
Greedy Caching: A Latency-aware Caching Strategy
for Information-centric Networks

1Bitan Banerjee, 2Anand Seetharam, 1Chintha Tellambura
1Department of Electrical and Computer Engineering, University of Alberta, Canada

2Computer Science Department, SUNY Binghamton, USA
bitan@ualberta.ca, aseethar@binghamton.edu, chintha@ece.ualberta.ca

Abstract—Most caching strategies in information-centric net-
works (ICN) primarily focus on pushing popular content to the
network edge. As such, these approaches make limited use of
caches in the network core, reduce cache utilization due to content
duplication and provide limited performance improvement. In
this paper, we propose Greedy Caching to determine the set of
content to be cached at each network node. Greedy Caching starts
by caching the most popular content, calculated based on the total
incoming request stream from users, at the network edge. The
algorithm then recalculates the relative popularity of each piece
of content based on the request miss stream from downstream
nodes to determine the set of content to be cached in the network
core. We perform exhaustive simulation in the Icarus simulator
[1] using realistic Internet topologies (e.g., GARR, GEANT, and
WIDE) and demonstrate that Greedy Caching provides significant
improvement in content download delay (referred to as latency)
over state-of-the-art routing and caching strategies for ICN for a
wide range of simulation parameters. Simulation results suggest
an improvement of 5-28% in latency and 15-50% improvement
in hit rate over state-of-the-art policies.

Index Terms—Greedy algorithm, caching, information-centric
networking, latency, hit rate, hop count.

I. INTRODUCTION

The explosive increase in content in recent years has lead to
the proposal of a new Internet architecture called information-
centric networking (ICN) which aims to evolve the current
Internet from a host-centric model to a content-centric one.
By caching content at storage-enabled network nodes, requests
for content can be served from the content custodians (origin
servers), as well as from intermediate caches. With the primary
emphasis being content, if a cache enroute to the custodian has
the requested content, the content will be returned to the user
from the cache itself, thereby improving user performance.
Serving a request from an intermediate cache has several
benefits such as reduced content download delay, increased
throughput and decreased network congestion.

Video delivery companies (e.g., YouTube , Netflix) already
use simple forms of popularity based in-network caching in
today’s Internet to improve user performance. These video
delivery applications primarily determine the popularity of
multimedia content based on parameters such as release date,
viewership of past series of a show and push popular con-
tent to the network edge [2], [3]. In recent years, caching
policies proposed for ICN have also identified that caching
popular content within the network is essential to improve the

performance [4]. However, existing policies focus mainly on
the network edge and fail to effectively leverage caches in
the network core [5]. In ICN, deployment of network-wide
caches is likely to be expensive. Therefore, it is important to
design efficient caching and routing policies that maximize
cache utilization, both at the network edge and in the network
core and minimize unnecessary content duplication. While it
is tempting to think that determining what content to cache
at a node only requires local information, content cached
at downstream nodes drastically impacts the request stream
seen by upstream caches and may ultimately reduce network-
wide cache utilization. We use the words cache and node
interchangeably in this paper.

To this end, in this paper, we propose Greedy Caching, a
simple caching policy that determines the optimized set of
content to be cached at each network node based on the relative
content popularity, with the goal of reducing content download
delay (referred to as latency). Greedy Caching estimates the
relative content popularity at each node based on the request
stream from directly connected users as well as the request
miss stream from downstream nodes and then uses a greedy
algorithm to determine the content to be cached. The difficulty
of the problem stems from the fact that different pairs of
network nodes can forward requests to one another, resulting in
interdependencies, and cycles in the underlying graph, thereby
making it difficult to estimate the relative content popularity.

The main contributions of this paper are given below.
• We assume that the network has an underlying routing

policy for forwarding requests for content towards the
custodian. We propose Greedy Caching, a caching policy
that greedily caches the most popular content at each
cache based on their relative content popularity. To es-
timate relative content popularity, Greedy Caching first
leverages routes provided by the routing algorithm to
create a directed acyclic graph (DAG). For the single
custodian case, DAG construction is relatively straightfor-
ward. However, for the multiple custodian case, simply
combining the routes provided by the routing algorithm
results in a cyclical graph, due to node pairs sending
traffic to one another. Greedy Caching therefore uses the
feedback arc set algorithm to prune this cyclical graph
and construct a DAG. Greedy Caching then combines the
request stream from users with the constructed DAG to
determine the set of content to be cached at each networkISBN 978-3-901882-94-4 © 2017 IFIP

node, starting from the network edge and ending at the
custodians.

