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Abstract—As networks grow in scale and complexity, the use
of Network Function Virtualization (NFV) and the ability to
dynamically instantiate network function instances (NFIs) allow
us to scale out the network’s capabilities in response to demand.
At the same time, an increasing number of computing resources,
deployed closer to users, as well as network equipment are now
capable of performing general-purpose computation for NFV.
However, NFV management in the presence of Service Function
Chaining (SFC) for arbitrary topologies is a challenging task.

In this work we argue for the necessity of an algorithmic
resource management framework that captures the involved trade-
offs of NFIs minimum workload, load balancing, and flow path
stretch. We introduce DRENCH as a low complexity NFV and
flow steering management framework. In DRENCH an NFV
market is considered where a centralised SDN controller acts as
market orchestrator of NFV nodes. Through competition, NFV
nodes make flow steering and NFI instantiation/consolidation
decisions. DRENCH design enables third party NFV nodes
participation while it can coexist with other NFV management
solutions. DRENCH orchestrator parameterisation strikes the
right balance between path stretch and NFI load balancing,
resulting in significantly lower Flow Completion Times, up to
10× less, in some cases.

I. INTRODUCTION

Middleboxes (MBs) are becoming ubiquitous in today’s
networks. MBs have typically been constructed from purpose-
built hardware, customized to perform specific tasks. Once
setup, a network of MBs cannot alter its structure (e.g., topol-
ogy) or (service) functionality (e.g., morph from one service
to another). Network Function Virtualisation (NFV) [1] has
been proposed to increase flexibility in the network, evolving
MB architectures to virtual, or software-based services on top
of commercial off-the-shelf (COTS) hardware. NFV promises
to increase flexibility and achieve efficiency in using network
resources, since both the structure and the (service) function-
ality of NFV nodes can be adjusted dynamically in response
to service demand. Finally, Service Function Chaining (SFC),
which determines the chain of NFV-based MB services a flow
has to pass through, is gaining momentum as a necessary
network process.

In order to exploit the full potential of virtualised Network
Function Instances (NFIs), we argue that: i) NFIs have to be
dynamically placed, replicated, instantiated and terminated (or
consolidated), ii) new incoming flows have to be dynamically
steered to the least-expensive NFI (in terms of current network
and computation load), and iii) active, existing flows have
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to be redirected (if and when needed) to other instances of
the same service in order to balance the load between the
NFIs of this service. Following this line of argument, we
introduce and make the case for a resource management
framework that dynamically handles NFIs and flow traffic,
in order to load-balance i) network load in links; and ii)
computation load in NFV boxes. In designing such a resource
management framework, we consider all potential options, that
is, from centralized, software-based control plane approaches
to decentralized, hardware-oriented data plane approaches. We
find that a centralized controller can become the bottleneck
when assigned with the task of making real-time decisions
on service placement, instantiation, termination and flow
steering/redirection. On the other hand, a purely distributed
approach suffers from increased latency and overhead in order
to exchange information between decision-making nodes, a
process that also raises stability issues.

We argue for the need of a hybrid solution, where the (log-
ically) centralised SDN controller performs lightweight tasks,
related to the NFV environment coordination and flow setting-
up of state; while the distributed network of NFIs makes
more frequent decisions, that impact flow latency. Despite
the multiple SDN-NFV architectures proposed in recent years
(e.g., E2 [2], Stratos [3], Slick [4], SDNFV [5]), the problem
of resource allocation and management in such environments
has not received as much attention.

In this paper, we propose a semi-DistRibutEd resource man-
agement framework for NFV based service function CHaining
(DRENCH). DRENCH incorporates a traffic load-balancing
algorithm that utilises dynamic estimation of NFI loads with
each NFV node independently directing flows to an appropri-
ate least-loaded service instance; DRENCH utilises a real-
time service instantiation capability and redirects existing
flows as necessary; DRENCH is applicable for an NFI based
Service Function Chaining environment by using a centralised
SDN controller to disseminate information among the NFV
nodes in the network. DRENCH as a resource management
framework can fit into most of the existing architectures, albeit
with some modifications.

We realise DRENCH in the context of SDN-NFV archi-
tectures by defining an NFV-node market environment. In
particular, an SDN controller acts as the market orchestra-
tor/regulator, assigning prices to NFIs which are indicative
of their workload. At the same time, NFV nodes target the
increase of their ‘income’. This means that NFV nodes aim
to host popular NFIs that result in higher prices. In moreISBN 978-3-901882-94-4 c© 2017 IFIP



detail, when the demand for a service increases (declines)
the price of the service NFIs rises (decreases) accordingly,
which in turn may drive NFV nodes to instantiate (consolidate
the) NFIs of the corresponding service. In addition to NFIs
instantiation/consolidation, each NFV node is also responsible
for taking flow steering and redirection decisions.

In DRENCH the market orchestrator is setting the control
parameters of i) minimum NFI price and ii) off path penalty
factor. The minimum NFI price defines a threshold for con-
solidating NFIs whose prices are below the minimum one.
Since NFIs’ prices are representative of their workload, the
minimum NFI price indicates the threshold below which an
NFI is considered being under-utilised, thereby controlling
the number of active NFIs. On the other hand, the off path
penalty factor controls the path-stretch of a flow in the context
of SFC, thereby penalising the choice of NFIs that force the
flow to deviate from its shortest path towards the destination.
Considering Flow Completion Time (FCT) as an index of flow
performance, DRENCH minimum NFI price (off path penalty
factor) defines the tradeoff between under-utilised instances
(flow path stretch) and FCT.

