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Abstract—Tandem queues, i.e., several servers in series, occur
in many performance models of networked and distributed
systems. In this paper, we derive stochastic delay bounds for
a flow of interest from a set of flows that traverses the tandem.
To that end, we take an approach based on stochastic network
calculus (SNC) using moment-generating functions. Directly ap-
plying existing SNC approaches from literature requires to take
into account many stochastic dependencies unless we incorporate
the pay multiplexing only once (PMOO) principle known from
deterministic network calculus (DNC). We derive a general
solution for the tandem of n servers. Moreover, we also enable
the analysis of stochastic dependencies among flows. In numerical
experiments with fractional Brownian motion as a traffic model,
we compare the delay bounds obtained by our analysis, following
the PMOO principle, with those from existing literature and
observe an average improvement of the delay bounds by at
least 30%. Furthermore, we observe that by careful parameter
optimization, a significant improvement is achieved compared
to standard choices for the parameter set. Finally, we evaluate
the effect of stochastic dependencies among flows on the delay
bounds.

I. INTRODUCTION

A. Motivation
Predicting delays in packet-switched networks is a timeless

topic. Accordingly, in many visions of the future Internet it
plays a major role (e.g., Internet at the speed of light [19],
Tactile Internet [9], Internet of Things [20]) as well as in
many scenarios for the envisioned cyber-physical systems [16],
which often face real-time requirements. The variable and thus
hard to predict part of the packet delay is due to the traversal
of several queues from sender to receiver, in queueing system
jargon so-called tandem queues. In this paper, we investigate a
specific tandem queue where a set of flows traverses together
the tandem servers as depicted in Figure 1. We are interested
in bounding the delay of one particular flow from that set,
our flow of interest (foi). While such a tandem queue is, of
course, not the most general network setting, it can be found in
many scenarios as also evidenced by many existing studies on
tandem queues in the queueing theory literature (for instance,
a classic result [2] and a more recent one [12]). Moreover, the
tandem queue as shown in Figure 1 can also serve as a basic
building block in larger networks. In particular, in large multi-
tier networks as the Internet this pattern frequently occurs in
the backbone of transit providers.

Fig. 1. Tandem with n servers.

B. Analysis Method and State-of-the-Art

To analyze the per-flow delays in tandem queues we employ
the mathematical framework of stochastic network calculus
(SNC) [3], [10], [11], [7]. SNC is particularly suited to cal-
culate stochastic per-flow delay bounds, i.e., bounds that hold
with a specified probability, whereas conventional queueing
theory typically neither supports the per-flow perspective, nor
is tailored towards bounds. There are two branches of SNC:
one based on moment-generating functions (MGF) bounds for
arrival and service processes [3], [10] and one based on tail-
bounds [14], [11].

Both branches are versatile with respect to arrival and server
models, yet the analysis of more complex networks is still
lacking. Existing work mainly treated a topology as depicted
in Figure 2. In the tail-bound SNC, one may argue that any
network scenario can be transformed into this topology from
the perspective of the foi. While this is true and known
from deterministic network calculus (DNC) as Separated Flow
Analysis (SFA), we demonstrate in this paper that this results
in much worse bounds than necessary.

In existing work of the MGF-based SNC for the topology
from Figure 2 [10], the transformation from our tandem queue
(in Figure 1) into that of Figure 2 would even be impossible
because cross-traffic flows would become stochastically de-
pendent, which is against the assumption in [10]. However,
in our work we relax this assumption by using the Hölder
inequality (when dependencies have to be assumed ) and
thus enable a stochastic SFA in the MGF-based SNC. As
mentioned already, we can do better than that: by adapting
what is known from DNC as the pay multiplexing only once
(PMOO) principle [17] in the stochastic network analysis, we
can achieve much better delay bounds for tandem queues.
The trick in the PMOO analysis is to follow the rule of first
convolving servers before subtracting cross-flows which is the
exact opposite of SFA.ISBN 978-3-901882-94-4 c� 2017 IFIP



C. Modeling Assumptions
Apart from assuming a tandem queue as in Figure 1, which

is shared by a set of flows, we make no further assumptions
on how the multiplexing between flows is done at each of
the servers. For the per-flow analysis this means we assume
arbitrary multiplexing [18], which in our tandem queue setting
corresponds to giving lowest priority to the foi in order not to
compromise the delay bound calculation. So, in fact, we could
also apply our results in a system where each of the server
does priority scheduling.