• We perform extensive simulations in Icarus [1], a simu-
lator built exclusively for implementing and testing new
ICN routing and caching policies to demonstrate the effi-
cacy of Greedy Caching. We compare the performance of
Greedy Caching against state-of-the-art caching and rout-
ing policies, Leave Copy Everywhere (LCE) [6], Leave
Copy Down (LCD) [7], Cache Less for More (CL4M) [8],
ProbCache [9], and Random Caching (Random) [10] on
real world internet topologies (e.g., GARR, GEANT, and
WIDE) [11]. We study the impact of various simulation
parameters (e.g., cache size, content-universe, content
popularity skewness) on the performance of Greedy
Caching and demonstrate that it provides approximately
5-28% improvement in latency and 15-50% improvement
in hit rate over state-of-the-art strategies.

The rest of the paper is organized as follows. We discuss
related work in Section II. We describe the problem and the
proposed Greedy Caching algorithm in Section III. Experi-
mental results are presented in Section IV and we conclude
the paper in Section V.

II. RELATED WORK

Caching strategies have been proposed in literature, both in
the context of Content Delivery Networks (CDN) as well as
ICN. In this section, we mainly focus on existing literature
in ICN and demonstrate how Greedy Caching differs from
prior work. Some of the most widely accepted caching policies
are LCD [7], CL4M [8], and ProbCache . All these caching
policies aim to reduce cache redundancy by caching content
based on parameters such as content popularity, connectivity
of nodes. A modified version of LCD with chunk caching and
searching (CLS) is proposed in [12], where a piece of content
is cached one level downstream or upstream depending on
whether a request is a cache hit or a cache miss. Similarly,
a modified version of ProbCache, namely ProbCache+ [13]
incorporates a new variable called cache weight to enforce
fairness between content.

PopCache [14] primarily uses content popularity to deter-
mine whether to cache a particular content or not. Authors in
[15] propose a caching strategy ProbPD, where the dynamic
popularity of a content determines its caching probability. This
dynamic popularity is calculated by incorporating the distance
of a cache from a user, and incoming content request for
a certain time interval. In MPC [16], authors dynamically
calculate content popularity locally at each cache by maintain-
ing a popularity table. Topology dependent caching strategies
have also been proposed in literature. Authors in [17] develop
a caching strategy called Progressive Caching Policy (PCP),
where content is cached at the node one hop downstream
of the serving node and another intermediate node that has
number of incoming links greater than a threshold. Wang et al.
propose CRCache [18], a caching strategy based on correlation
between content popularity and network topology information.
Hop-based Probabilistic Caching (HPC) [19] probabilistically

caches content depending on the distance between the user
and the cache.

Badov et al. propose a caching strategy to avoid congested
links by caching content at the edge of congested link. A
cooperative caching strategy, where off-path caching is ex-
plored by controlling the routing algorithm is proposed in [20].
Authors in [21] develop a hash function based joint routing
and caching strategy, that helps i) caches decide whether or
not to cache a particular content and, ii) routers route requests
to relevant caches. Similarly, authors in [22] propose CPHR, a
collaborative caching strategy which also uses hash functions.
Each content is partitioned according to the hash function and
these partitions are then assigned to network caches. Hash
function based strategies generally require centralized control
which results in high overhead. To overcome the shortfalls of
centralized control, distributed cache management (DCM) [23]
was proposed to improve cache utilization by sharing holistic
information about request patterns and cache configuration.
In our earlier work, we proposed a routing algorithm that
leverages characteristic time information to forward content
requests [24].

In contrast to existing literature, we propose a caching
policy that adopts a locally optimal approach at each node
to determine the set of content to be cached at each network
node. Greedy Caching caches content at each node based on
relative content popularity, which is calculated based on the
request miss stream from downstream nodes. This approach
not only maximizes hit rate at each network node, but it also
increases cache utilization by reducing content duplication. We
note that greedy algorithms for replica management in CDNs
have been proposed in literature [25]–[27]. However, these
papers assume that the incoming request rate at each cache is
available, and thereafter, develop a greedy algorithm subject
to several parameters such as cache size, distance from users,
and access cost and do not consider the request miss streams
from downstream nodes.

III. GREEDY CACHING ALGORITHM

A. Network Model

Let us consider an ICN which is represented by an undi-
rected graph G(V,E), where V consists of all the nodes
in the network including the users, caches and custodians
and E consists of the set of interconnected links. We con-
sider U = {U1, U2,UN}, R = {R1, R2,RM} and
C = {C1, C2,CL} to denote the set of users, caches and
custodians respectively. Therefore, the network comprises of
N users, M caches and L custodians. We assume that each
cache has the same amount of finite storage, C.

