAPS can be viewed as the compo-

sition of a password-hashing and encryption algorithm. It
uses name obfuscation (via hashing) and content encryption
to protect names and data, respectively. Name obfuscation
uses a cryptographic (or memory-hard) hash function (F) to
map meaningful names to random correspondents. Content
encryption uses secret-key cryptographic algorithms (Enck(·)
and Deck(·)) for efficiency. We also make use of a key
derivation function (KDF), e.g., HKDF [27].

TRAPS is a configurable protocol and accepts the follow-
ing inputs: Security parameter λ, the obfuscation function
F : {0, 1}∗ × {0, 1}∗ → {0, 1}λ, and a salt generation and
rotation function, sG and sR, respectively. We denote a specific
configuration of TRAPS as TRAPS(λ,F, sG, sR).4

We now describe TRAPS in more detail. Recall that, to
obtain data D with name N , denoted D(N), consumers issue a
request (interest) for D(N), denoted I(N). We refer to the i-th
component of N as Ni. If D(N) is chunked into n pieces, we
denote Di(N) as the ith piece. The unique identifier for D(N)
is its cryptographic hash digest, denoted DID(N). In this
context, N is the application name of D. The network name

4When not needed, we omit these parameters for presentation clarity. Also,
by default, sG = sR =⊥, meaning that the salt is the empty string and never
changes. If sG =⊥, then it simply returns an empty string upon any input.

1) The consumer application on Cr issues an interest I(N) to the
network stack.

2) Cr’s network stack computes the obfuscated interest I(N̄) =
Obfuscate(F(·), sG, I(N)). (Obfuscate is detailed in Algorithm
1.)

3) The obfuscated interest I(N̄) is issued by Cr and routed to P .
4) P ’s network stack recovers the original name N from I(N̄) by

looking up the name in a table that maps all obfuscated names to
their application representations.5 P ’s stack then forwards N to
the application.

5) The application returns C(N) to the network stack.
6) P ’s network stack computes the encrypted content object

C(N̄) = EncryptContent(C(N)). If required, C(N̄) is then
signed.

7) The obfuscated and encrypted content object C(N̄) is routed back
to the consumer.

8) Cr’s network stack computes C(N) = DecryptContent(C(N̄))
and passes it up to the consumer application.

Fig. 2: An summary of the TRAPS protocol.

N̄ carried in the wire-encoded packet and used to forward
this request need not be equal to N . However, in standard
CCN, N = N̄ . We use the notation D(N) and D(N̄) to refer
to the data identified by the given application and network
names, respectively. After it is requested, D(N) is carried in a
content object message C(N̄) with the network name N̄ . Note
that consumers may use different network names N̄0 and N̄1

when requesting D(N), in which case C(N̄0) 6= C(N̄1). This
can occur if D(N) is uniquely encrypted for each consumer.
Conversely, it always holds that if C(N̄0) = C(N̄1) then both
responses carry the same application data D(N). Recall that
it is not a requirement for a content object to carry a CCN
name. However, a content object always carries an explicit or
implicit identifier that can be matched to a value computed
from the corresponding interest. For example, if the content
object C(N̄) does not carry a name, then its hash digest must
match what is provided in I(N̄).

The complete end-to-end operation of TRAPS(λ,F(·),⊥,⊥
) is shown in Figure 2. Detailed descriptions of each step in
the TRAPS protocol are given in Algorithms 1, 2, and 3, and
a complete depiction of the TRAPS encryption mechanism
is shown in Figure 3. Observe that if a different consumer
Cr′ application issues an interest for the same name N ,
and this interest is routed along a path containing a router
which has cached the obfuscated content object C(N̄), the
content object will be returned to Cr′ as expected. Since
C(N̄) contains the name N̄ and nonce r, Cr′ will be able
to decrypt the content object payload before passing up C(N)
to the application. Thus, TRAPS can still exploit caches. An
alternative strategy would have been for consumers to provide
their public key in each interest, similar to the DNSCurve
protocol [28]. Producers could encrypt the random content
encryption key using this public key and return it in the
response. This, however, would not make shared use of caches.