For the set of arrival flows, the question arises whether
we require them to be independent. Here, we want to pro-
vide maximum flexibility by not necessarily requiring mutual
independence among the flows but also allow for stochastic
dependencies. Such dependencies often occur in practice, for
instance, if the tandem is just a component of the overall
network and some flows have traversed shared queues before
they arrive at the ingress of the tandem. In particular, we
also support mixed scenarios with some flows being depen-
dent and some being independent. This level of versatility
in accommodating dependencies among flows is an original
contribution in the framework of the MGF-based SNC. In [8]
the accommodation of stochastic dependencies via copulas is
investigated in the tail-bound SNC framework. In fact, there
are ways to convert between the MGF-based and tail-bound
SNC, see, e.g., [1]. However, our approach also differs from
[8] in making no assumptions on the kind of stochastic depen-
dencies that are present. Clearly, it could be very interesting
to bring together both approaches, thus building open [8] to
achieve better bounds in case we have more knowledge about
dependencies. Yet, this is out of scope for this paper and is
left for future work.

While the end-to-end delay analysis of the tandem queue is
for general (MGF-bounded) arrivals, we instantiate our results
in numerical experiments for the popular traffic model of
fractional Brownian motion (fBm). As a long-range dependent
traffic model, fBm is suitable to model the self-similar nature
of Internet (backbone) traffic [13], [15]. While not being a
simple traffic model (with some basic queueing results just
appearing [4]), fBm fits well into our framework as an MGF
exists for it and we can obtain some interesting insights in its
behavior in non-trivial queueing models.

Fig. 2. Tandem in [10].

D. Outline
In Section II, we introduce the necessary notations for

SNC and its main results as we need them in this paper.
Section III contains the main contributions: the stochastic end-
to-end delay analysis for tandem queues following the SFA and
PMOO patterns known from DNC. A numerical evaluation of

several aspects under the fBm traffic model is provided in
Section IV: SFA vs. PMOO, delay bound scaling with tandem
length, independent vs. dependent flows, and mixed scenarios.
Section V concludes the paper and discusses some future work.

II. SNC BACKGROUND AND NOTATION

In this section, we introduce some of the basic terms and
concepts in SNC. We define an arrival flow by the stochastic
process A with discrete time space N and continuous state
space R+

0 as A (s, t) :=
Pt

i=s+1 a (i) , with a(i) as the traffic
increment process in time slot i.

We use the MGF-based SNC in order to calculate per-
flow delay bounds. To be precise, we bound the probability
that the delay exceeds a given value. The connection between
probability bounds and MGFs is established by the Chernoff
bound Pr (X > a)  e�✓aE

⇥
e✓X

⇤
, with E

⇥
e✓X

⇤
as the

moment-generating function (MGF) of a random variable
X . Network calculus provides an elegant system-theoretic
analysis by employing min-plus algebra:

Definition 1 (Convolution in min-plus algebra). The min-plus
(de-)convolution of real-valued, bivariate functions x (s, t) and
y (s, t) is defined as

(x⌦ y) (s, t) := min

sit
{x (s, i) + y (i, t)} ,

(x↵ y) (s, t) := max

0is
{x (i, t)� y (i, s)} .

The characteristics of the service process are captured by
the notion of a dynamic S-server.

Definition 2 (Dynamic S-server). Assume a service element
has an arrival flow A as its input and the respective output is
denoted by A0. Let S (s, t), 0  s  t, be a stochastic process
that is nonnegative and increasing in t. The service element is
a dynamic S-server iff for all t � 0 it holds that:

A0
(0, t) � A⌦ S (0, t) = min

0it
{A (0, i) + S (i, t)} .

Definition 3 (Leftover service). Since we assume arbitrary
multiplexing, the worst-case analysis forces us to assume that
our foi has the lowest priority at a given dynamic S-server.
That is, if flow f2 is prioritized over flow f1, the leftover
service for the according arrival A1 is [A2 � S]

+.

Definition 4 (Virtual delay). The virtual delay at time t � 0

is defined as

d (t) := inf {s � 0 : A (0, t)�A0
(0, t+ s)  0} .

The next theorem gives us the required MGF-bound.

Theorem 5 (Output and delay bound). [10][1] Consider a
dynamic S-server S (s, t) with arrival process A (s, t).

The departure process A0 is upper bounded for any 0 6
s 6 t according to

A0
(s, t) 6 (A↵ S) (s, t) .

The delay at t � 0 is upper bounded by

d (t)  inf {s � 0 : (A↵ S) (t+ s, t)  0} .