We assume that content universe F = {f1, f2, ..., fK} is
uniformly distributed among the custodians. Each piece of
content is available at only one custodian and is permanently
stored there. We assume content popularity follows a certain
probability distribution (e.g., Zipf). We assume that user
Ui generates request at rate Λi = {λi1,λi2,λiK}. We
assume that these requests are forwarded towards the custodian
depending on the underlying routing strategy (e.g., Dijkstra’s

shortest path routing). We abuse notation and let Λi also denote
the outgoing request rate at any intermediate network node i
(apart from the users). The incoming request rate at node i is
denoted by Λ�

i. Note that Λi and Λ�
i can differ due to caching

at node i.
Let Pij(Vij , Eij) denote the shortest path from Ui to the

Cj with Vij denoting the set of nodes on that path and Eij

denoting the set of directed edges tracing the path from Ui to
the Cj . Additionally, for all edges eij ∈ Eij connecting nodes
i and j, an indicator variable, Ikij is set to 1 if eij lies on the
shortest path for content k, otherwise it is set to 0. We assume
that the shortest path algorithm returns Pij(Vij , Eij) and also
sets Ikij . Note that each request can traverses multiple caches
enroute to the custodian. If a cache enroute to the custodian
has the requested content it serves the content, otherwise the
content is served by the custodian.

B. Motivating Example

Our goal in this paper is to propose a caching policy that
decreases latency. We attempt to maximize the hit rate at each
network node and eliminate unnecessary content duplication.
We propose Greedy Caching, an optimized caching policy
for ICN, that first estimates the relative content popularity at
each node based on the request miss stream from downstream
nodes. Greedy Caching then employs a simple greedy algo-
rithm that caches the most popular content at each node based
on the relative content popularity at that node.

To motivate the need for Greedy Caching and to illustrate
the importance of relative popularity, let us consider a simple
example. We consider a network of 3 users (U1, U2, U3), 2
caches (R1, R2), and one custodian (C1) as shown in Figure
1(a). Let us assume that the delay on each link is 1 second. We
consider that there are only two unique pieces of content A
and B, with probability of requesting content A and B being
0.6 and 0.4 respectively. We assume that R1 and R2 can cache
only one piece of content and all users generate requests at
same rate λ.

If content is cached based on absolute popularity, then this
will result in content A being cached at both R1 and R2.
At first glance, this appears to be a good idea, but if one
considers the miss request stream from R1 to R2 (which is
0.8λ for content B), it is easy to understand that it is better
to cache content A at R1 and content B at R2. In fact, for
this simple network this is the optimal caching policy. Caching
content A at R1 and content B at R2 decreases overall content
download delay to 1.47 seconds in comparison to 1.67 seconds
when content A is cached at both R1 and R2. Details of the
Greedy Caching algorithm, which leverages this concept of
relative content popularity are discussed next.

C. Greedy Caching

From our discussion in the previous subsection, it is evident
that estimating the relative content popularity lies at the heart
of Greedy Caching. At the highest level, the Greedy Caching
algorithm starts by caching the most popular content at the
network edge and then iteratively determines the content to

be cached at the nodes in the network core by estimating
the relative popularity. This iterative process stops when all
network nodes have been visited. We first discuss Greedy
Caching for the relatively simple scenario of an ICN with
a single custodian and then move on to the more challenging
multiple custodian case. Estimating the relative content popu-
larity, especially for the multiple custodian case is non-trivial
because of the interdependencies arising from pairs of network
nodes forwarding requests to one another.

1) Single Custodian: To determine the relative content
popularity with respect to a cache, Greedy Caching first
combines the routes provided by the underlying shortest path
routing algorithm for all users to generate a directed acyclic
graph (DAG) Ψ(V �, E�), where V � and E� are the number of
vertices and edges in the DAG respectively. As there is only
a single custodian in the network, it is easy to observe that
combining these paths will result in a DAG. This is because
if a node (say R1) forwards requests through a node (say R2)
towards the custodian, R2 lies on the shortest path from R1

to the custodian. Therefore, R2 cannot route the requests it
receives through R1. For each node i in Ψ, let N�

i denote the
set of neighbors from which there is an incoming edge to i.

Greedy Caching then performs a topological sort on
Ψ(V �, E�) to determine Θ, an ordering of the vertices in Ψ.
Let Θi denote the ith vertex in Θ. For a DAG, topological sort
provides a linear ordering of the vertices such that for every
directed edge from vertex u to vertex v, u comes before v in
the ordering. It is evident that the the users and the custodian
will be first and last nodes in this topological ordering. Greedy
Caching then visits the nodes in order.

Greedy Caching then caches the set of content with the
highest incoming request rate (i.e., the content with the highest
relative popularity). Note that nodes at the network edge will
only have incoming edges from the users and thus will be
the first group of nodes visited by the algorithm. Therefore,
the Greedy Caching algorithm will cache the C most popular
content at each edge node. Now, these nodes at the network
edge will only forward requests for uncached content along
their outgoing edges as determined by the routing algorithm.
As a result, any node v, which appears in the topological
ordering after the edge nodes will take into account the request
stream from directly connected users and the request miss
stream from nodes that appear earlier than it in the ordering
to calculate the relative popularity. Node v will thus cache
the C most popular content based on the calculated relative
content popularity. Details of the Greedy Caching algorithm
for a single custodian are provided in Algorithm 1.