TRAPS is transparent to the network. Only the producer
and consumer applications see application names; all network
entities, such as routers, deal only with obfuscated network
names and encrypted content objects. Moreover, since the
translation is deterministic, router processing is unaffected.
(Equality on N is functionally the same as equality on N̄ .)
This allows TRAPS to be implemented entirely within the net-

Algorithm 1 Obfuscate(F(·), sG, I(N))

1: s = sG(now())
2: N̄ = []
3: for i = 1→ |N | do
4: N̄ = Append(N̄, F(N1|| · · · ||Ni||s))
5: end for
6: InterestMap[N̄] = I(N)
7: return I(N̄)

Algorithm 2 EncryptContent(C(N), λ)

1: r ← {0, 1}λ
2: k ← KDF(N ||r)
3: ¯payload = Enck(D(N))
4: C(N̄) = (N̄, ¯payload, r)
5: return C(N̄)

work stack. Applications may configure TRAPS by choosing
λ, F, sG, and sR as needed. However, without explicit opt-in,
there is a default set of options used for TRAPS: λ = 256,
F = SHA256, and sG = sR =⊥.

N = /a/b/c

D(N)N̄ = F(N, s) k = KDF(N ||r)

Enck(D(N))

Enck(D(N))

N̄

C(N̄)

sG(now())

Fig. 3: TRAPS translation and content construction procedure.

B. Static Content
For static content, it is common for a consumer to request N

with DID(N). Doing so requires knowledge of DID(N) a pri-
ori. As discussed in Section II-B, this is typically obtained in
a (FLIC) Manifest, denoted Manifest(D(N)). Consumers first
fetch the manifest pertaining to a collection of static content
objects and then use its contents to subsequently request the
constituent chunks by their unique identifier. TRAPS can be
applied to each content object chunk in a manifest to encrypt
them. However, this is problematic. Since each chunk would
have the same name (locator), the same key would be used to
encrypt each one. By using the same key to encrypt multiple
content objects, we must convey a proper IV or nonce for
each one (depending on the mode of operation) such that the
encryption remains secure.6 Lastly, if the encryption key is
based on N , then each encrypted chunk becomes eternally
bound to N . This prevents de-duplication that might arise
as nameless chunks move around the network under different
routable prefixes.

Therefore, to support de-duplication even when N (the
locator) changes, the encryption key must be based on some-
thing else. To address this problem, we turn to MLE. In
particular, we let the encryption key for a chunk be derived
from its application data contents and, optionally, a name

6Reusing a key and nonce pair with AES-GCM has disasterous conse-
quences, see e.g., [29].

Algorithm 3 DecryptContent(C(N̄))

1: I(N) = InterestMap[N̄]
2: k ← KDF(N ||r)
3: payload = Deck(C(N̄). ¯payload)
4: C(N) = (N, payload)
5: return C(N)

as well. This name can be N or N̄ , depending on how
restrictive are the requirements for access to D(N). Let
KeyGen(·, ·) be a function that takes as input D(N) and
optional name N ∈ {⊥,N} to compute an encryption key
k. A key k = KeyGen(D(N),⊥) will encrypt the content to
be accessed with any locator and can be moved anywhere
in the network. (This is the default configuration.) A key
k = KeyGen(D(N), N) will bind k to the locator N . Lastly,
a key k = KeyGen(D(N), N̄) binds k to the ephemeral,
obfuscated locator that is observed in the network. The exactly
derivation mechanism to be used is a design choice for the
producer stack, provided that they convey this decision to
consumers. By default, the k = KeyGen(D(N),⊥). With k,
the producer can then encrypt each chunk Di(N) ∈ D(N) in
such a mode that permits random access decryption. (This is
necessary so that chunks may be received out of order or in
partial without preventing their use.) For integrity reasons, the
producer should also generate a tag as outlined in Section V.
This tag can be included in the content object in place of a
signature.

The final part of this approach is to convey DID(N)
to consumers, since a consumer cannot derive a hash for
content to which it does not have access. For this, we use
Manifest(D(N)). The FLIC manifest already carries the hash
of D(N) as additional metadata. Thus, by retrieving a FLIC
manifest, a consumer can then derive the decryption key(s)
for the constituent chunks. Figure 4 shows this manifest-based
construction visually.

Fig. 4: TRAPS FLIC manifest construction procedure.

C. Dynamic Content

The protocol described in Sections VI-A and VI-B assumes
that all content is static, i.e., not generated dynamically or on-
demand. This enables the producer to precompute the data to

map network names to their application counterparts. This is
not possible for dynamic content due to the preimage-resistant
nature of F.