This provides a bound on the violation probability of a given
stochastic delay bound T :

Pr (d (t) > T )  E
h
e✓(A↵S(t+T,t))

i
. (1)

Theorem 5 provides us with the start of obtaining stochastic
delay bounds, but comes at the price of introducing the
deconvolution operators. As it was shown in [10], they can
be bypassed by the following inequalities:

E
h
e�✓(X⌦Y (s,t))

i


tX

i=s

E
h
e�✓(X(s,i)+✓Y (i,t))

i
, (2)

E
h
e�✓(X↵Y (s,t))

i


sX

i=0

E
h
e✓(X(i,t)�Y (i,s))

i
. (3)

As we discuss in detail below, allowing for stochastic
dependencies between flows means to have possibly multiple
products inside the expectation. We deal with this problem by
applying the generalized Hölder inequality.

Theorem 6 (Generalized Hölder inequality). [5] Let
X1, . . . , Xn such that Xi 2 Lpi be random variables. Then
we have

E

"
nY

i=1

|Xi|
#


nY

i=1

E
⇥
|Xi|pi

⇤ 1
pi

with
Pn

i=1
1
pi

= 1 and pi > 0.

The special case for n = 2 and p1 = p2 = 2 is known as
Cauchy-Schwarz inequality.

III. END-TO-END DELAY BOUND ANALYSIS

In this section, we extend the delay bounds from single
servers to tandems. For illustrative purposes, starting with
the simplest case of a 2-server tandem and stochastically
independent flows, we derive the delay bounds for the SFA and
PMOO analysis. Then, we generalize the setting to tandems
of arbitrary size for independent and finally dependent flows.

A. The 2-Server Tandem

At first, we assume two servers together with two arrival
flows (see Figure 3). Throughout this paper, we assume the
servers to be work-conserving and mutually independent of the
arrivals. Additionally, we assume the arrivals to be independent
at first and later on relax this assumption.

a) Separated Flow Analysis (SFA): Here, we compute
the delay bound server-by-server (local approach) by subtract-
ing all cross-flows, i.e. computing the left-over service under
arbitrary multiplexing. In a final step, all the servers along
the tandem are convolved in order to reduce the delay bound
calculation to the single-server, single flow case.

b) Pay Multiplexing Only Once Analysis (PMOO): In
contrast to the SFA, the PMOO inverts the order of subtraction
and convolution. It first convolves all the servers along the
tandem and leaves the subtraction of the cross-flows as a last
step. In our tandem queues, this can be done perfectly as all
servers share the same set of cross-flows, in a general topology

this is much more complex [17]. The advantage of PMOO lies
in its end-to-end perspective of the tandem (global approach).

In deterministic network calculus (DNC), it has been shown
that neither of the analyses dominates the other [18], though
in many realistic settings PMOO is superior [17].

Example 7 (Leftover service calculation). See Figure 3.
Flow f1 is our foi whereas cross-flow f2 is considered to
be prioritized. For the SFA, in a first step, we subtract the
cross flow arrivals, i.e., [S1 �A2]

+. Next, we subtract the
cross-flow at the second server. Here, it is important that
we take into account that it traversed the previous server.
Consequently, we have to use its output from server 1:
[S2 � (A2 ↵ S1)]

+, leading to an overall leftover service of
[S1 �A2]

+ ⌦ [S2 � (A2 ↵ S1)]
+. At this point, we remark

that the cross flow arrivals A2 appear twice in this formula of
the SFA end-to-end leftover service (violation of the PMOO
principle).

The PMOO, on the other hand, convolves the servers in the
first step, S1 ⌦ S2, (since they share the same cross traffic)
and subtracts afterwards: [(S1 ⌦ S2)�A2]

+. Consequently,
we have A2 only once.

Fig. 3. Tandem with two servers.

Theorem 5 together with the computation of the leftover
service provide us with the tools to compute stochastic per-
flow delay bounds. Now, we apply this to the 2-server tandem
in Figure 3 according to the SFA and PMOO.

1) Delay Bound with SFA in the 2-server tandem: For the
SFA delay bound, we calculate

Pr (d (t) > T )
(1)
E

h
e✓Afoi↵Sl.o.(t+T,t)

i

(3)


tX

k0=0

E
h
e✓(Afoi(k0,t)�Sl.o.(k0,t+T ))

i

=

tX

k0=0

E
h
e✓(A1(k0,t)�([S1�A2]

+⌦[S2�(A2↵S1)]
+
)

(k0,t+T )
)

i


tX

k0=0

E
h
e✓A1(k0,t)

i

·
t+TX

k1=k0

E
h
e�✓

(

[S1(k0,k1)�A2(k0,k1)]
+
)

·e�✓
(

[S2(k1,t+T )�(A2↵S1)(k1,t+T )]+
)

i
.

