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Abstract—Power optimization for data center networks (DCNs)
has recently received increasing research attention, since a DCN
can account for up to 20% of the total power consumption of
a data center. An effective power-saving approach for DCNs is
traffic consolidation, which consolidates traffic flows onto a small
set of links and switches such that unused network devices can
be shut down for power savings. While this approach has shown
great promise, existing solutions are mostly centralized and do
not scale well for large-scale DCNs.

In this paper, we propose DISCO, a DIStributed traffic flow
COnsolidation framework, with correlation analysis and delay
constraints, for large-scale power efficient data center network.
DISCO features two distributed traffic consolidation algorithms
that provide different trade-offs (as desired by different DCN
architectures) between scalability, power savings, and network
performance. First, a flow-based algorithm is proposed to conduct
consolidation for each flow individually, with greatly improved
scalability. Second, an even more scalable switch-based algorithm
is proposed to consolidate flows on each individual switch in
a distributed fashion. We evaluate the DISCO algorithms both
on a hardware testbed and in large-scale simulations with real
DCN traces. The results show that, compared with state-of-the-
art centralized solutions, DISCO can achieve nearly the same
power savings with more than three orders of magnitude smaller
problem size for individual optimizers (104 to 106 times faster
for a DCN at the scale of 10K servers). The convergence of
DISCO is also proved theoretically and evaluated experimentally.

I. INTRODUCTION

The large amount of power consumption of Internet data

centers has become a serious concern in the last decade.

Many recent studies have shown that there are typically three

major power consumers in a data center: servers, cooling

systems, and the data center network (DCN) [1][2]. As the

power efficiency of data center cooling has been significantly

improved in recent years (e.g., by using cold river water for

cooling [3]), power consumptions by servers and the DCN are

expected to be more dominant in the near future. Compared to

the large body of existing research on power-efficient computer

servers, power optimization for DCNs, which account for up

to 20% of the total power consumption of a data center [2][4],

has started to receive increasing attention [4][5].

Among the recent studies of DCN power optimization

strategies, one of the most effective approaches is based on

the idea termed dynamic traffic consolidation [4][6], which

consolidates traffic flows onto a small set of links and switches,

such that unused network devices can be dynamically shut

down for power savings and woken up later if the workload

increases. Traffic consolidation is based on the key observation
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that DCNs are commonly provisioned for the worst-case

workloads that rarely occur. As a result, a DCN can often

be underutilized, leading to excessive power consumption.

Similar to server consolidation [7], DCN traffic consolidation

can also achieve a significant amount of power savings because

the idle power (power consumption without workload) of a

typical network switch is much higher than its dynamic power

(power consumption corresponding to the workload) [4][6].

While traffic consolidation has shown great promise, ex-

isting solutions are mostly centralized and do not scale well

for large-scale DCNs. For example, ElasticTree [4] employs

a centralized optimization framework, where all links and

switches in the DCN are considered by a single centralized

optimizer for consolidation. Likewise, CARPO [6] adopts a

centralized analysis process to identify the correlation among

traffic flows, such that different flows can be better con-

solidated if they do not peak at exactly the same time. A

fundamental limitation of these centralized schemes is that

their computational complexities increase dramatically with

the DCN size. As shown in Table I, it could take more than

three to five hours to finish one round of consolidation for a

normal-size DCN with 10K servers. Hence, the performance

of these existing schemes become unacceptable in DCNs with

hundreds of thousands of servers. As a result, highly scalable

traffic consolidation algorithms are much needed for future

DCNs whose sizes are expected to grow rapidly [8][5].
TABLE I: Computation time1at different DCN scales

Algorithms 1K servers DCN 10K servers DCN 100K servers DCN

ElasticTree 7.2 min 230.4 min 13,286.0 min

CARPO 8.5 min 304.3 min 15,703.3 min

However, there are two major challenges in designing

scalable traffic consolidation schemes. First, when decompos-

ing the global DCN power optimization problem into sets

of smaller optimization sub-problems, great care should be

taken for the trade-off between scalability and consolidation

performances, i.e., how to efficiently decompose and design

the optimizers for sub-problems such that the resulting power

savings can be close to that of a centralized scheme, while

the desired scalability could be achieved. Second, there are

various types of DCN architectures [5] that may require

different decomposition schemes. For example, DCNs can be

categorized as hierarchical ones (e.g., fat-tree [9], VL2 [8], and

BCube [10]) and non-hierarchical ones (e.g., QFabric [11] and

FBFLY [12]). In fat-tree (e.g., Figure 4), a typical hierarchical

DCN, switches are organized at three levels: core, aggregation,

and edge. This leads to the straightforward idea to decompose

1Based on our lab server (CPU: Intel Dual Core 3.3GHz; RAM: 4GB).ISBN 978-3-901882-94-4 c© 2017 IFIP



the global problem according to switch levels. However, this

strategy is not applicable for other DCN architectures without

such a well-established hierarchy. Therefore, how to design

efficient decomposition schemes that are suitable for different

DCN architectures is non-trivial and remains an open problem.