The main technical contributions of this paper involve:
• A feasible NFV management approach: in DRENCH re-

source management decisions are taken locally by NFV
nodes while the market orchestrator solves lightweight prob-
lems, addressing a complex problem in a computationally
feasible way with respect to i) path-stretch, ii) number of
active NFIs per service, iii) load on each NFI and iv) flow
completion time.

• A decoupled NFV resource management framework: in
DRENCH, NFV nodes do not have to be owned by the
same entity, which thereby contributes to the incremental
adaptation of NFV in arbitrary network topologies.

• Implementation and large scale evaluations: We prototyped
DRENCH in Cloudlab testbed and Mininet to demon-
strate that DRENCH is immediately deployable in an SDN
environment. With Mininet, we compare DRENCH to a
centralized approach Slick [4] on a 4K-Fat tree topology.
Additionally, we compared DRENCH in a simulation envi-
ronment consisting of a Rocketfuel topology (87 switches)
to a custom centralized approach: SIMPLE [6] on top of a
E2 SDN framework [2]. Our results show that DRENCH
is robust to: i) asymmetries caused by dynamics of ar-
rival/departure of elastic flows with different service needs,
and, ii) the instantiation/removal/failure of service instances
(see Section VI).

II. RELATED WORK

In the case of purely centralized solutions, the complexity
involved in the decision making for service instantiation and
flow redirection (NP-hard in many cases) results in a much
coarser granularity of decision making. Solutions can only
be based on heuristic-based approaches [7], or act on a per-
flow basis [8]. SIMPLE [6] relies on an offline Integer Linear
Programming (ILP) solver to optimise the number of flow rules
on the switches and an online Linear Programming (LP) solver

for load balancing. However, SIMPLE [6] assumes that the
NFIs and middleboxes are statically placed and any dynamic
instantiation of NFIs requires the re-run of the expensive
offline ILP solver. Slick [4] provides a programming model
abstraction for service chaining that supports heuristic based
function placement and flow steering schemes. Slick [4] also
supports dynamic scaling of NFIs. However, it does not
redirect the existing flows from the overloaded instances, but
only steers the new flows to the scaled-out ones.

By and large, related works in this area have targeted only
newly-arriving flows, while works such as Split/Merge [9],
that address flow-redirection, need to pause the existing flows
for transferring NFIs and forwarding states. On the other
hand, purely distributed approaches for load balancing (e.g.,
TeXCP [10], CONGA [11]) face a different set of issues,
such as: i) high overhead and latency: a large amount of
information has to be exchanged among decision making
nodes to synchronise their view of network state, with the
consequent latency as the network scales; ii) complexity:
achieving a stable synchronised view at every decision making
node is complex; and iii) inefficiency and stability: since each
node makes decisions based on its local view of the network
state, packet loss, frequent rerouting, and transient loops are
likely. In [12], authors employ the concept of shadow-prices
to trade-off performance, QoS, and complexity, but they limit
their scope only to the flow steering problem in SFC.

OpenNF [13] presents a control plane for managing both
network forwarding state and internal NFI state for migrating
flows, where migration events are generated by NFIs and
buffered at the controller for the interval of state migration.
Stratos [3] proposes an orchestration framework that employs
a rack-aware NFIs placement strategy with horizontal scal-
ing and migration of NFIs. The load/flow distributions are
computed by an ILP formulation where only new flows are
steered to the new instances while the existing ones continue
to get processed at the same NFI, without alleviating the load
on the already congested instances. Lastly, E2 [2] is a NFV
scheduling framework that supports affinity based placement
and dynamic scaling of NFIs. The framework tries to minimise
the traffic across switches while balancing the traffic across
NFIs, but it avoids flow redirections across hardware switches.

To the best of our knowledge, DRENCH is the first work
that tackles both NFI placement and flow steering problems
in arbitrary topologies. DRENCH provides a computationally
feasible algorithmic resource management framework inspired
by the principles of market competition.

III. DESIGN OVERVIEW

A. Desired Properties

DRENCH is an in-network, congestion-aware, load balanc-
ing algorithmic framework that handles SFCs and dynamic
NFIs in arbitrary network topologies. In designing DRENCH,
we focus on providing the following key properties:
P1 Efficiency: As an NFI placement mechanism, DRENCH

should neither under-utilise nor over-utilise the resources
available in NFV nodes.



Fig. 1: DRENCH High-Level Operation

P2 Cost awareness: DRENCH should instantiate the min-
imum NFIs to meet the requirements of the SFCs for
the flows through the network at any point in time, and
balance the utilisation across the active NFIs.

P3 Fine-grained flow handling: DRENCH must meet each
flows’ SFC functional requirements, in terms of end-to-
end latency and minimum throughput.

P4 Responsiveness: DRENCH should react to SFC traffic
demand fluctuations, especially when traffic is volatile
and bursty [14], [15], for arbitrary network topologies.

P5 Incremental deployability: DRENCH should require the
minimum possible modifications in terms of protocols
and network infrastructure. It should also be applicable to
any of the existing SDN architectures [2], [13], [5] with
minimal changes. Furthermore, it should be possible
to directly apply DRENCH to a subset of available
switches and of incoming traffic when necessary.