There are (at least) two ways to support dynamic content
with TRAPS. The first is to additionally encrypt N , with
application-specific components, under the producer’s public
key pkP . This encrypted name could be included in the
payload of the interest so that routing still occurs on N̄ . When
interests of this form arrive at the producer, the latter can
simply decrypt the payload using the corresponding secret key
skP to recover N . To acquire pkP without first talking to
P , consumers could use a key-resolution service such as the
CCN-KRS system proposed in [30]. A second alternative is
for consumers to establish a session using, e.g., the CCNx-
KE protocol [31], over which to transfer encrypted dynamic
content. Note that this approach requires consumers and pro-
ducers to opt-out of TRAPS so that name transformations are
not inadvertently applied.

D. Discovery and Interoperability
TRAPS relies on consumers knowing the name of content

they wish to access. For nameless objects, if the hash digests
of content are unpredictable, then the encrypted content ob-
jects are protected from eavesdroppers. In section VI-B, we
assumed that manifests carrying these hash digests were them-
selves encrypted using TRAPS. Therefore, if the manifest
name were predictable, then the hashes could be retrieved. This
method of protecting manifests is necessary for backwards
compatibility, since it places no additional burden on the
network.

However, to improve this, manifests could be protected in
a number of different ways. First, a secure session established
via CCNxKE [31] could be used to transfer the manifest. This
would prevent passive eavesdroppers between the consumer
and producer from learning the hash digest of nameless content
objects in the manifest so as to decrypt them. Alternatively, if
access control schemes such as IBAC [9] are used, wherein
the consumer and producer share keying material that can be
used to encrypt names, then the manifest could be fetched
with an encrypted name. This effectively restricts access to
the manifest, and all content objects contained therein, to
only authorized consumers. While using a session or IBAC
to fetch manifests would work, it introduces extra complexity
into applications that is otherwise not needed by TRAPS.

E. Dictionary Attacks
When sG =⊥, TRAPS is susceptible to dictionary attacks

[32] since the only secret information in the protocol is N ,
the application name, which is known by all consumers who
request content.7 A dictionary attack is where an adversary
precomputes hash digests from a dictionary or list of popular
inputs so that s/he can easily reverse these values. The first
dictionary attack deterrence built into TRAPS is the use of
salts, generated via sG, to obfuscate names.

There are several possible options for sG. The first is for
sG to return s

$←− {0, 1}λ, and to rotate (update) this value

7Using deterministic public-key encryption for name obfuscation would
serve no better than the hash function. Since adversaries would also have ac-
cess to the producer’s public key, and could therefore compute the obfuscated
names as easily as regular consumers.

every sR seconds. The problem with the salt is consumer syn-
chronization: how does a consumer get the salt before issuing
I(N)? If the salt is explicit, then the producer must generate
and publish the salt for consumers to obtain. Specifically, let
Ns be the salt name published with the obfuscated name
Obfuscate(Ns). Cr could issue an interest for Ns to obtain
the salt s, and then use s to subsequently derive the names
of desired content. For all subsequent interests, Cr could then
use s in the obfuscation procedure.

Therefore, we recommend a simpler input for the salt:
time. Here, sG is equal to the current time epoch divided by
sR. For example, if the current time epoch (UNIX time) is
1483921358 (01/09/2017 @ 12:22am UTC), and sR is 10000,
then s = 1483921. Consumers and producers share knowledge
of time and can be assumed to be in sync within some loose
margin of error. As the granularity of time (sR) decreases, the
probability that it is shared between consumers and producers
increases. Of course, since time is predictable, it is possible
for a powerful attacker to pre-compute obfuscated names with
future versions of time. This could be mitigated by mixing
both time and a producer-provided salt on a regular frequency.
For example, producers could publish a new salt every day or
week, which would then be required when performing the F
computation.

Another deterrence built into TRAPS is to use MHFs as F.
These dampen the efficacy of offline dictionary attacks while
adding more online computational and memory overhead to
consumers. This performance tradeoff is assessed in Section
VII.

F. Security Analysis
The security of TRAPS dissappears as information (names

and data) become predictable. This is because trial decryption
driven by dictionary attacks are possible. However, there is
one crucial element of TRAPS that limit the efficacy of trial
decryption attacks: Since each content key is derived from
a fresh and random nonce, A cannot attempt trial decryption
until after it observes an encrypted content object. This means
dictionary attacks targeting the content must be online. Given
the amount of traffic that is sent on a network, this means that
A has to either have a tremendous amount of computational
resources available or must be selective in which content it
attempts to decrypt. Both conditions make less popular or
predictable content, i.e., content in the “long tail” of the
popularity distribution, intuitively more safe.