In this paper, we propose DISCO, a DIStributed power

optimization framework based on traffic COnsolidation for

large-scale DCNs. Similar to existing works [7][6], DISCO

also leverages traffic correlation analysis to significantly re-

duce the DCN power consumption. However, in contrast to

previous centralized solutions, DISCO features two scalable

traffic consolidation algorithms that provide different trade-

offs (as desired by different DCN demands) between scala-

bility, power savings, and network performance. First, a flow-

based algorithm (DISCO-F) is proposed to conduct consolida-

tion for each flow individually for better scalability. Second,

an even more scalable switch-based algorithm (DISCO-S) is

proposed to consolidate flows on each individual switch in

a distributed fashion with more aggressive power savings.

In addition, since the network delay performance has been

identified as an important metric in current DCN services [13],

delay constraints are included in the traffic consolidation to

enforce the network performance of DISCO. Specifically, the

major contributions of this paper are:

• We propose the framework of DISCO with two variants

and analytically compare them against the state-of-the-art

centralized solutions. Results show that DISCO can lead

to more than three orders of magnitude smaller problem

size for individual optimizers. We also discuss the trade-

offs and applicable DCN scenarios of each algorithm.

• We enforce network delay constraints into the traffic

consolidation of DISCO. It significantly improves the

DCN delay performance, compared to previous schemes

that ignored this important metric.

• We evaluate DISCO both on a hardware testbed and

in large-scale simulations with real DCN traces. Our

results show that DISCO can have nearly the same power

savings and network delay performance, compared with

the centralized solution.

• We theoretically prove that the distributed designs of

DISCO converge to a stable state in polynomial time.

Experimental results also demonstrate that DISCO has a

short convergence time.

In the rest of the paper: Section II discusses the related work.

Section III provides the background of correlation analysis.

Section IV introduces the design of the proposed DISCO

algorithms. Section V presents the baselines for comparison.

Section VI analyzes the convergence of DISCO. Section VII

presents the evaluation with the experiment results. Section

VIII concludes the paper.

II. RELATED WORK

There are several existing approaches designed for DCN

power optimization [4][6][14]. One approach is link adaptation

[15], which dynamically adjusts the speed of each switch link

according to flow bandwidth requirements to save port power.

Another more efficient approach is traffic consolidation, which

consolidates traffic flows onto a small set of links and switches,

such that unused network devices can be dynamically shut

down for power savings [4][6][16]. We note, however, that

these existing works are centralized schemes, which require

global information and do not scale well (i.e., high compu-

tational complexity and large control overhead) as the DCN

size increases.

On the other hand, scalability of DCN management has also

been studied, but mainly on network performance manage-

ment rather than power efficiency [17][18][19]. For example,

DARD [17] and DiFS [18] propose distributed adaptive routing

methods to achieve load balancing by moving elephant flows

from overloaded paths to underloaded paths. One related DCN

power optimization work is HERO [20], which uses a hierar-

chical scheme to reduce problem size for individual optimizer.

However, HERO is still partly centralized and designed for

certain hierarchical DCNs only. In contrast, DISCO algorithms

are fully distributed with better scalability, and they are not

dependent on any specific type of DCN topology. In addition,

DISCO utilizes the correlation-aware consolidation, which has

been proven to provide much better power savings [7][6].

III. BACKGROUND ON CORRELATION ANALYSIS

We now briefly introduce the concept of correlation-aware

traffic consolidation. It was first proposed by [7] and has been

shown to provide over 20% more power savings [6] than

traditional method like ElasticTree [4], which will serve as

the foundation of our DISCO power optimization design.
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Fig. 1: Correlation-aware consolidation of two example flows leads
to lower capacity requirement and so better consolidation (the dashed
line is the aggregated load). (a) Positively correlated, with variation
magnified in the aggregation. (b) Negatively correlated, with variation
canceled in the aggregation.

Figure 1 compares two traffic consolidation examples: pos-

itively correlated flows and negatively correlated flows. The

flows are normalized to the link capacity. In Figure 1(a), the

more positively two traces are correlated, the more likely they

will have their peak/valley values appear at the same time,

such that their sum (the dashed line) will have magnified

variation. In the example, the total load of the two consolidated

flows exceeds the link capacity. In contrast, for two non-

positively correlated traces, (e.g., f1 and f3 in Figure 1(b)),

their sum will have less variation, thus requiring less capacity

for consolidation. The correlation degree can be quantified by

the Pearson Correlation Coefficient [6].

In a correlation-aware consolidation approach, different

DCN flows are consolidated based on their non-peak values

and correlation relationship. This is based on the observations

that: 1) most of the time, the load of a DCN flow is much

lower than its peak value [21][22], and 2) most of the loads
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Fig. 2: The DISCO framework includes two distributed consolidation
algorithms that are designed for different DCN architectures and
can be selected based on the different trade-offs between scalability,
power savings, and delay performance: (a) the flow-based DISCO-F;
(b) the switch-based DISCO-S.

of different traffic flows are weakly correlated, which means

they do not always peak at the same time [6].

Based on these two observations, a correlation-aware solu-

tion consolidates different traffic flows using their non-peak

workloads, under the constraint that the correlations between

these traffic flows are below a certain threshold (to avoid posi-

tive correlation). This approach has been demonstrated to yield

more power savings [6][7]. Different from previous work that

focus mostly on centralized correlation-aware traffic or server

consolidation, in this paper, our DISCO algorithms decompose

correlation analysis into localized power optimizers for highly

scalable traffic consolidation in large-scale DCNs.