B. DRENCH Solution Overview

Our framework is designed to leverage the benefits of the
centralised as well as the distributed networking paradigms.
We use the centralized approach, i.e., an SDN controller, to
perform tasks with less computation load, but those that need
to be carried out in a coordinated fashion across multiple
nodes. These tasks include: i) gather, compute and disseminate
NFI load information periodically to all the decision making
entities; and ii) set up paths towards instances and egress
nodes in case they do not already exist. Additionally, the SDN
controller is used to decide which services are applicable
to a flow (based on policies and/or flow characteristics).
This design choice reduces the complexity of the controller
and also overcomes the issues faced by a purely distributed
approach, where the decision making entities might not have
up to date information, thereby impacting performance. On
the other hand, a distributed approach is used for decision
making at individual NFV nodes. Based on the information
provided by the controller, each node independently decides
to i) steer flows towards the next required service; ii) redirect
flows to the least loaded instance; and iii) instantiate/terminate
NFIs in order to adapt to demand. The high-level operation
of the proposed mechanism is shown in Fig. 1.

IV. DRENCH COMPONENTS

DRENCH consists of the following components:
• Market Orchestrator: It associates every NFI and link

resource to a shadow price (i.e., cost) produced by utilising

G Network topology
V Set of switches
E Set of links
H Set of NFV Nodes
S Set of services
Hs Set of NFV nodes executing service s
F Set of flows
xf , x

∗
f Rate and optimal rate of flow f

Uf (xf ) Utility function of flow f

be Bandwidth capacity of link e
ae,f Coefficient = 1, if flow f traverses link e
bhs Computational resources of NFI s at h
ds Computational power Required by a NFI of s

for processing a single bit of traffic
dhs,f Coefficient = ds if f is processed by NFI s at h
wf Weight of flow f
λhs Service cost of NFI s at NFV node h

λ, λ̄ Minimum and Maximum shadow prices,
defining the efficiency of an instance

pvi,vj Shortest path from switch vi to switch vj
µvi,vj Communication cost from switch vi to switch vj
Cvi,h(s) Communication and service cost from switch vi

to a NFI executing service s at NFV node h
|pvi,vj | Number of Hops from switch vi to switch vj
∆pfvi,h

Shortest path deviation overhead
ρ Off Path penalty factor

Cfvi,h(s) Estimated Cvi,h(s) cost of flow f including ρ
θrid Redirection threshold
Ph Profit of NFV h in terms of shadow prices

λ̃on, λ̃off , λ̃ On-/Off- path and expected competitive price

TABLE I: DRENCH Notation Description

global information available at the controller. The orches-
trator regulates the market by allowing the existence of
instances above a certain minimum price.

• Flow Steering and Redirection: This component steers
each flow through a valid sequence of NFIs (according to
its SFC) determined by the SDN controller. Steering and
redirection takes into account latency, NFI and link costs.

• NFI Instantiation/Consolidation: This component instan-
tiates and consolidates NFIs in a distributed way through
the market competition between NFV nodes.

Below, we describe each of these components in detail.
A. Market Orchestrator

DRENCH, as any market-based approach, requires the
association of each network resource (commodity), in terms
of NFIs and link bandwidth, to an offered price, which is
imposed on a given set of incoming flows (demand) that utilise
this resource. In particular, when the quantity of demanded
resources equals the quantity supplied for a set of prices, we
refer to them as market-clearing prices. DRENCH market-
clearing prices should A1) be representative of each NFI’s
workload, A2) be derived in the minimum possible time, A3)
not require additional in-network signalling given the existence
of an SDN controller [16], [11]. Every price derivation
violating requirement (A2) and (A3) would be in stark
contrast with DRENCH desired properties wrt responsiveness
(P4) and incremental deployability (P5), respectively.



DRENCH deploys a Market Orchestrator/Regulator
component, which by simply exploiting flow path information,
already available at the SDN controller, efficiently derives the
market-clearing prices; complying to requirements (A1)-(A3).
Inspired by [17], where the authors formulate a Network
Utility Maximisation problem (NUM) based on market
principles to allocate bandwidth resources to a set of flows,
we extend their model to include NFI computational resources.
We achieve this by solving the Extended Network Utility
Maximisation problem (ENUM) at the Market Orchestrator
as we describe next.

We denote the network topology by G = (V, E), of V
switches and E links, where a set of NFV nodes, H, is placed
at a subset of switches H ⊆ V . Then, given a set of NFIs
executing a set of S services and a set of F flows, we associate
each link, ∀e ∈ E , with a bandwidth capacity, be, and each NFI
s at NFV node h with bhs computational resources, in order
to form the ENUM problem that maximises the total utility
of the system. Similar to NUM, we associate each flow rate,
xf ≥ 0, with a utility that is a weighted logarithmic function,
Uf (xf ) = wf log(xf ), of weight wf , capturing a decreasing
marginal gain as the flow rate increases (i.e., rate changes at
low rate flows have a greater impact on their utility). In turn,
we maximise the total system utility,

∑
f∈F

Uf (xf ), subject

to link capacity constraints,
∑
f∈F

ae,fxf ≤ be, ∀e ∈ E , and

computational resource constraints,
∑
f∈F

dhs,fxf ≤ bhs , ∀s ∈

S,∀h ∈ H; where ae,f is a coefficient equal to 1 if flow
f traverses link e and 0 otherwise, while dhs,f equals the
computational power required by service s for processing a
single bit of traffic, ds, if f is executed at NFI s of NFV node
h, and 0 otherwise. Parameters ae,f and dhs,f describe the
path of each flow and therefore they are known to the SDN
controller which provides them to the Market Orchestrator.