Another avenue for attack is through the obfuscated name
via an offline dictionary attack. The cost of the dictionary
attack is controlled by the parameters of F . To illustrate this
effect, let the security of F be defined by parameters space
and time parameters s and t. Let N be a set of names from
which the attacker will sample. Moreover, let D(N) be the
distribution of these names such that D(N) for N ∈ N is
the probability that N is selected when sampled from N.
The best dictionary attack is one where the attacker proceeds
as follows. Simply traverse D(N) in descending order by
probability and compute Obfuscate(·, N) for each N until the
target value is found. We may estimate the complexity of this
attack as follows. Let N∗ be the actual name represented by
a packet with the obfuscated name N̄ . Let C(s, t) be the cost
of computing F given parameters s and t. Now, assuming N∗
is the k-th most popular name in D(N), the attack will then

require (at most) k computations of Obfuscate and therefore
cost k × C(s, t). This leads to the following minimum work
bound for these offline dictionary attacks.

Definition 1: Given a space and time parameters s and t,
as well as a set of names N with distribution D(N) whose
expectation is E(N) and PMF is f(·), the average amount
of work required to conduct a dictionary attack on one name
N ← N is (1− f(E(N)))× C(s, t).

If D(N) is the uniform distribution with 10 elements, then
the expected cost is 5 × C(s, t). Similarly, if D(N) is the
Zipf distribution with 10 elements, whose expected value is
H10,α−1

HN,α
, then the expected cost is (1− H10,α−1

HN,α
)×C(s, t). The

cost obviously scales (linearly) as the set of names increases.

VII. TRAPS ANALYSIS

A. End Host Overhead

Computationally, TRAPS only introduces overhead at con-
sumers and producers. Routers and other network entities are
unaffected by interests and content object messages using
TRAPS obfuscation and encryption. Therefore, to assess the
performance of TRAPS, we quanitfy the overhead incurred
by consumers and producers. This overhead is divided into
four parts: (1) interest obfuscation, (2) interest de-obfuscation,
(3) content encryption, and (4) content decryption. Each of
these four procedures adds a certain amount of processing
overhead to each message as it traverses the consumer and
producer network stacks. All experiments were performed on
a workstation with a 2.8 GHz Intel Core i7 CPU and 16GB
of 1600 MHz DDR3 RAM running Ubuntu 14.04.

To quantify this processing overhead, we implemented each
of the operations in C on top of the Libccnx and Libparc [33]
libraries. For input, we used the Unibas dataset from the The
Content Name Collection [34], which contains unique URLs
submitted by users to URL shortener websites. We converted
these URLs into a CCN-compatible name format. For example,
the URL http://www.domain.com/file.html was
converted into the CCN name /com/domain/file.html.

This dataset does not provide any information about the
corresponding content object sizes, so we randomly generate
the sizes between the range of 1.5KB and 9KB. For efficiency,
we use ChaCha20+Poly1305 [35] for the authenticated en-
cryption algorithm to protect content objects. Randomness for
nonce generation is drawn from /dev/urandom (it does not
block). For comparison we use both SHA256, which is not
a memory-hard function, and Argon2 [36], which is a very
recent MHF, as the name obfuscation function F. The code
for which is available at [37].

The results from this experiment are shown in Figure 5. The
name de-obfuscation procedure, which is simply a hash table
lookup, is negligible compared to the remaining steps. Request
obfuscation is the most expensive step in the protocol since it
requires the most computation and is necessarily linear in the
length of the input name. Content encryption and decryption
perform moderately better; encryption involves more work
since it must first sample randomness necessary to generate
the random nonce. Overall, the worst-case time for a single
step in TRAPS on this machine is approximately 60µs, which
is well below the network I/O bottleneck and therefore within
reason.