IV. DESIGN OF DISCO
In this section, we first introduce the DISCO optimization

framework that includes two distributed traffic consolidation

algorithms, DISCO-F and DISCO-S. We then explain the two

algorithms in detail with illustrative examples.

A. The DISCO Framework
Traditional centralized traffic consolidation algorithms usu-

ally start with the analysis of traffic information of the entire

DCN, including the bandwidth requirements of the flows and

the link conditions. They then periodically route the flows to

share the same paths under the link capacity constraints so

that only a small set of switches and links are needed, and the

unused devices can be dynamically put to sleep to save power

(and woken up later when the workload increases). But in a

large-scale DCN, both the amount of traffic information and

the consolidation computation increase dramatically with the

DCN size, which makes the centralized algorithms infeasible.

Therefore, the computational problem size needs to be reduced

by decomposing the centralized problem into a set of smaller

optimization sub-problems for scalability. Since the traffic

consolidation problem is known to be NP-hard [6][23], we

developed the feasible approximation algorithm DISCO with

strong performance guarantee.

Before diving into details, we first provide an overview of

the two proposed algorithms. As the framework illustrates in

Figure 2, both DISCO algorithms share the same general pro-

cesses of correlation analysis and traffic consolidation, which

are performed periodically to adapt the traffic variations. Dif-

ferent from traditional methods, DISCO further incorporates

the network delay constraints during the traffic consolidation to

improve the delay performance. In addition, even the traffics

have unpredictable changes, DISCO algorithms are adaptive

to flow path adjustments. Between the two algorithms, the

operator can choose the desired one based on the specific DCN

architecture and desired trade-offs between scalability, power

savings, and network delay performance.

Enforced delay constraints: DISCO incorporates the de-

lay constraints during the traffic consolidation based on

the DCTCP protocol [24]. DCTCP leverages the Explicit

Congestion Notification (ECN) function by setting a clear

queuing packet number notification threshold K, and can

provide more fair bandwidth sharing and less queuing delay.

It is proved that the steady-state queue-length is at most as

QMAX=K+Ns*Ws [24], where Ns is the number of flows,

Ws=(C*RTT+K)/Ns is the window size of the short flow

in one round trip time (RTT) under link capacity C. Then

following the same model in [25], the total flow completion

time (FCT) for a flow with Ls packets can be estimated as

FCT=Ls/Ws*(RTT+Dq+
∑n

i=1 Di), where Dq=QMAX /C is

the maximum queuing delay; Di is the packet processing

delay of switch i along the flow path; n is the number of

switches on the path. Therefore, during the traffic consolida-

tion, DISCO can estimate the FCTj for a flow fj based on

the existing flows and switch number n on a candidate path,

and only chooses the path satisfied the delay constraint as

FCTj ≤ Dreq , where Dreq is the delay requirement.

Flow-based: To overcome the limitations of centralized

algorithms and design a practical decomposition strategy, we

first identify the general common features of DCN structures.

For all DCN architectures including both hierarchical ones or

non-hierarchical ones, since all flows in a DCN start from a

server, it is intuitive to decompose the consolidation problem at

the flow level. One feasible method is let each source server to

manage the paths of the flows starting from it. To be specific,

each flow can have an optimizer on its source server to conduct

consolidation only for this flow, such that the problem size is

reduced to the length of the flow path (i.e., the number of

switches this flow passes through). Hence, each optimizer can

make decision independently with much reduced problem size,

which is more scalable and does not depend on any particular

type of DCN topology. We name this algorithm DISCO-F.

As a distributed algorithm, DISCO-F also has some limita-

tions: Due to the lack of global information, the consolidation

decision of each flow is local-optimal in general. As a result,

DISCO-F may provide less power savings than the centralized

solutions. On the other hand, since each optimizer still needs

the knowledge of all the switches on the flow path, the problem

size of solution search space dependents on the length of the

path. This problem size could still be high in a large-scale

DCN that has many long-path flows.

Switch-based: To further reduce the problem size and

achieve better power savings, we propose an even more scal-

able switch-based algorithm DISCO-S. In this algorithm, each

switch has a distributed optimizer running on its processor

to consolidate only the flows that pass through. Therefore, in
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Fig. 3: The algorithm flow chart of algorithm DISCO-F.

DISCO-S, the problem size of each optimizer is even lower

than that of DISCO-F. Moreover, we design DISCO-S to

conduct traffic consolidation aggressively, for more possible

power savings. In addition, DISCO-S also does not depend on

any particular type of DCN structures.

Note that, since each switch optimizer only has local

information, DISCO-S may also yield sub-optimal solutions.

Moreover, different distributed optimizers may have conflicts

in decision making, thus globally there could be more path

adjustments due to congestion. Therefore, compared with

DISCO-F, the trade-offs for DISCO-S are potentially more

network delay and a longer convergence time.