Since the objective function is differentiable and strictly
concave, while the feasible region of the constraints is
compact, the optimal rates x∗f ∀f ∈ F exist, are unique, and
can be found efficiently by Lagrangian methods. Based on
[17], it can be shown that the dual problem of the ENUM is:

maximise
∑
f∈F

wf log (
∑
e∈E

µeae,f +
∑
h∈H

∑
s∈S

λhsd
h
s,f )

−
∑
e∈E

µebe −
∑
h∈H

∑
s∈S

λhs b
h
s

subject to
µe ≥ 0, ∀e ∈ E ,
λhs ≥ 0, ∀s ∈ S,∀h ∈ H,

(1)

where µe and λhs are the Lagrange multipliers of link e and
service instance s at NFV node h respectively. The Lagrange
multipliers are also known as shadow prices, due to their
association to the optimal rates of each flow:

x∗f =
wf∑

e∈E
µeae,f +

∑
h∈H

∑
s∈S

λhsd
h
s,f

(2)

where weight wf is perceived as the budget that flow f is
willing to pay for its rate, while the denominator is the cost
imposed to the flow in order to use the resources along its path.
In that sense, each Lagrange multiplier can be considered as
the price of a particular resource, leading us to the following
definition about communication and service cost.

Definition 1: The communication cost between two
switches, vi, vj ∈ V , is the sum of on-path link shadow
prices µvi,vj =

∑
e∈pvi,vj

µe, where pvi,vj is the shortest
path between switches vi and vj ; while the service cost of
an instance s at NFV node h is the shadow price λhs .

Note that the service and communication costs are kept in
the forwarding tables of the NFIs, i.e., the decision making
nodes, and are updated periodically by the SDN controller
after being estimated by the Market Orchestrator (see Fig. 1).

Shadow prices are indicative of the workload at a particular
resource, complying with (A1). In fact, from (2), we derive
that the value of a shadow price, λ, defines the maximum
possible rate that flows using that resource can achieve, wf/λ.1

Based on the maximum achievable flow rate we can define the
efficiency of a NFI as a range of shadow prices.

Definition 2: The Market Orchestrator determines the load
of a NFI by a shadow price range [λ, λ̄], where if a service
cost, λhs , is less/more than λ/λ̄ the NFI is considered under-
/over-utilised, respectively.

Given the shadow price range [λ, λ̄] the Market Orchestrator
tries to maintain the minimum required number of instances
per service type (P2) by: i) terminating instances that are
underutilised and ii) allowing for more instances for services
whose existing instances are over-utilised (see Section IV-C).

B. Flow Steering and Redirection

1) Flow Steering: Given a placement of NFIs and their
respective shadow-prices, as determined by the Market Or-
chestrator, DRENCH’s flow steering component is responsible
for steering each new incoming flow towards the chain of
required services. The flow steering component tries to route
the flow through the chain that imposes the lowest possible
cost to the flow. Determining the optimal end-to-end path
of a flow through the SFC is a NP-complete problem [18].
DRENCH works on a hop-by-hop heuristic basis, picking each
time the best next-hop NFI choice, in an effort to achieve
instantaneous and adaptive steering decisions (P4).

We illustrate DRENCH’s flow steering component through
the following example. Assume that flow f arrives at the
network requiring the execution of service s (or service
chain s1/s2/.../sm) before being delivered to destination vf .
Let vi be the switch that has to make a steering decision
about f and Hs ⊆ H be the set of NFIs of service s. Then
the combined communication and service s execution cost
at h ∈ Hs is Cvi,h(s) = µvi,h + λhs . The flow steering
component initially estimates the shortest path deviation

1It follows that the shadow prices are positive when a resource is totally
utilised and 0 otherwise. To introduce a minimum workload to the resources
that are not saturated, we add a set of dummy flows into F when solving (1).



overhead applied by steering flow f to instance h in terms
of hops, i.e., ∆pfvi,h = |pvi,h| + |ph,vf

| − |pvi,vf |, weighted
by an off-path penalty factor ρ. Therefore, the estimated
cost applied to the flow for executing service s at NFI of h
is Cfvi,h(s) = Cvi,h(s) + ρ∆pfvi,h. Then, vi selects the next
service instance s of f that minimises Cfvi,h(s):

h∗ = argmin
h∈Hs

Cfvi,h(s) (3)

In Eq. (3) the off-path penalty factor, ρ, dis-incentivises
node vi from sending flow f away from its shortest path
towards vf . Eq. (3) applies on a hop-by-hop basis, that is,
it is calculated at each NFV node responsible for forwarding
flow f towards the next instance in its chain.

Lastly, upon making a steering decision, switch vi informs
the SDN controller that flow f is forwarded towards h∗ to exe-
cute service s. At the same time, the SDN controller is setting
up paths towards NFIs and/or egress nodes as necessary.

2) Flow Redirection of Stateless and Stateful flows: The
cost of a service instance might change dramatically through-
out the duration of a flow, rendering previous flow steering
decisions outdated. Therefore, redirection of existing flows is
necessary in order to keep the expenditure of existing flows
at low levels (P3-P4) and avoid routing through overutilised
instances (P1). We realise flow redirection as follows: if the
cost difference between two instances of s at h and h′, as
seen by switch vi, is bigger than a redirection threshold, θrid,
Cvi,h(s)−Cvi,h′(s) > θrid, switch vi repeats the flow steering
process for a portion of flows that vi currently forwards to h.
The redirection threshold is set to θrid = λ̄− λ.