Let us now revisit Figure 1(a) and see how Greedy Caching
ends up caching content A at R1 and content B at R2. For this
network, the DAG obtained by combining the shortest paths
will be similar to the network itself and is given in Figure
1(b). The topological sort is given by U1, U2, U3, R1, R2, C1.
Therefore, the algorithm visits R1 first and caches A. Ac-
counting for the miss stream from R1 to R2 and the request
stream from U3, it is easy to see that Greedy Caching will
cache content B at R2.

R1

R2

U2

C1

U1

U3

λ λ

λ

(a) Considered network

R1

R2

U2

C1

U1

U3

(b) Resulting DAG

Fig. 1: Greedy Caching illustration for single custodian

Algorithm 1 Greedy caching for single custodian

1: Input network G(V,E)
2: for Ui ∈ U do
3: Pi1(Vi1, Ei1) = ShortestPath(Ui,C1)
4: end for
5: Ψ(V �, E�) =

N�
i=1

Pi1(Vi1, Ei1)

6: Θ = TopologicalSort Ψ(V �, E�)
7: procedure GREEDY CACHING(Θ, R)
8: for i = 1, i ≤ |V �|, i++ do
9: r = Θi

10: if r ∈ R then
11: for each content k do
12: λ�

rk =
�

j∈N�
r
Ikjrλjk

13: end for
14: Λ�

rsort : Sort Λ�
r in descending order

15: Cache top C content in Λ�
rsort

16: for each content k cached at r do
17: λrk = 0
18: end for
19: end if
20: end for
21: end procedure

2) Multiple Custodian: The multiple custodian scenario
is more challenging, primarily due to the fact that simply
combining the shortest paths from the users in the network
may result in a cyclic graph (G�), as shown in Algorithm 2.
Let us consider Figure 2(a) to understand this. In this network,
there are two users U1 and U2, two caches R1 and R2 and
two custodians C1 and C2. Let us assume that one half of
the content universe F1 is available at C1 and the other half
F2 is available at C2. As is evident from the figure, R1 with
forward requests for content in F2 from U1 to R2 and R2 will
forward requests for content in F1 from U2 to R1. Combining
the shortest paths will result in a cyclic graph as shown in
Figure 2(b).

R1 R2 U2

C1 C2

U1
λ λ

(a) Considered network

R1 R2 U2

C1 C2

U1

(b) Cyclic graph

R1 R2 U2

C1 C2

U1

(c) Resulting DAG

Fig. 2: Greedy Caching illustration for multiple custodian

Greedy Caching attempts to eliminate this problem by lever-
aging the feedback arc set algorithm [28], [29] that provides
the set of edges to be removed from the cyclic graph G� to
create a DAG Ψ(V �, E�). Therefore, applying the feedback arc
set algorithm to Figure 2(b) will result in Figure 2(c). Note
that in order to create a DAG from a cyclic graph, Greedy
Caching leverages the feedback arc set algorithm that removes
edges to eliminate cycles. This is clearly an approximation and
thus Greedy Caching is a heuristic and can only provide an
optimized solution. However, we will observe in Section IV,
Greedy Caching outperforms state-of-the-art algorithms in real
world settings. Figure 2(c) demonstrates DAG construction for
the multiple custodian network given by Figure 2(a). Once the
DAG is constructed, the relative content popularity at each
node is determined in a manner similar to Algorithm 1.

Algorithm 2 Greedy caching for multiple custodian

1: Input network G
2: for Ui ∈ U do
3: for Cj ∈ C do
4: Pij(Vij , Eij) = ShortestPath(Ui,Cj)
5: end for
6: end for
7: G� =

N�
i=1

L�
j=1

Pij(Vij , Eij)

8: Apply feedback arc set over G� to generate Ψ(V �, E�)
9: Θ = TopologicalSort Ψ(V �, E�)

10: procedure GREEDY CACHING(Θ, R)
11: end procedure

IV. PERFORMANCE EVALUATION

In this section, we first describe the experimental setup and
then present simulation results. We compare the performance
of Greedy Caching against state-of-the-art caching and routing
policies, namely Leave Copy Everywhere (LCE), Leave Copy
Down (LCD), Cache Less for More (CL4M), ProbCache, and
Random Caching (Random). These strategies are explained
below.