Generally, DISCO-F can be used for large-scale DCNs

with relatively short flow paths or with more stringent delay

requirements. DISCO-S is more suitable for very large-scale

DCNs, where scalability is more important (e.g., when there

is a significantly large number of flows that even number

of DISCO-F controllers becomes a bottleneck) and a certain

degree of network delays can be tolerated.

DISCO Implementation: For DISCO-F, the flow optimizer

can be implemented on its source server. For DISCO-S, the

optimizer can run on the processor of each switch. Moreover,

current software defined network (SDN) switches (e.g., Open-

Flow based) already offer the traffic forwarding table man-

agement with remote on-server controller, which can control

groups of switches at the same time. Note that even most

of current Open-Flow systems work in a centralized scheme,

we propose to utilize Open-Flow technology distributively

to address the scalability issue. Currently, some Open-Flow

based systems are already developed in a distributed manner

by having multiple controllers for different switch groups

[26][27], which shows the feasibility of this direction. In

addition, the Open-Flow switch can also provide functions

for per-flow/per-port statistics, which enable the large-scale

implementation of the DISCO algorithms.

B. DISCO-F: Flow-based Algorithm
DISCO-F includes two parts as shown in Figure 3.

1) Initial Flow Consolidation. In DISCO-F, each flow

optimizer begin with the search of the available flow path sets

for each fi, denoted as {Pathfi(m)} (1�m�Pi), where Pi

is the number of available paths for flow fi. Similar to [4][6],

only paths without loops are considered. In each period, the

flow-level optimizer shares its flow bandwidth requirements
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Fig. 4: Example of DISCO-F on a 4-pod fat-tree topology. (a) First
step: Each flow is individually consolidated to the leftmost side of
the network for power-saving in a distributed way. Congestion occurs
on the dash-circled switches. (b) Second step: With the congestion
notification from switches c1, a3 and a5, flow f4 (with a lower
priority) adjusts its path from c1 to c2 to relieve the congestion.

with other optimizers in the same pod, and conducts the local

correlation analysis of the neighboring flows. Here, we define

neighboring flows as the flows originating from the same

server or the other servers in the same pod, who have higher

chances to share the same links. Based on this analysis, each

optimizer knows the correlations among the neighboring flows

and the non-peak (e.g., 90-percentile) bandwidth requirement

of each fi. To avoid the redundant computations within the

neighborhood, this correlation analysis can be done on one

single optimizer (e.g., the leftmost one in the neighborhood),

then send the result to other neighbor optimizers. Then,

each optimizer tries to assign fi to an available path in

{Pathfi(m)} according to the lexicographic order (i.e., from

the path with smaller index in a general DCN topology)

to save power. Here we define the consolidation constraints
as follows: 1) the bandwidth requirements of fi should be

smaller than the remaining capacity of the candidate link, 2)

the correlation coefficient between fi and any flow on the

candidate link should be lower than the threshold, and 3) the

estimated delay should be smaller than the delay constraint. If

there is any constraint violation, the optimizer will try the next

path in order. However, since different optimizers choose paths

independently, there may be transient network congestion on

some links. Therefore, these congested path settings need to

be adjusted in the second step.

Meanwhile, we assume there is a priority order of the DCN

traffic flows, which can be based on different service types,

importance, or bandwidth requirements [28][6]. This priority

order will be used in the processes of path adjustment.

2) Flow Path Adjustment. For all Q switches, each switch

SWj inspects the rate of each passing flow and the utiliza-

tion of its links. When congestion occurs, SWj identifies

related flows starting from the lowest-priority to resolve the

congestion condition, by notifying the corresponding flow

optimizers for path adjustments. This process keeps running

until the congestion is resolved or all the options are tried.
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Fig. 5: Example of DISCO-S on a 2-pod fat-tree topology. (a) First step: all switches try to use the leftmost side of the topology distributively.
Congestion occurs on some switches (in red dash circle). (b) Second step: congested switches do path adjustments beginning from flows
with lower priorities. Paths of f2 and f4 are adjusted. However new congestion occur on switches a2, c1 and a4. (c) Third step: because f2
and f4 cause congestion, switches a2, c1 and a4 adjust the path of f4 (with a lower priority). Then the congestion is relieved.

The convergence of this process will be proved in Section VI.

After all flow paths are settled, each unused switch puts

itself to sleep, until the beginning of the next period. In

the implementation, this decision is made after the global

convergence time (details in Section VI).

Example: Figure 4 shows a 4-pod fat-tree with four flows

(without loss of generality, we assume that f1 to f4 with the

decreasing priority). It illustrates an example that uses two

periods to converge to a stable state that has no congestion.

First, the flow optimizers on the leftmost source servers in

pod (i.e. S1, S5) perform local correlation analysis among

neighboring flows, and calculates the percentile bandwidth

requirement value of each flow (normalized percentile band-

width are marked in the parentheses in Figure 4). For example,

for f1, only f2 is its neighboring flow, so S1 will only calculate

the correlation coefficient between f1 and f2, then send result

to S3. Similarly, S5 will perform correlation analysis between

the neighboring flows f3 and f4, and send result to S7. In

this example, only f1 and f4 are positively correlated, which

violates the correlation threshold. Then, all flow optimizers

begin the distributed consolidation by choosing the available

leftmost paths for their flows. However, the result (Figure

4(a)) shows congestions occur on switches c1, a3 and a5 (in

red-dashed circle) due to the lack of knowledge of the other

flow paths. Then, the congested switches check the passing

flows (f1 to f4 here) and find that f4 has the lowest priority.