Rerouting of stateful flows to dynamically instantiated
services for improving load balancing is usually complex
and costly. For instance, solutions such as Split/Merge [9],
pause ongoing flows in order to transfer internal NF and
forwarding states. In DRENCH, we leverage the approach
in Split/Merge [9], to pause ongoing flows and transfer the
internal state of the involved network functions. To identify
service instances, we make use of the Information Centric
Networking (ICN) construct which is proven to be beneficial
in terms of providing flexible routing, and reducing the routing
states at the switches [19].
C. Instantiation

In DRENCH, NFV nodes autonomously provide services in
an effort to maximise their profit, in terms of shadow prices
(i.e., the cost to execute some service). In particular, let Sh be
the set of NFIs at some NFV node h, then the profit of h in
terms of shadow prices, λhs , can be estimated, as:

Ph =
∑
s∈Sh

λhs (4)

DRENCH NFI instantiation/consolidation scheme defines how
service demand and NFI shadow prices affect the individual
NFV node decisions to manage the number of service in-
stances. Through competitiveness, NFV nodes achieve respon-
siveness to NF demand changes, while the market orchestrator
ensures market efficiency, as we explain next.

1) NFV Node Competitiveness: Let the shadow price of an
NFI s′ at NFV node h′ be λ′. We are interested in estimating
the competitive price of a potential NFI s at an NFV node h,
h 6= h′, with respect to λ′.

Definition 3: The shadow price of NFI s is competitive in
the price of NFI s′ when the flow steering component has a
preference, or is indifferent, of steering new flows at s.

Then, let µ be the communication cost, between NFV node
h′ and h that are ∆p hops away, and f be a new flow that is
about to get steered at NFI s′. Then according to DRENCH’s
flow steering component, the minimum competitive price at s
for flow f , would be equal to λ̃off = [λ′−µ−ρ∆p]+, where
ρ is the off-path penalty factor.2 The off-path penalty factor is
taken into account as in the worst case that flow f will have
to traverse ∆p additional hops to reach s from s′. This acts as
a disincentive for a node to forward traffic to nodes that are
far off from the flow’s shortest path. On the other hand, in the
best case, that flow f is forwarded to NFV node h′ by NFV
node h, meaning that s is already on the path of flow f and
additional hops are not required;3 the minimum competitive
price at s for flow f is λ̃on = λ′ + µ.

The expected competitive price of NFI s with respect to
NFI s′ price λ′ will be a value between (λ̃off , λ̃on). Let y be
the total amount of traffic with competitive price λ̃on. Then y
can be considered as the local information of NFI s′ demand
at NFV h that accounts for the utilization percentage ds′y/bh

′

s′ .
Here, ds′ is the computational power required by the service of
NFI s′ for processing a single bit of traffic and bh

′

s′ is the fixed
computational resources that are allocated to NFI s′. Then the
expected competitive price is estimated as:

λ̃ = (ds′y/b
h′

s′ )λ̃on + (1− ds′y/bh
′

s′ )λ̃off (5)

2) NFI Instantiation: As long as a NFI shadow price, λ,
executing a service at NFV node h, is lower than the maximum
target price, λ < λ̄, this service is not considered over-utilised
and an instantiation of an additional NFI of the same service
at h is prohibited (see also Definition 2). On the other hand,
if λ > λ̄, the Market Orchestrator limits the number of NFI
that can be created by competing the NFI with service cost
λ to bλ/λ̄c. Therefore, given the set of allowed services for
instantiation at each NFV node h, h estimates the expected
competitive prices of every NFI. Then moving from the highest
to the lowest competitive price, the NFV node instantiates the
service associated with the price λ̃ as long as i) it is expected
that the instance will not be under-utilised, λ̃ > λ, and ii) the
Market Orchestrator maximum number of instances allows it,
respecting properties (P1), (P2), and (P4).

3) NFI Consolidation: If the price of an instance is below
the minimum target shadow price, λ, the NFV node consoli-
dates this instance (P2). When there is a service availability
requirement, the market orchestrator can hinder the consoli-
dation of the last instance of that service.

2[·]+ denotes the projection onto nonnegative orthant.
3In practice, it is not the NFV node that is aware of the forwarded traffic

but the switch that the NFV node is attached to.



V. IMPLEMENTATION

DRENCH’s prototype involves the implementation of an
SDN controller/orchestrator, Open vSwitches, and a set of cus-
tom NFIs. The overall implementation, including the controller
extensions for supporting NFIs, is ∼ 1800 LOC.

A. Control Plane: DRENCH Controller
We extended Pox4 to serve as DRENCH’s controller, where

policy specifications are provided as input.
Flow Classifier and Policy Enforcement: DRENCH con-

troller performs fine-grained flow classification, based on the
standard IP 5-tuple. As a flow is mapped into a policy spec-
ification, the Controller applies the sequence of the involved
service functions. We dedicate the combination of IP-ToS field
and L4: destination port to represent the service chain ID and
the sequence of functions in the service chain respectively.

Flow Steering: In order to be more flexible, and readily
deployable with NFIs, we rely on the switch-based service
chain/network function ID mapping that can be supported by
openflow switches, without the need for any modifications to
the NFI. The controller sets the path from the ingress/NFV
node to the next NFV node/destination in the chain. For finer
granularity at each ingress or intermediate NFV node, the
flow rules are installed based on the match obtained from
the flow-classification - this readily enables the capability to
match and correlate the packets that enter/exit the NFIs, even
when NFIs modify the packet headers, while the rest of the
intermediate switches rules are installed for forwarding the
traffic via “tunnels” to the next NFV node or egress switch.
For tunnelling, we enhance the named instance source routing
scheme [19], wherein the tag comprising of the VNFs service
type (SVC-ID), the switch (SW-ID), and the pinned compute
core (CoreID) uniquely represent the NFI. It is defined as:
NFI-ID = CoreID|SW-ID|SVC-ID.