B. Consumer Throughput
Of all the computations required in TRAPS the name

obfuscation step is the most expensive and thus the throughput
bottleneck. With the use of memory hard functions in lieu
of traditional hash functions, the throughput ceiling is low-
ered even further. Thus, applications must take care to not
use obfuscation functions that disrupt normal QoS. This has
two implications on the function used: (1) the computational
overhead must never exceed the network overhead and (2) the
number of possible hash functions per second should always
exceed the number of packets sent per second. This suggests
two strategies in selecting the obfuscation function parameters.
Let R be the maximum number of bytes per second sent by
a client C. Let L be the minimum link MTU from C to
each producer P1, . . . , Pn. Let Tmin be the minimum RTT
between C and any Pi. Finally, let Tobf be the (worst-case)
time required to obfuscate a name in a single packet.

Based on the previous two conditions for throughput, it must
be the case that

PTobf
L

< 1 (1)

and that Tobf ≤ Tmin. Equation 1 states that the total time
consumed by hashing all required packets in a second does not
exceed 1 second. Otherwise, the system would be unstable
since the client could not keep up with the desired packet
transmission rate.

Equation 1 also places an upper bound on the number
of packets that can be sent every second. Given Tobf and
assuming an approximate value of L = 1500B, we can
compute an upper bound on P to satisfy this inequality. That
is, we can find the largest P such that P < L

Tobf
. To estimate

this capacity, we profiled SHA256 and Argon2 to measure the
expected throughput under a variety of configurations. The
results are plotted in Figure 6. As expected, we can achieve
packet throughput rates on the order of 108 per second with
SHA256, but with a m = 25 (225 KiB) memory cost for
Argon2 this drops down to 105 per second.

We may also write Equation 1 as

Tobf <
L

P
(2)

and, for reasonable values of P , find the obfuscation function
parameters that bring it close to this upper bound. For example,
assume P = 100Mbps and L = 1500B. Then, Tobf < 15µs.
This is well within the bounds when using SHA256 as the
obfuscation function. However, this is not the case for Argon2.
For P values of 2Mbps and 128Mbps, the parameters (8, 26, 1)
and (1, 8, 1), respectively, can be used to meet the throughput
criteria. Larger values for m indicate that more memory is
used for the function, which is the ultimate limiting factor in
its performance as well as the primary factor in its security
(see [36] for more details). For comparison, Netflix Ultra-
HD quality streaming requires a throughput of 25 Mbps [38].
Based on this assessment, TRAPS can certainly meet this
requirement.

VIII. RELATED WORK

[39] attempted to enable producer privacy by mixing sensi-
tive information in with fake or cover content. The goal was
to mask the real content returned in response to an interest.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Segments

0

5

10

15

20

25

30

35

40

45
T
im

e
 (

u
s)

Step 1
Step 2
Step 3
Step 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Segments

0

5

10

15

20

25

30

35

T
im

e
 (

u
s)

Step 1
Step 2
Step 3
Step 4

Fig. 5: Overhead of each step of TRAPS using different obfuscation functions. The left plot uses Argon2d with parameters
t = 6 and m = 12 (212 KiB) and the right plot uses SHA256.

1500 3000 4500 6000 7500 9000
Packet Size [B]

104

105

106

107

108

109

T
h
ro
u
g
h
p
u
t
C
a
p
a
ci
ty
 [
p
a
ck
e
ts
/s
e
co
n
d
]

ARGON2(4-25)
SHA256
ARGON2(4-21)

Fig. 6: Throughput capacity when using Argon2 with t = 4
and m ∈ {21, 25} and SHA256 as F.

This technique is problematic since it requires mandatory
and honest producer participation in order for their privacy
guarantees to be achieved. Furthermore, it placed an unnec-
essary storage and computational burden on producers and
consumers. Dibenedetto et al. [40] focused on consumer and
producer anonymity rather than data privacy. Their system,
called ANDaNA, follows the Tor [41] model for onion-
encrypting (and decrypting) packets in transit between a source
and destination. However, ANDaNA is an application-layer
service that is not transparent to the network. Moreover, it
involves online public-key cryptographic operations to forward
packets. Ghali et al. [23] showed that privacy in CCN is
nearly futile unless there is some notion of a shared secret
between consumers and producers. Their work supports the
main security argument of TRAPS: unpredictable names yield

private and encryption packets.
CCN confidentiality is a more popular problem in the liter-

ature [10], [12], [16], [19], [20], [21]. All of the approaches
involve some form of application-layer encryption and key
management technique using a variety of different crypto-
graphic algorithms to enforce access control, e.g., broadcast
encryption and proxy re-encryption.