Thus, the congestion can be resolved by removing f4 from the

congested links. In the second step (Figure 4(b)), the optimizer

of f4 on S7 updates its path to the next leftmost path, which

resolves the congestion.

C. DISCO-S: Switch-based Algorithm
DISCO-S is also a fully distributed algorithm, in which

every switch performs traffic consolidation individually. As

shown in Figure 6, the switch optimizer on SWj starts the

correlation analysis only among the flows that pass itself.

Since flow paths without loops can be calculated and stored

in the forward table of each switch in advance, only links on

these paths are considered. Usually, there are multiple avail-

able forwarding links for each flow based on its destination,

SWj performs traffic consolidation by choosing links in the

lexicographic order. When all passing flows fij are settled, if

SWj is unused, it will be put into sleep until the beginning

of the next period. Similar to DISCO-F, this decision is made

after the global convergence time (Section VI). Note that, due

to the local correlation analysis and limited path information,
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Fig. 6: The algorithm flow chart of the algorithm DISCO-S.

each switch can only choose the flow path according to its

own knowledge. Thus, switches may aggressively consolidate

flows to some shared paths, which leads to fewer usage of

switches/links, but causes new congestion and requires further

adjustments. Hence, DISCO-S may have more power savings

but with relatively longer adjustment time.

Example: Figure 5 shows an example that uses three steps

to converge to a stable state that has no congestion. First, all

switches try to use the leftmost links for their flows. This

aggressive step causes congestion on all the switches with

flows (in dashed red circle) in Figure 5(a). In the second step

(Figure 5(b)), each switch finds the congested links with the

related flows, then starts to change the paths from the flow with

the lowest priority. For switch e1, the congested link between

e1 and a1 involves flows f1 and f2. Since f2 has a lower

priority, e1 only forwards f2 to a2. Similarly, for switch e2,

congestion involves f3 and f4. So e2 updates the path of f4
(lower priority) to a2. Note that the adjustments could lead

to new congestion due to the distributed nature. For example,

when e1 forwards f2 to the a2, and e2 also forwards f4 to

a2, new congestion occurs on switch a2, c1 and a4 in Figure

5(b). In the third step, switches run another round of path

adjustments. Similar to the previous step, the congested switch

a2 compares the priority of related flows f2 and f4. Since f4
has a lower priority, a2 changes its forward path from c1 to

c2. The final paths of all flows are shown in Figure 5(c).

V. BASELINE DESIGNS

In this section, we introduce the baselines that are used in

this paper for performance comparison.

A. Centralized baselines
ElasticTree [4] is a state-of-the-art DCN power optimiza-

tion scheme. We use its heuristic version which periodically
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consolidates flows based on their peak workloads with a

centralized controller.

CARPO [6] is another centralized scheme for DCN power

optimization, which consolidates traffic flows with low correla-

tions together based on their 90-percentile bandwidth demands

to achieve better power savings.

Optimal is the optimal solution derived by the exhaustive

search approach from the same consolidation model [6] with

the delay constraint. Due to its high computational complexity,

Optimal is only evaluated in the small-scale experiments.

B. Hier-CA

We also designed a hierarchical baseline called Hier-CA

(Hierarchical algorithm with Correlation Analysis). It decom-

poses the computation to different levels of DCNs. However,

Hier-CA is not fully distributed and can only be applied to

DCNs with a clear hierarchical topologies.

Design: Hier-CA begins with an initialization by ordering

priority of the M flows. It then applies the consolidation by

different levels. In the core-level, the optimizer periodically

conducts global correlation analysis of all flows, and applies

traffic consolidation by trying to set every flow to the path

links between the core switches and the pods following the

lexicographic order. After that, each optimizer in {Podp}
conducts pod-level consolidation in parallel for the Mp flows

passing through, trying to use the leftmost available switches

and links in pod under the consolidation constraints. Then,

unused links and switches are put into the sleep mode to save

power until the beginning of the next period.

Example: Figure 7 shows an example (f1 to f4 with

decreasing priority). First, the core-level optimizer collects the

flows information (e.g., f1 is from S1 with Pod1 to S5 with

Pod2) and conducts the correlation analysis for every flow

pairs. In the example, only f1 and f4 are positively correlated.

Then the core-level begins the consolidation (Figure 7(a))

based on the consolidation constraints: f1, f2 are set to core

switch c1, then due to capacity limit, f3 is set to c2. Since f4
and f1 have correlation violation, f4 is set to c2. Secondly,

Pod1 and Pod2 begin the pod-level consolidation in parallel.

In Figure 7(b), under the constraints, the optimizer of Pod1
sets all the flows to switch a1. Thus, when all the flows are

settled, the unused switch a2 can be put to sleep to save

power. At the same time, the Pod2 optimizer independently

consolidates its flows.
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Fig. 8: Comparison of (a) Size of solution search space and (b)
Communication overhead (both in logarithmic scale on Y axis) of
each optimizer in all algorithms at different data center scale.