50 100 150 200 250
Cache Size

55

60

65

70

75

80
La

te
nc

y
(m

s)
Greedy
LCD
ProbCache
CL4M
LCE
Random

(a) α = 0.6

50 100 150 200 250
Cache Size

45

50

55

60

65

70

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(b) α = 0.8

50 100 150 200 250
Cache Size

25

30

35

40

45

50

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(c) α = 1.1

Fig. 3: Latency performance of Greedy Caching for GARR with single custodian

50 100 150 200 250
Cache Size

65

70

75

80

85

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(a) α = 0.6

50 100 150 200 250
Cache Size

50

55

60

65

70

75

80
La

te
nc

y
(m

s)
Greedy
LCD
ProbCache
CL4M
LCE
Random

(b) α = 0.8

50 100 150 200 250
Cache Size

30

35

40

45

50

55

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(c) α = 1.1

Fig. 4: Latency performance of Greedy Caching for GARR with 2 custodians

50 100 150 200 250
Cache Size

100

105

110

115

120

125

130

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(a) α = 0.6

50 100 150 200 250
Cache Size

85

90

95

100

105

110

115

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(b) α = 0.8

50 100 150 200 250
Cache Size

55

60

65

70

75

80

85

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(c) α = 1.1

Fig. 5: Latency performance of Greedy Caching for GARR with 5 custodians

• LCE: In this strawman approach, content is cached at
every node along the path as it is being downloaded [6].

• LCD: In this policy whenever there is a cache hit, the
content is replicated at the cache which is one hop
downstream towards the requester [7].

• CL4M: This policy leverages the concept of betweenness
centrality (i.e., the number of shortest paths traversing a
cache) to make caching decisions [8]. This policy caches
content at nodes with the greatest betweenness centrality,
so as to maximize the probability of a cache hit.

• ProbCache: This policy reduces cache content redun-
dancy [9] by probabilistically caching content at enroute
caches.

• Random: In this caching strategy [10], content is cached

at any one of the downstream node, and the node is
selected randomly. Hence, the probability of caching
content at any downstream node is inversely proportion
to the path length. In the simulator, we use different seed
values to select the node for caching.

We assume that the network uses Dijkstra’s weighted
shortest path routing to route content requests to custodians,
where weights corresponds to the delay on links. If content
is found at a cache enroute to a custodian, then it is served
from that cache. We perform simulations on a discrete event
based simulator Icarus [1], a simulator designed exclusively
for ICN research. The simulator consists of four building
blocks, scenario generation, experiment orchestration, exper-
iment execution, and result collection. Each content request

20K 30K 40K 50K 100K
Content universe

54

56

58

60

62

64

66

68
La

te
nc

y
(m

s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(a) Single custodian

20K 30K 40K 50K 100K
Content Universe

60

62

64

66

68

70

72

74

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(b) Custodian = 2

20K 30K 40K 50K 100K
Content universe

95

100

105

110

115

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(c) Custodian = 5

Fig. 6: Latency performance for GARR topology for varying content universe

is considered as an event, and whenever an event occurs, a
corresponding timestamp is stored. The result collection block
gathers the results of the simulation. In Icarus, latency is
calculated as the sum of delays on each link, traversed during
content download.

We perform extensive experiments on various real world
networks namely GARR (Italian computer network), GEANT
(European academic network), and WIDE (Japanese academic
network). GARR is the Italian national computer network
for universities with 61 nodes and 89 edges. GEANT is an
academic network spread around the world consisting of 40
nodes and 61 edges. The WIDE topology is the first network
established in Japan and consists of 30 nodes and 33 edges.
To avoid cluttering the paper with figures of similar nature,
unless mentioned otherwise, all results shown in this paper
are for the GARR topology.

In our simulations, prior to evaluation, all caches are
warmed up. Except for large content universe, caches are
always warmed up with 100000 requests and the subsequent
100000 requests are used for performance evaluation. We
assume that the probability of requesting a content follows
a Zipfian distribution with skewness parameter α. Nodes with
the highest degree (i.e., number of connected links) are consid-
ered as custodians, and in case multiple nodes have the same
degree, custodians are selected randomly among them. For
the multiple custodian case, content is uniformly distributed
between the custodians and each content is permanently stored
at only one of the custodians. Nodes with degree of 1 are
selected as the users. Unless otherwise mentioned, all results
are generated for the following simulation configuration; con-
tent universe F = 10000, cache size of each node is varied
between 50 − 250, and content popularity skewness (α) is
varied between 0.6− 1.1. Results in the figures are averaged
over 5 runs of the experiment. We would like to mention that
minimum feedback arc set algorithm is NP-complete. Hence,
we consider an implementation of feedback arc set using the
heuristic proposed in [29]. This implementation is suboptimal
but effective from time complexity standpoint.

We consider various performance metrics such as latency,
hit rate, and average hop count to demonstrate the superiority
of Greedy Caching. In our results, performance improvement

of using strategy A over strategy B is calculated by taking
the percentage of the difference between the two strategies
divided by the performance of strategy B. Our experiments
demonstrate that Greedy Caching outperforms state-of-the-art
strategies for a wide range of simulation parameters.