Contrary to CCN, the problems of privacy and confiden-
tiality are well studied in the IP landscape [42], [5], [6], [7],
[28], [41]. Protocols such as IPSec [42] and tcpcrypt [5] exist
to protect individual packets from eavesdroppers by encryption
performed deep in the network stack. They both involve
some handshake protocol (e.g., tcpcrypt key establishment
or IPSec IKE) to establish a secure channel with a shared
cryptographic key. In effect, IPSec and tcpcrypt encrypt all
data above the network and transport layer of the TCP/IP stack,
respectively, which protect the contents of each individual
packet sent between a client and server. Although IPSec is
older, tcpcrypt is likely to obtain more widespread adoption
due to (a) its simplified key establishment protocol that extends
the standard 3-way TCP session establishment protocol by a
single additional message, and (b) there is greater incentive to
encrypt at higher layers in the protocol stack.

Per-packet encryption via tcpcrypt and IPSec provides con-
fidentiality and privacy for communication with well-known
hosts; only source and destination addresses are visible in
cleartext to eavesdroppers. However, discovering the addresses
of these hosts via the DNS often reveals information that
breaks these privacy assurances. DNSCurve [28] and DNS-
over-TLS [7] are two similar approaches to this leakage prob-
lem which seek to provide DNS query privacy by encrypting
the contents of each request. These approaches are different
from those that use Tor[41] to hide the location or origin of
DNS queries since they only hide the query contents.

IX. CONCLUSION

We presented TRAPS, a protocol for enabling transparent
packet security in CCN. It is based on the idea that only those

with knowledge of a name can ask for the data and decrypt
it upon receipt. It is secure up to chosen name distributions.
For predictable names which are subject to dictionary attacks,
the attacker’s job is made difficult by (a) using MHFs to
make offline exhaustive search expensive and (b) using per-
request nonces to prevent offline dictionary attacks of content.
We presented the design of the protocol and discussed its
security. We then provided a comprehensive assessment of
its performance impact on end-hosts. Our results indicate that
for reasonable measures of packet throughput, TRAPS is a
simple and yet powerful way to deter widespread network
eavesdropping attacks on CCN.

REFERENCES

[1] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick
Crowley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al.
Named data networking. ACM SIGCOMM Computer Communication
Review, 44(3):66–73, 2014.

[2] Cesar Ghali, Gene Tsudik, and Christopher A Wood. Network names in
content-centric networking. In Proceedings of the 2016 conference on
3rd ACM Conference on Information-Centric Networking, pages 132–
141. ACM, 2016.

[3] CNN. Latest nsa leaks point finger at high-tech eavesdropping hub in
uk, 2013. http://www.cnn.com/2013/12/20/world/europe/nsa-leaks-uk/.

[4] Stephen Farrell and Hannes Tschofenig. Pervasive monitoring is an
attack. 2014.

[5] Andrea Bittau, Michael Hamburg, Mark Handley, David Mazieres, and
Dan Boneh. The case for ubiquitous transport-level encryption. In
USENIX Security Symposium, pages 403–418, 2010.

[6] Andrea Bittau, Michael Hamburg, Mark Handley, David Mazieres, and
Dan Boneh. Simple opportunistic encryption. 2014.

[7] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin,
and Nikita Somaiya. Connection-oriented dns to improve privacy and
security (extended). USC/Information Sciences Institute, Tech. Rep. ISI-
TR-2015-695, Feb, 2015.

[8] Christian Tschudin and Christopher Wood. File-Like ICN Collection
(FLIC). Internet-Draft draft-tschudin-icnrg-flic-01, Internet Engineering
Task Force, July 2016. Work in Progress.

[9] Cesar Ghali, Marc A Schlosberg, Gene Tsudik, and Christopher A
Wood. Interest-based access control for content centric networks. In
Proceedings of the 2nd International Conference on Information-Centric
Networking, pages 147–156. ACM, 2015.

[10] Diana K. Smetters, Philippe Golle, and J. D. Thornton. CCNx access
control specifications. Technical report, PARC, July 2010.

[11] CCNx. http://ccnx.org/.
[12] Satyajayant Misra, Reza Tourani, and Nahid Ebrahimi Majd. Secure

content delivery in information-centric networks: Design, implementa-
tion, and analyses. In Proc. ACM SIGCOMM ICN 2013, pages 73–78,
August 2013.

[13] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant
broadcast encryption with short ciphertexts and private keys. In Proc.
CRYPTO 2005, pages 1–19, August 2005.