TABLE II: Size of solution search space

CARPO / ElasticTree Hier-CA DISCO-F DISCO-S

General Case O(Mk4)
O(Mk2

+MPmaxk)
O(k4) O(M)

Simple Case O(k7) O(k5) O(k4) O(k3)

VI. THEORETICAL ANALYSIS

In this section, we first analyze the size of solution search

space and communication overhead of the two DISCO algo-

rithms. Then, we prove the convergence of DISCO algorithms.

A. Search Space and Communication Overhead
The size of solution search space of each optimizer directly

determines the time complexity of an algorithm and impacts its

scalability [26][27]. Meanwhile, the communication overhead

incurred by the optimizers (e.g., to collect and exchange infor-

mation) is also an importance factor for scalability [17][18].

Thus, we analyze and compare these two metrics of a single

optimizer used in each algorithm. We define the following

notation under the fat-tree topology: k is the scale degree

of a fat-tree; N is the number of servers; Q is the number

of switches; M is the number of flows; MPmax is the max

number of flows in a pod.

Solution Search Space Analysis: Consider a k-pod fat-

tree DCN with Q=5k2/4 switches and N=k3/4 servers. For

illustration, we first assume a simple network setup as follows:

1) there is one traffic flow between a pair of servers, and

2) each server connects with one flow. Then, the total flow

number M is N /2=k3/8. Note that, for general DCNs with

multiple flows between a pair of servers, by simply adjusting

the value of M accordingly, the analysis can still hold.

Centralized CARPO and ElasticTree decide the paths of all

the M flows. For each flow, they need to consider both k/2

aggregation switches in the source/destination pods, and the

k2/4 core switches, which leads to a combination of up to

k4/16 conditions. Thus, the solution search space is O(Mk4)
= O(k7). In Hier-CA, for each flow, the core-level optimizer

only decides the core switches to use, with a search space

of O(Mk2). The pod level optimizer decides the local flow

paths with a search space of O(MPmaxk/2) (MPmax�k2/4

in the example case). Therefore, the problem size of Hier-

CA is O(Mk2)+O(MPmaxk/2)=O(k5). In DISCO-F, each

flow-based optimizer searches all possible switch conditions

but only for one flow. So its solution search space is O(k4).
In DISCO-S, the solution search space of each switch-level

optimizer depends on the number of passing flows, which is

O(M)=O(k3).
Table II summarizes the sizes of solution search space

of different algorithms. Compared with CARPO, DISCO-F

successfully reduces the solution search space by at least three
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Fig. 9: CDF of (a) Adjustment rounds, and (b) Convergence time,
for all the optimizers (512 in DISCO-F and 320 in DISCO-S) in
1024-server simulation.

orders of magnitude of k. As shown with the log scale in

Figure 8(a), the difference can lead to as much as 104 to 105

times less computation overhead for a DCN at the scale of

10,000 servers. DISCO-S further reduce this overhead to 106

times less.

Communication Overhead Analysis: In order to manage

the network, each DISCO optimizer (on host server or switch)

needs to communicate with involved switches, which generates

non-negligible communication overhead in a large-scale DCN.

Consider the example k-pod fat-tree topology. CARPO or

ElasticTree needs to manage all M flows and Q switches,

thus both having communication overhead of M∗Q=O(Mk2).
For Hier-CA, the overhead depends on the flows and switches

number at the core and pod level, plus the flow information

shared between them, which is O(Mk). For DISCO-F, when

the flow optimizer sets the path for a flow, its communication

overhead depends on the number of switches on a flow path,

which is upper bounded by Q. Moreover, when congestion

occurs, the optimizer will be notified about the related flow

condition for path adjustment, which is upper bounded by

O(M). Thus, its total overhead is O(M+Q). For DISCO-

S, each switch optimizer only collects the local information,

which depends on the number of flows passing through itself.

Hence, its overhead is O(M).
The communication overheads of all algorithms are sum-

marized in Table III. Figure 8(b) also shows the overhead

at different DCN scales. Note that, in DCNs where servers

are connected with multiple flows, the above analysis is still

applicable, and can be extended by adjusting the flow number

M . Generally, the two variants of DISCO optimizers have

significantly lower overhead than CARPO/ElasticTree.

B. Convergence Analysis
Due to the distributed designs, both DISCO-F and DISCO-

S may have transient flow congestions (or delay constraint

violations), and need path adjustment for multiple rounds.

Hence, it is important to ensure that the DCN system can

converge to a stable state, i.e., the DISCO algorithms can

stop flow path adjustment within a finite number of iterations.

We define the convergence time as the time interval from the

time point when the algorithms start to make adjustments

to the point when the system reaches the stable state. To

facilitate the convergence analysis, we assume that the traffic

workload is quasi-stationary in our time-scale of interest (i.e.,

the bandwidth requirement of each flow is approximately

constant within each period). This is consistent with the

observation made for adopting the percentile value for the

correlation analysis in Section III.

Theoretically, we also model and prove the convergence

TABLE III: Communication overhead comparison

CARPO / ElasticTree Hier-CA DISCO-F DISCO-S

General Case O(Mk2) O(Mk) O(M+Q) O(M)

Simple Case O(k5) O(k4) O(k3) O(k3)

feature of both DISCO-F and DISCO-S for general DCN

topologies. Due to space limits, only the analysis of DISCO-F

is shown here. The full proof for all algorithms are presented

in our technical report [29].