A. Discussion on latency performance

In this section, we discuss the latency performance of
Greedy Caching for single custodian and multiple custodian
cases for variety of different settings.

1) Performance for GARR: Figure 3 demonstrates the la-
tency results for the different policies for GARR for the single
custodian case while figures 4 and 5 show the latency results
for the 2-custodian and 5-custodian scenarios for different
α values (0.6, 0.8, 1.1). We observe from the figures that
Greedy Caching outperforms state-of-the-art strategies by 7-
22 % for a wide range of cache sizes. The primary reason
behind the superior performance of Greedy Caching is better
cache utilization, especially in the network core. An interesting
point to note is that the overall latency increases for all
strategies for the multiple custodian scenario. We observe
from our simulations that for the multiple custodian case, the
custodians are further away from the users on average when
compared to the single custodian case, with some shortest
paths from users to a custodian traversing through another
custodian. Internally in the simulator, links connected directly
to a custodian have higher delay in comparison to the other
links, thereby increasing the overall latency. This assumption
is realistic, as higher incoming traffic at the custodian can
result in additional congestion and queuing delay. We also
demonstrate in Section IV-B, that the overall hit rate reduces
for multiple custodian network.

2) Performance for varying content universe: We study the
impact of varying content universe on the performance of
Greedy Caching for GARR (Figure 6). Results are generated
for fixed content-to-cache ratio of 0.005, i.e., size of each
cache is 0.5% of the content universe. Content universe is
varied from 20000 to 100000. Our results suggest that Greedy
Caching outperforms other strategies for large content universe
as well. We observe from Figure 6 that latency decreases
as content universe increases. As the absolute cache size
increases with content universe (the content-to-cache ratio is

50 100 150 200 250
Cache Size

40

45

50

55

60

65

70

75
La

te
nc

y
(m

s)
Greedy
LCD
ProbCache
CL4M
LCE
Random

(a) Single custodian

50 100 150 200 250
Cache Size

45

50

55

60

65

70

75

80

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(b) Custodian = 2

50 100 150 200 250
Cache Size

75

80

85

90

95

100

105

110

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(c) Custodian = 5

Fig. 7: Latency performance of Greedy Caching for GEANT

50 100 150 200 250
Cache Size

45

50

55

60

65

70

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(a) Single custodian

50 100 150 200 250
Cache Size

70

75

80

85
La

te
nc

y
(m

s)
Greedy
LCD
ProbCache
CL4M
LCE
Random

(b) Custodian = 2

50 100 150 200 250
Cache Size

110

115

120

125

130

135

140

La
te

nc
y

(m
s)

Greedy
LCD
ProbCache
CL4M
LCE
Random

(c) Custodian = 5

Fig. 8: Latency performance of Greedy Caching for WIDE

fixed), popular content is readily available in caches leading
to increased cache utilization. As the primary purpose of
Figure 6 is to demonstrate the scalability of our algorithm,
the horizontal axis in Figure 6 is not plotted in linear scale to
preserve the aesthetics of the figure. These results demonstrate
that Greedy Caching is efficient and can work with large
catalogue sizes.

3) Performance for other topologies: Results for GEANT
and WIDE topologies are shown in Figures 7 and 8 re-
spectively for α = 0.8. From the results we conclude that
Greedy Caching performs best among the existing strategies.
For both GEANT and WIDE, we make observations similar
to the GARR topology. In general, we observe a) an overall
increase in latency with increasing number of custodians and
b) decrease in latency for greater cache size and higher values
of content popularity skewness.

From our simulations, we observe that the performance
improvement for Greedy Caching varies between 9-25%, 10-
28% and 5-20% for GARR, GEANT and WIDE respectively.
We notice that Greedy Caching gives better performance for
GARR and GEANT compared to WIDE. Primary reason
behind this improved performance is that for WIDE, the edge
to node ratio (1.1) is significantly lower in comparison to
GEANT (1.46) and GARR (1.52). It means that multiple
paths are not available to reach a node from a randomly
selected user in the multiple custodian scenario. We observe
from the simulations that in case of WIDE with multiple
custodians, most paths to a custodian are via another custodian,

as alternate paths are not available. This scenario reduces
cache hit significantly and decreases the performance gains.

B. Discussion on cache hit rate

In addition to latency, hit rate is an important performance
measure in ICN. If a request is served by a network cache,
it is referred to as a hit and if it served by the custodian it
is referred to as a miss. Therefore, higher hit rate suggests
that more content requests are served from network caches,
thereby reducing load on the custodians. Hit rate can therefore
be considered as a measure for both traffic offloading and
cache utilization. Figures 9 and 10 show the hit rate for two
different cache sizes 50 and 150 respectively for fixed α = 0.8,
for single and multiple custodian scenarios. Each sub-figure
in Figures 9 and 10 comprises of three topologies (GARR,
GEANT, and WIDE). From the figures we observe that Greedy
Caching improves hit rate by 15−50%. This can primarily be
attributed to the intelligent content placement strategy adopted
by Greedy Caching where every node caches content based on
the total number of requests it receives from it downstream
nodes.