This enables the paths to be installed proactively on all the
intermediate switches as soon as an NFI is discovered in the
network. Our proposal of ID-based tunnelling can be realised
by using either the Multi-Protocol Label Switching (MPLS)
or VLAN tags, underlay (unused IP/TCP header fields like
DS/option fields) or with Network Service Header (NSH) [20].
The choice of Layer-2.5 (MPLS) or Layer-2 (VLAN) tag
makes it convenient to define the match in Openflow switches,
i.e., by being agnostic to L3/L4 fields allow any TCP/UDP
flow to be matched with a same rule. This helps to significantly
reduce the number of switch rules. As most MBs readily
support VLAN as opposed to MPLS [21], we make use of
Layer-2 tags to realise the NFI-based tunnels.

B. Data Plane: Openflow Switches and Network Functions
One of the key challenges we faced in the implementation

of DRENCH prototype was the unavailability of a MB/NFV-
capable switch in the Mininet environment. Our solution was
to realise NFIs as hosts connected to the switches. How-
ever, this resulted in additional challenges since OpenFlow
is designed with a Southbound API control channel between

4https://openflow.stanford.edu/display/ONL/POX+Wiki
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Fig. 2: Off-path penalty (x-axis)

the controller and the network switches, but not the hosts.
Therefore, any information (e.g., estimated cost of other
instances/shadow-prices) that had to be exchanged between the
controller and the NFV-hosts had to be performed either via
the switch (e.g., we used LLDP packets to make the controller
aware of the presence of NFV-hosts) or via a separate chan-
nel. In a real-world deployment, we believe that this would
not be the case since NFV nodes will have a Southbound-
API based channel from the controller through an in-built
switch. Once the communication channels were established,
the controller was able to both obtain and disseminate cost
related information periodically. Moreover, to demonstrate that
the NFI capability can be realised on Openflow switches, we
implemented on each host a host-local Open vSwitch and
controller. The host interface is setup as a port of the local
vSwitch. This way, we leveraged the local Open vSwitch and
Pox controller to implement the VNF specific functionality,
i.e., to monitor and disseminate NFI-specific load information
and communicate it to the global controller.

VI. EVALUATION

Our goal is three-fold: i) study the effect of different
DRENCH parameters, the resulting trade-offs, and the impact
on performance in order to fine-tune DRENCH; ii) highlight
the benefits of DRENCH on a controlled topology (we perform
these evaluations on a CloudLab5 test-bed); and iii) compare
the performance of DRENCH with other approaches in large
scale scenarios (both data-center and Rocketfuel topologies).
We make use of the DRENCH prototype on a data-center
topology in a Mininet Cluster6 to study the benefits of
DRENCH in terms of Flow Completion Time (FCT), delay,
number of active NFIs, NFI utilisation, and the impact of redi-
rection. We compare DRENCH against a centralised approach
(Slick [4]) and DRENCH without redirection (DwoR).

Moreover, we build a custom-based simulator to study the
benefits of DRENCH in terms of path deviation, average
throughput and FCT in comparison to a custom centralised
approach, i.e., SIMPLE [6] on top of E2 SDN framework [2].
Unlike similar works that focus only on the latency require-
ments of service chains, we also emphasize on FCT - arguably
the most important metric for the user [22].
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A. DRENCH Parameter design and study of tradeoffs
We implemented DRENCH on a python-based discrete

event simulator using SimPy7, in order to be able to flexibly
fine-tune DRENCH’s parameters and to perform large scale
evaluation. For these experiments, we perform simulations on
a Rocketfuel topology with 27 hosts, that send/receive flows,
and 57 nodes that are capable of hosting NFIs. Unless stated
otherwise, the off-path penalty, ρ, is 0.3 while we consider
SFCs of length equal to 2. We then apply the results of the
simulation study to setup DRENCH’s prototype.

1) Off-path penalty, ρ: Traditionally, flows follow the short-
est path towards their destination, deviating only for traffic
engineering reasons and/or in response to link/node failures
(e.g., fast-reroute in MPLS). When it comes to service chain-
ing, flows deviate from their shortest path in order to be served
by NFIs. In DRENCH the off-path penalty factor, ρ, controls
the tradeoff between the shortest path deviation and FCT by
trading path deviation overhead for less congested NFIs, as
Fig. 2 indicates. In more detail, the FCT increases function
to off-path penalty, ρ, since flows prefer to get served by a
more congested NFI (e.g., with a higher service cost) than
deviating from their shortest path, Fig. 2a. Hence, for our
experimental purposes we choose a value of ρ in the range of
0.3-0.5. The exact setting of the ρ factor is up to the network
operator. During low-demand periods (e.g., during nighttime),
where links are generally less utilised, operators might choose
a lower value to improve FCT (i.e., given low link utilisation,
extra path deviation should not cause problems). On the other
hand, in high demand periods, path deviation should be kept to
lower levels, even if this increases the individual flows’ FCT,
in order to avoid extensive path stretch.