Analysis of DISCO-F. When SWx detects congestion on any

incident link l(x, y) among all the Mx passing flows {fi},

DISCO-F optimizer removes flows starting from the lowest

priority, i.e., i = Mx, Mx-1, Mx-2, ..., until l(x, y) is not

congested or all path options have been tested.

In the initialization stage, all DISCO-F optimizers allocate

each fi to its first path Pathfi(1). When fi needs to adjust

its path, the optimizer moves it from Pathfi(m) to the next

Pathfi(m+1), unless Pathfi(m) is already the last available

path (m=Pi). Under this process, we have the following result:

Proposition 1. The congestion adjustment of DISCO-F

terminates in polynomial time.

Proof: Consider the worst case with the largest possible

amount of adjustments, where all the M flows have conges-

tion, and each fi needs to test the largest possible rounds on

its available paths. Without loss of generality, we assume that

flows are sorted in a decreasing order of priority.

In the initial state, each fi uses its first path Pathfi(1)
∈ {Pathfi(m)}, 1�m�Pi. Since only a finite number of

flows with lower priorities need to be adjusted, after the

first round, at least f1 will settle its path as Pathf1(1), and

all the other fi (2�i�M ) are adjusted to their next paths

Pathfi(2). Similarly, in the second round, f2 will be settled

to Pathf2(2), and the rest M -2 flows are moved to their next

paths. Therefore, in the ith round, only remained M -i flows

need further adjustments with reduced search space of Pi-i
path choices. Since the workload of each flow is considered

quasi-stationary within a period, once the paths of flows with

higher priorities are settled, they do not need to be changed

in this period.

Thus, in the worst case, each optimizer will stop after

at most M rounds and become stable. After all optimizers

terminate adjustment, which is reachable as shown above, the

whole system becomes stable. For DISCO-F, the global search

space of the path options to be tested is upper bounded by

O(M ·{Pi}MAX). As a special case, for the k-pod fat-tree

topology, Pi�(k/2)2. So the total global search space of path

options for DISCO-F is upper bounded by O(Mk2).

Therefore, for DISCO-F, in each round there will be fewer

flows to be adjusted, and the remaining path set search space

is also reduced. Thus, DISCO-F will terminate within a finite

number of rounds. This completes the proof.

Figure 9(a) compares the Cumulative Distribution Function

(CDF) of the number of rounds for convergence of each

optimizer in the 1024-server simulation (setting details in

Section VII-A). In DISCO-F, about 90% of the flows finish

the adjustment within 3 rounds, while in DISCO-S, it needs

7 rounds to settle 90% of switches.

Convergence speed is another important performance metric



for distributed algorithms. As the experiment result of DCN

with 1024 servers (setting details in Section VII-A) shown in

Figure 9(b), 90% of the flows in DISCO-F can converge within

20 seconds. The convergence time of DISCO-S is longer: 90%

of the switches finish adjustments within about 33 seconds.

Compared to the 10-minute period adopted by the correlation

analysis design, the convergence time-scale of DISCO is

sufficiently small. Note that, based on the observation in

correlation analysis (Section III) the flow conditions are stable

within each period, which is consistent with previous work

[4][6]. However, if flows are shorter/longer in other scenarios,

the algorithm period can be adjusted according to the specific

cases, while the convergence of algorithms should still hold.

VII. EXPERIMENT EVALUATION

In this section, we evaluate DISCO in terms of power

savings and network performance (i.e., packet transmission

delay) on a hardware testbed and in large-scale simulation.

A. Experiment Setup
For the experiments, we use real DCN traffic traces from

Wikipedia [21] and Yahoo! DCP [22] data centers. There are

61 trace files from the 7-day Wikipedia DCN traces, each of

which has a data granularity of one sample per second. The

Yahoo! DCP traces are of 24 hours and have 70 traces with

the same sampling granularity.

Testbed Setup: We set up the hardware testbed with one 48-

port Open-Flow-enabled Pica8 3290 switch (shown in Figure

10), and six servers. To build a 2-pod fat-tree network topol-

ogy, we configure the switch into 10 four-port virtual switches.

The Open-Flow switch is connected to an independent control

server. To test the baseline CARPO, we follow the setup in

[6] to implement its centralized optimizer on the control server

to conduct correlation-aware traffic consolidation. For DISCO,

both the two algorithms have multiple sub-problem optimizers

that can be deployed in a distributed way on selected switches

or servers and run simultaneously in the DCN implementation.

Since we have only one physical Open-Flow switch in our

evaluation, we have to simplify the implementation to run

all the sub-problem optimizers on one control server, but

still in parallel. Note that DISCO can be easily implemented

and extended to multiple distributed Open-Flow controllers at

larger DCN scales. As the DISCO implementation discussed

in Section IV, there are already multiple systems [27] [26]

developed based on Open-Flow in the distributed manner,

which shows the feasibility. The switch power is measured

with the WattsUp power meter (accuracy: 0.1W, 1sps).