[14] Wen-Guey Tzeng and Zhi-Jia Tzeng. A public-key traitor tracing scheme
with revocation using dynamic shares. In Proc. PKC 2001, pages 207–
224, February 2001.

[15] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In
Proc. FC 2000, pages 1–20, February 2000.

[16] Mihaela Ion, Janqing Zhang, and Eve M. Schooler. Toward content-
centric privacy in ICN: Attribute-based encryption and routing. In Proc.
ACM SIGCOMM ICN 2013, pages 39–40, August 2013.

[17] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy
attribute-based encryption. In Proc. IEEE S&P 2007, pages 321–334,
May 2007.

[18] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In
Proc. ACM CCS 2006, pages 89–98, October–November 2006.

[19] Christopher A. Wood and Ersin Uzun. Flexible end-to-end content
security in CCN. In Proc. IEEE CCNC 2014, January 2014.

[20] Jun Kurihara, Christopher Wood, and Ersin Uzuin. An encryption-based
access control framework for content-centric networking. IFIP, 2015.

[21] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. Name-based access
control. Relatório Técnico TR NDN-0034, University of California, Los
Angeles, Los Angeles, 2015.

[22] Peter Gusev and Jeff Burke. Ndn-rtc: Real-time videoconferencing
over named data networking. In Proceedings of the 2nd International
Conference on Information-Centric Networking, pages 117–126. ACM,
2015.

[23] Cesar Ghali, Gene Tsudik, and Christopher A Wood. (the futility of)
data privacy in content-centric networking. In Proceedings of the 2016
ACM on Workshop on Privacy in the Electronic Society, pages 143–152.
ACM, 2016.

[24] Tim Dierks. The transport layer security (tls) protocol version 1.2. 2008.
[25] Colin Percival. Stronger key derivation via sequential memory-hard

functions. Self-published, pages 1–16, 2009.
[26] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-

locked encryption and secure deduplication. In Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 296–312. Springer, 2013.

[27] Hugo Krawczyk and Pasi Eronen. Hmac-based extract-and-expand key
derivation function (hkdf). Technical report, 2010.

[28] Daniel J Bernstein. Dnscurve: Usable security for dns, 2009.
[29] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp

Jovanovic. Nonce-disrespecting adversaries: Practical forgery attacks on
gcm in tls. 2016.

[30] Priya Mahadevan, Ersin Uzun, Spencer Sevilla, and JJ Garcia-Luna-
Aceves. Ccn-krs: a key resolution service for ccn. In Proceedings
of the 1st international conference on Information-centric networking,
pages 97–106. ACM, 2014.

[31] Christopher Wood, Ersin Uzun, and marc.mosko@parc.com. CCNx
Key Exchange Protocol Version 1.0. Internet-Draft draft-wood-icnrg-
ccnxkeyexchange-01, Internet Engineering Task Force, October 2016.
Work in Progress.

[32] Benny Pinkas and Tomas Sander. Securing passwords against dictionary
attacks. In Proceedings of the 9th ACM conference on Computer and
communications security, pages 161–170. ACM, 2002.

[33] CCNx distillery. https://github.com/parc/CCNx Distillery. Accessed:
May 14, 2016.

[34] The content name collection. http://www.icn-names.net/. Accessed:
April 8, 2016.

[35] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF
Protocols. RFC 7539, October 2015.

[36] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: new
generation of memory-hard functions for password hashing and other
applications. In 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 292–302. IEEE, 2016.

[37] TRAPS performance evaluation code. https://github.com/chris-wood/
tsec-performance.

[38] Netflix. Internet Connection Speed Recommendations. https://help.
netflix.com/en/node/306.

[39] Somaya Arianfar, Teemu Koponen, Barath Raghavan, and Scott Shenker.
On preserving privacy in content-oriented networks. In Proceedings
of the ACM SIGCOMM workshop on Information-centric networking,
pages 19–24. ACM, 2011.

[40] Steven DiBenedetto, Paolo Gasti, Gene Tsudik, and Ersin Uzun. An-
dana: Anonymous named data networking application. arXiv preprint
arXiv:1112.2205, 2011.

[41] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. In Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, SSYM’04, pages 21–21,
Berkeley, CA, USA, 2004. USENIX Association.

[42] Stephen Kent and Randall Atkinson. Security architecture for the
internet protocol, 1998.