2) Shadow price Threshold: Fig. 3 shows the results of
varying the minimum shadow-price threshold, λ, at which
new instances are spawned. Fig. 3a shows that FCT increases
function to threshold values. A low λ of 0.1 results in lower
FCT compared to values in the range of 0.3 to 1.5, but at
the same time leads to a poor average utilisation of NFIs,
i.e., 4 Mbps as seen in Fig. 3b. In particular, utilisation is
considered as the amount of traffic (in terms of throughput -
see Fig. 3b) that an NFI serves on average. The exact setting
of λ is up to the network operator. If the demand is low, then
more instances could be allowed to reduce the average FCTs.
In contrast, during high demand periods, the operator might

5https://cloudlab.us
6http://mininet.org
7http://simpy.readthedocs.io/en/latest/
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Fig. 4: Simple Topology with initial placement of NFIs.
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Fig. 5: TCP flow with service chain of C—B—A

TABLE II: Average Bitrate and Delay
DRENCH Baseline

Avg Bitrate (Mbps) 4.033 3.814
Std. Dev of Pkt Delay (ms) 129.151 143.216

have to compromise on individual flow FCT, in order to make
full utilisation of the existing NFIs and eventually serve more
flows overall.

B. Testbed: Simple controlled experiments
We perform controlled experiments on a small topology,

as shown in Fig. 4, in our CloudLab setup to illustrate the
benefits of DRENCH components. Consider flows Src1-Dst1,
requiring the service chain of C/B/A, which also comprises
the ideal placement.

We study the performance and behavior of the system in the
worst case scenario, where the services are initially placed in
the reverse order as depicted in Fig. 4.8 To prevent an increase
in the flow’s path length (by going back and forth in this
topology), it is desirable to relocate the NFIs (from A−B−C
to C − B − A in nodes S1-S2-S3, respectively) to minimize
path stretch and FCT.

In Fig. 5a, we observe that, initially, due to the service
instances being located in the wrong order (i.e., A− B − C,
instead of C − B − A) the flow suffers higher path-stretch,
resulting in additional delay and higher network load. Later,
as the switches gradually adapt towards the ideal placement,
path stretch declines and network throughput increases (see
Table II) compared to a non-reactive (Baseline) approach.

When all the instances individually seek to be competitive
and maximise their utilisation, the switches with NFV
capacity near the ingress switches end up hosting most of the
services. From Fig. 5b, we see that DRENCH converges to
this ideal case by instantiating and placing the services in the
chain along the path towards the destination.

C. Large scale Evaluation: Data-Center Topology
We setup a Mininet Cluster on Cloudlab to study the

performance of DRENCH in a large network topology.

8We set the NF capacity and the off-path penalty factors to just exceed the
threshold required in order to allow for service instantiation.



20 40 60 80

8

8.5

9

9.5

10

10.5

11

Network Load (%)

A
vg

.
FC

T
(s
) Slick(Y1)

Drench(Y1)
DwoR(Y1)

8

10

12

14

16

18

20

A
vg

.
D
el
ay

(m
s)

Slick(Y2)
Drench(Y2)
DwoR(Y2)

(a) Overall Avg. FCT and Delays

20 40 60 80
0

20

40

60

80

100

120

140

160

180

200

Network Load (%)

A
vg

.
In
st
an

ce
U
til
iz
at
io
n

Slick(Y1)
Drench(Y1)
DwoR(Y1)

4

6

8

10

12

14

16

18

20

To
ta
lA

ct
iv
e
N
FI
’s

Slick(Y2)
Drench(Y2)
DwoR(Y2)

(b) Avg. # of NFIs and an NFI’s Utilization

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90
0

20

40

60

80

100

Time in Seconds

Pa
th
-S
tr
et
ch

D
ev
ia
tio

n(
%
) Drench(Y1)

DwoR(Y1)
Slick(Y1)

0

5

10

15

20

25

30

35

40

45

50

#
R
ed
ire

ct
io
ns

Drench(Y2)

(c) Impact of redirection

Fig. 6: Study on a Data-Center Topology (Y1: Left Y axis, Y2: Right Y axis)

Topology: We use a 4K Fat-Tree topology to evaluate
DRENCH in a data-center environment and compare it to Slick
(used as an example of a centralized approach.) We consider
that only aggregation-layer switches in the fat-tree topology
have NFV capability and dedicate 2 cores per aggregate switch
for instantiating the NFIs.

Workload: We model the traffic based on the available data
center workload characteristics similar to the ones used in [11],
[14]. The workload constitutes a mix of elephant flows (20%
with flow size > 10MB) and mice flows (80% with flow size <
2MB). Thus, elephant flows account for more than 80% of the
traffic bytes. We use iperf9 and D-ITG [23] to generate traffic
with varying network loads. Flows originate from one of the
servers connected to a leaf switch and terminate at another
server connected to another leaf switch (in either the same
or different pod). We use TCP flows in a client/server model
with random flow arrival times. Based on the information on
the service chaining policies in [24] and the details presented
in earlier work (e.g., [6]), we setup a service function chain
of 3 distinct Network Functions (NFs). We assume that in
total there are 6 NFs available in the network and that each
flow requires exactly three of them. The service functions are
chosen based on a zipf-distribution with exponent set to 0.3.

Parameters: Based on our findings from Section VI-A2,
we set the off-path penalty factor eqaul to 0.5, and
the instance shadow-price that influences service con-
solidation and service instantiation decisions as follows. An
instance is consolidated when the shadow-price reflects
a NFI utilisation of < 30% and the flows served by that
instance are less than 5. This is done in-order to mitigate
the number of flow re-directions and the packet re-ordering
impact of flow re-directions. A new NFI is instantiated when
the shadow-price reflects NFI utilisation of > 85%.