In the first set of hardware experiments, we use the 7-

day Wikipedia traces as the network workloads. We randomly

choose three traffic flows from the 61 Wikipedia trace files,

and assign them to the three pairs of servers. In the second

set of hardware experiments, we evaluate all the algorithms

using the Yahoo! DCN traces, which on average have heavier

loads than the Wikipedia traces. Since the Yahoo! traces only

last for 24 hours, we randomly choose three sets, each with

three traffic flows from the 70 Yahoo! traces, and assign them

to the three pairs of servers. For a fair comparison, in all ex-

periments, we use the same 10-minute operation period and a

Fig. 10: Hardware testbed with 10 virtual switches (VSs) configured
with a production Pica8 48-port Open-Flow switch. The VSs are
numbered in the same way as in Figure 7.

correlation threshold of 0.3 as used by CARPO [6]. The delay

constraints are usually related to specific service requirements

and DCN condition. According to the test measurement, we set

RTT=100 μs and the delay requirement as Dreq=30 ms for the

flow with a length of 100 packets (on average 300 μs/packet),

which is similar to [24][25]. When applying DISCO to other

DCN scenarios, these parameters (e.g., period, threshold) can

be adjusted according to specific requirements.

Simulation Setup: To investigate the performance of

DISCO in large-scale DCNs, we conduct the simulations with

a packet-level simulator OPNET 16.1. Due to the significant

amount of simulation time when the problem size increases,

we only simulate a 16-pod fat-tree topology (with 1024 servers

and 320 switches). For the Wikipedia flows, we duplicate 8

sets of the 61 traces and randomly choose another 24 traces,

then randomly assigned to the 512 pairs of servers.

B. Hardware Testbed Results
Power Savings: The hardware results are shown in Figure

11 (a) and (b), respectively. In the two experiments, the

power savings of CARPO (34.6% and 34.2%) and Hier-CA

(34.5% and 34.2%) are nearly the same, which are better than

those of ElasticTree (28.4% and 28.8%) due to correlation-

aware consolidation. However, all of them do not have delay

consideration. The power savings of DISCO-F (33.1% and

31.6%) and DISCO-S (34.0% and 32.7%) enforce the delay

constraints with the tradeoff as less power savings. However,

they are only 0.9% to 2.1% less than Optimal (34.9% and

34.6%), but with much lower computation overhead.

Delay Performance: Figure 12(a) shows the average traffic

delays with the Wikipedia traces. Optimal has the shortest de-

lay (252.2μs). The correlation-unaware ElasticTree (263.3μs)

using peak flow demands is the second best. Then DISCO-F

(264.3μs) and DISCO-S (270.6μs) with the delay constraints

are closely behind, which is even better than the centralized

algorithms CARPO (275.6μs) and Hier-CA (276.3μs). Similar

results appear in Figure 12(b) with Yahoo! traces. Note that

CARPO and Hier-CA have average delays over the 300 μs
requirement, but both DISCO methods have better chances to

meet the delay constraints.

These results show that, in the small-scale testbed experi-

ments, DISCO-F and DISCO-S can achieve slightly less or

nearly the same power savings, but improved delays per-

formance than the centralized CARPO and the hierarchical

method Hier-CA, while most importantly being much more

scalable as shown in Section VI-A.

C. Simulation Results
Power Savings: Figure 13(a) shows the power-saving re-

sults on the 16-pod fat-tree simulation with 1024 servers and

320 switches. Both CARPO and Hier-CA use 144.6 switches

on average, with the power savings as much as 46.8%, which

is 8.9% more than that of ElasticTree. Due to the lack of
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testbed experiments with Wikipedia
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Fig. 13: Simulation with the 1024-server topol-
ogy: (a) Power savings. (b) Average packet de-
lay variation. DISCO-S aggressively saves more
power but has the trade-off of longer delay.

global information in the path optimization as well as the

delay constraints, DISCO-F and DISCO-S use more switches

on average (152.1 and 146.8, respectively), but with only 1.6-

2.9% less power savings than CARPO and Hier-CA.

Delay Performance: The simulation results in Figure 13(b)

show the average package delays of different algorithms in the

7-day simulation. During the whole experiment, ElasticTree

has the shortest delay by using peak values in the consoli-

dation. Then it is followed by DISCO-F and DISCO-S with

the delay constraints. In contrast, CARPO and Hier-CA have

much longer delay, especially under heavy traffic (e.g., at 60,

80, 135 and 150 hours). Note that even all methods have long

delay on the last day, delays of both DISCO algorithms are

shorter, and recover sooner than other methods.

VIII. CONCLUSION

In this paper, we have presented DISCO, a highly scal-

able power optimization framework for large-scale DCNs,

which does not depend on specific DCN architectures. DISCO

features two distributed traffic consolidation algorithms, i.e.,

flow-based DISCO-F and switch-based DISCO-S, that provide

trade-offs between scalability, power savings, and network

delay performance. DISCO algorithms are evaluated on a

hardware testbed as well as in large-scale simulations with real

DCN traces from Wikipedia and Yahoo! DCNs. The results

show that DISCO significantly reduces the solution search

space by more than three orders of magnitude, while achieving

nearly the same power savings and improved network delays,

compared to the state-of-the-art centralized solutions.
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