We also observe that hit rate performance of Greedy
Caching degrades with increasing number of custodians. This
performance degradation can be attributed to the removal of
edges by the feedback arc set algorithm to break cycles for
DAG construction. Moreover, we also observe that hit rate
increases with cache size and content popularity skewness.
Greater cache size provides an increased opportunity to cache

GARR GEANT WIDE
0

0.05

0.1

0.15

0.2

0.25

0.3
H

it
ra

te
 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(a) Single custodian

GARR GEANT WIDE
0

0.05

0.1

0.15

0.2

0.25

0.3

H
it

ra
te

 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(b) Custodian = 2

GARR GEANT WIDE
0

0.05

0.1

0.15

0.2

0.25

0.3

H
it

ra
te

 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(c) Custodian = 5

Fig. 9: Hit rate performance of Greedy Caching for α = 0.8, C = 50

GARR GEANT WIDE
0

0.1

0.2

0.3

0.4

0.5

H
it

ra
te

 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(a) Single custodian

GARR GEANT WIDE
0

0.1

0.2

0.3

0.4

0.5
H

it
ra

te
 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(b) Custodian = 2

GARR GEANT WIDE
0

0.1

0.2

0.3

0.4

0.5

H
it

ra
te

 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(c) Custodian = 5

Fig. 10: Hit rate performance of Greedy Caching for α = 0.8, C = 150

GARR GEANT WIDE
2

2.5

3

3.5

4

4.5

5

5.5

A
v
er

ag
e

h
o
p
 c

o
u
n
t

 Greedy

 LCD

 ProbCache

 CL4M

 Random

 LCE

(a) Single custodian

GARR GEANT WIDE
2

2.5

3

3.5

4

4.5

5

5.5

A
ve

ra
ge

 h
op

 c
ou

nt

 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(b) Custodian = 2

GARR GEANT WIDE
2

2.5

3

3.5

4

4.5

5

5.5

A
ve

ra
ge

 h
op

 c
ou

nt
 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(c) Custodian = 5

Fig. 11: Average hop count performance of Greedy Caching for α = 0.8, C = 50

GARR GEANT WIDE
2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 h
op

 c
ou

nt

 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(a) Single custodian

GARR GEANT WIDE
2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 h
op

 c
ou

nt

 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(b) Custodian = 2

GARR GEANT WIDE
2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 h
op

 c
ou

nt

 Greedy
 LCD
 ProbCache
 CL4M
 Random
 LCE

(c) Custodian = 5

Fig. 12: Average hop count performance of Greedy Caching for α = 0.8, C = 150

popular content, while higher value of the skewness parameter
results in popular content being requested most of the time.

C. Discussion on average hop count

Although hit rate provides an indication of the percentage of
requests served from within the network, average hop count
provides a measure of how far a request needs to travel to
be satisfied. Figures 11 and 12 show the average hop count
results for single and multiple custodian cases. As expected,
we observe that Greedy Caching has the least average hop
count. As Greedy Caching focuses on the miss stream from
downstream nodes to calculate the relative popularity of con-
tent at each cache, it makes superior caching decisions at both
the network edge and the network core, thereby leading to
better overall performance.

We also perform simulations for different values of content
request rate, and observe that request rate does not have a
significant impact on latency. This result is expected and
can be attributed to the design of the Icarus simulator. The
simulator treats arrivals as an independent request stream and
does not take into account increased network delays (due to
congestion) because of increased arrival rates.

V. CONCLUSION

In this paper, we proposed Greedy Caching, a caching policy
for ICN that works with any underlying routing algorithm
and determines the content to be cached at each network
node. Greedy Caching adopts a greedy approach that considers
the request miss stream from downstream caches to make
caching decisions at upstream caches. Therefore, the algorithm
attempts to maximize the hit rate at each individual cache.
Via extensive simulations, we showed that Greedy Caching
significantly outperforms state-of-the-art caching and routing
strategies. In future, we would like to extend this work to
determine the optimal caching strategy for ICN.

REFERENCES

[1] L. Saino, I. Psaras, and G. Pavlou, “Icarus: a caching simulator for
information centric networking (ICN),” in SimuTools, 2014, pp. 66–75.

[2] W. Hoiles, O. N. Gharehshiran, V. Krishnamurthy, and N. Dào, “Adap-
tive Caching in the YouTube Content Distribution Network: A Revealed
Preference Game-Theoretic Learning Approach,” IEEE Transactions on
Cognitive Communications and Networking, vol. 1, no. 1, pp. 71 – 85,
Oct. 2015.