Comparison: In order to perform a fair comparison, we
implemented a greedy heuristic-based flow steering approach
as in Slick [4] - as a representative of a fully centralised state-
of-the-art load balancing scheme.10 We also compare against
DwoR to study the effects of redirections and its impact on
DRENCH. Our main goal is to evaluate the behaviour and
performance of DRENCH wrt NFI placement, flow steering,
and load balancing in terms of its efficiency in NF resource
utilisation and FCT.

9https://iperf.fr/
10We implemented the shortest weighted path-based flow routing scheme

and not the entire Slick runtime [4]
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Fig. 7: Comparison of Drench vs. E2+SIMPLE

Figure 6a shows the average FCT and packet delays for
different schemes. We observe that at lower loads (20-40%)
all the schemes have similar FCT, but DRENCH and DwoR
incur relatively lower packet delays. However, as network load
increases, DRENCH performs better than Slick and DwoR in
terms of FCT roughly by 10∼20% . Furthermore, we also
observe that DwoR provides better FCT than the centralised
approach, while DRENCH outperforms both DwoR and Slick.
Finally, we also see that the average delay in the case of
DRENCH remains low in most cases and close to the other
solutions when the network load is extremely high (80%).

In Fig. 6b we see that the average number of NFIs for all
the schemes is almost the same. However, DRENCH balances
the load more efficiently since the variation in the load among
the NFIs and the NFI utilisation is maintained at low levels.

In Figure 6c, we present the specific case for network load
of 80%, where we observe that DRENCH is able to get close
to Slick, which is optimal in terms of path-stretch deviation.
We can also see the benefits of DRENCH redirections in order
to correct path-deviation during traffic bursts (see 70-80secs)
and also when a large number of flows terminate. In both cases
we can see that DRENCH is more effective than DwoR, in
terms of keeping path-stretch at a minimum, providing better
load-balancing across NFIs and achieving better FCT.
Note: In DRENCH re-directions enable to reroute flows
through lightly loaded links and NFIs, thus aid to lower
packet delays. However, the FCT might still get affected due
to interim packet-reordering, which result in false congestion
signals. We believe that a modified TCP stack as in [25] could
help mitigate the packet-reordering issue.

D. Large scale Evaluation: ISP Topology
To further examine the capability of DRENCH to efficiently

use NFIs in a typical WAN ISP environment, we performed
simulations with SimPy.



Experimental Setup: We performed simulations on the
Rocketfuel AS-1755 (Ebone in Europe) topology.11 In order
to perform a fair comparison, we implemented a greedy
heuristic for flow steering which we call E2+SIMPLE that
uses a combination of E2 [2] for both service instantiation
and service-chain path definition, and SIMPLE [6] for flow
steering. Note that in terms of performance, the combination
of E2 and SIMPLE performs much better than any of the E2 or
SIMPLE alone and therefore is the best choice for comparison.

DRENCH vs. E2+SIMPLE: Fig. 7 compares DRENCH
and E2+SIMPLE (E2+S) approach. We observe that DRENCH
presents higher path deviation (see Fig. 7a) since it deviates
from the shortest path in search of non-congested NFIs.
In doing so, DRENCH is able to make better use of the
available NFIs (see Fig. 7b) and performs instantiation or
consolidation when necessary. This way, DRENCH ensures
that all the available NFIs are running close to peak utilisation
(in terms of throughput served by the NFV nodes) as seen
in Fig. 7b. With these design choices, DRENCH achieves
significantly lower FCT (see Fig. 7c). In summary, DRENCH
provides a staggering 10× improvement in FCT and is able
to support roughly 4× higher workloads, while incurring an
average path deviation penalty of up to 2× in comparison to
the E2+SIMPLE approach. This extra path stretch though is
compensated in terms of higher NFI utilisation and in turn,
lower FCT.

Summary of Evaluation: To summarize, our evaluation
demonstrates that with its hybrid centralised-decentralised
decision-making structure, DRENCH can dynamically load-
balance traffic and allocate resources according to demand.
DRENCH makes informed decisions on the load of NFIs and
accordingly instantiates new or consolidates existing NFIs.
In turn, traffic is load-balanced (through flow steering and
redirections) to the appropriate instance achieving significantly
lower FCT.

VII. CONCLUSION

We have developed a hybrid algorithmic framework for
resource management and traffic load-balancing among vir-
tual NFIs that elegantly combines distributed decision-making
with centralised control for orchestration and coordination,
while performing complex, dynamic service function chain-
ing. DRENCH is designed to dynamically adapt and balance
resources utilisation to traffic demand. DRENCH builds on a
market-inspired, competition-based shadow-price that is
used for taking decisions on flow-steering, flow-redirection
and service instantiation/consolidation in a distributed manner.
A centralised SDN controller performs market orchestration,
dissemination of price information and coordination.

Our novel semi-distributed approach for dynamic service
instantiation and direction of new and existing flows to the
least loaded NFV node increases the throughput from each
NFV node and in turn reduces FCT significantly. With the

11http://www.cs.washington.edu/research/projects/networking/www/
rocketfuel/interactive/1755eur.html

help of a prototype implementation on CloudLab and extensive
simulations, we illustrate the benefits of using DRENCH,
namely that traffic is dynamically load-balanced among in-
stances and the path deviation of flows across the NFIs is
kept to a minimum. Resources are efficiently utilised by timely
consolidation of NFIs when they are lightly loaded. Overall
DRENCH results in almost a 10× reduction in FCT in some
of our experiments.
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