[3] “Netflix open connect.” [Online]. Available:
https://openconnect.netflix.com/en/

[4] M. Zhang, H. Luo, and H. Zhang, “A Survey of Caching Mechanisms
in Information-Centric Networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, pp. 1473 – 1499, 2015.

[5] A. Dabirmoghaddam, B. Mirzazad-Barijough, and J. J. Garcia-Luna-
Aceves, “Understanding Optimal Caching and Opportunistic Caching at
The Edge of Information-Centric Networks,” in ACM ICN, 2014, pp.
47–56.

[6] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for hierar-
chical web caches,” in IEEE International Conference on Performance,
Computing, and Communications, 2003, pp. 445 – 452.

[7] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection of
LRU caches and its analysis,” Performance Evaluation, vol. 63, no. 7,
pp. 609–634, July 2006.

[8] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache less for more in
information-centric networks,” in IFIP Networking, 2012, pp. 27–40.

[9] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in ACM ICN, 2012, pp. 55–60.

[10] K. Cho et al., “Wave: Popularity-based and collaborative in-network
caching for content-oriented networks,” in IEEE INFOCOM (Workshop),
Mar. 2012.

[11] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 1, pp. 83–86, Jan. 2006.

[12] Y. Li, T. Lin, H. Tang, and P. Sun, “A chunk caching location and
searching scheme in content centric networking,” in IEEE ICC, June
2012, pp. 1550 – 3607.

[13] I. Psaras, W. K. Chai, and G. Pavlou, “In-network cache management
and resource allocation for information-centric networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 11, pp. 2920 – 2931, Nov. 2014.

[14] K. Suksomboon, S. Tarnoi, Y. Ji, M. Koibuchi, K. Fukuda, S. Abe,
N. Motonori, M. Aoki, S. Urushidani, and S. Yamada, “PopCache:
Cache more or less based on content popularity for information-centric
networking,” in IEEE LCN, Oct. 2014, pp. 236–243.

[15] A. Ioannou and S. Weber, “Towards on-path caching alternatives in
information-centric networks,” in IEEE Conf. Local Comput. Netw.
(LCN), 2014, pp. 362 – 365.

[16] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity based
caching strategy for content centric networks,” in IEEE ICC, Jun. 2013,
pp. 3619 – 3623.

[17] J. M. Wang and B. Bensaou, “Progressive caching in CCN,” in IEEE
GLOBECOM, Dec. 2012, pp. 2727 – 2732.

[18] W. Wang et al., “CRCache: Exploiting the correlation between content
popularity and network topology information for ICN caching,” in IEEE
ICC, Jun. 2014, pp. 3191 – 3196.

[19] Y. Wang, M. Xu, and Z. Feng, “Hop-based probabilistic caching for
information-centric networks,” in IEEE GLOBECOM, Dec. 2013, pp.
2102 – 2107.

[20] S. Saha, A. Lukyanenko, and A. Ylä-Jääski, “Cooperative caching
through routing control in information-centric networks,” in IEEE IN-
FOCOM, Apr. 2013, pp. 100 – 104.

[21] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for informa-
tion centric networking,” in ACM ICN, Aug. 2013, pp. 27–32.

[22] S. Wang, J. Bi, J. Wu, and A. V. Vasilakos, “CPHR: In-Network
Caching for Information-Centric Networking With Partitioning and
Hash-Routing,” IEEE/ACM Trans. Netw., vol. PP, no. 99, Oct. 2015.

[23] V. Sourlas, L. Gkatzikis, P.Flegkas, and L. Tassiulas, “Distributed cache
management in information-centric networks,” IEEE Transactions on
Network and Service Management, vol. 10, no. 3, pp. 286–299, Sept.
2013.

[24] B. Banerjee, A. Seetharam, A. Mukherjee, and M. Naskar, “Character-
istic time routing in information centric networks,” Elsevier Computer
Networks, vol. 113, pp. 148 – 158, Feb. 2017.

[25] S. Zaman and D. Grosu, “A distributed algorithm for the replica
placement problem,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 9,
pp. 1455 – 1468, Sep. 2011.

[26] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web
server replicas,” in IEEE INFOCOM, vol. 3, 2001, pp. 1587 – 1596.

[27] J. Kangasharju, J. Roberts, and K. Ross, “Object replication strategies
in content distribution networks,” Computer Communications, vol. 25,
no. 4, p. Mar., 376 - 383 2002.

[28] V. Ramachandran, “Finding a minimum feedback arc set in reducible
flow graphs,” Elsevier Journal of Algoriths, vol. 9, no. 3, pp. 299 – 313,
Sep. 1988.

[29] P. Eades, X. Lin, and W. F. Smyth, “A fast and effective heuristic for
the feedback arc set problem,” Elsevier Information Processing Letters,
vol. 47, no. 16, pp. 319–323, Oct. 1993.