Here, we have a stochastic dependence between the two
exponentials inside the expectation. Thus, we proceed by



applying Hölder’s inequality:

· · · 
tX

k0=0

E
h
e✓A1(k0,t)

i

·
t+TX

k1=k0

⇣
E
h
e�p1✓[S1(k0,k1)�A2(k0,k1)]

+
i⌘ 1

p1

·
⇣
E
h
e�p2✓[S2(k1,t+T )�(A2↵S1)(k1,t+T )]+

i⌘ 1
p2


tX

k0=0

E
h
e✓A1(k0,t)

i

·
t+TX

k1=k0

⇣
E
h
ep1✓(A2(k0,k1)�S1(k0,k1))

i⌘ 1
p1

·
⇣
E
h
ep2✓((A2↵S1)(k1,t+T )�S2(k1,t+T ))

i⌘ 1
p2

=

tX

k0=0

E
h
e✓A1(k0,t)

i t+TX

k1=k0

✓
E
h
ep1✓A2(k0,k1)

i 1
p1

· E
h
e�p1✓S1(k0,k1)

i 1
p1

E
h
ep2✓(A2↵S1)(k1,t+T )

i 1
p2

· E
h
e�p2✓S2(k1,t+T )

i 1
p2

◆


tX

k0=0

E
h
e✓A1(k0,t)

i t+TX

k1=k0

0

@E
h
ep1✓A2(k0,k1)

i 1
p1

· E
h
e�p2✓S1(k0,k1)

i 1
p1

·
 

k1X

k2=0

E
h
ep2✓A2(k2,t+T )

i
E
h
e�p2✓S1(k2,k1)

i!
1
p2

· E
h
e�p2✓S2(k1,t+T )

i 1
p2

1

A ,

with
1

p1
+

1

p2
= 1.

2) Delay Bound with PMOO in the 2-server tandem: From
the PMOO delay bound we obtain as follows

Pr (d (t) > T )
(1)
E

h
e✓Afoi↵Sl.o.(t+T,t)

i

(3)


tX

k0=0

E
h
e✓(A1(k0,t)�[S1⌦S2(k0,t+T )�A2(k0,t+T )]+

)

i


tX

k0=0

⇣
E
h
e✓A1(k0,t)

i

·E
h
e✓(A2(k0,t+T )�S1⌦S2(k0,t+T ))

i⌘

=

tX

k0=0

 
E
h
e✓A1(k0,t)

i
E
h
e✓A2(k0,t+T )

i

·
t+TX

k1=k0

E
h
e�✓S1(k0,k1)

i
E
h
e�✓S2(k1,t+T )

i!
.

At this point, we observe that, even though we analyzed the
same network, only the SFA has to apply Hölder’s inequality.
Generally, the usage of Hölder’s inequality should be mini-
mized and thus this must be seen as a shortcoming of the
SFA. It forces us to apply Hölder’s inequality more often than
for the PMOO. This is even more evident if we increase the
number of servers as we see in the general tandem case, next.

B. The General Tandem
This subsection extends the 2-server tandem to the general

case of n servers and m flows (as in Figure 1).

Proposition 8 (Delay bound with SFA). With the SFA, we
obtain for the delay bound for m arrival flows and n servers

Pr (d (t) > T )

E
h
e✓(Afoi↵Sl.o.(s,t))

i


tX

k0=0

0

@E
h
e✓A1(k0,t)

i X

k0k1t+T

. . .

X

kn�2kn�1t+T

E
h
ep1✓

Pm
j=2 Aj(k0,k1)e�p1✓S1(k0,k1)

i 1
p1

· · ·E
h
epn✓((((

Pm
j=2 Aj)↵S1)... )↵Sn�1)(kn�1,t+T )

· · · e�pn✓Sn(kn�1,t+T )
i 1

pn

1

A ,

where
nX

i=1

1

pi
= 1.

On the contrary, the PMOO is able to circumvent the
necessity to take into account a large number of dependencies:

Proposition 9 (Delay Bound with PMOO). The PMOO yields
for the delay bound in the n-server tandem with m flows

Pr (d (t) > T )

E
h
e✓(Afoi↵Sl.o.(t+T,t))

i


tX

k0=0

0

@E
h
e✓A1(k0,t)

i mY

j=2

E
h
e✓Aj(k0,t+T )

i

·
X

k0k1t+T

· · ·
X

kn�2kn�1t+T

⇣
E
h
e�✓S1(k0,k1)

i

· · ·E
h
e�✓Sn(kn�1,t+T )

i⌘
1

A .

C. Dependent Arrival Flows
So far we have assumed the arrivals to be independent. If

we allow the flows to be dependent, the PMOO is also not able
to circumvent the application of Hölder’s inequality any more.



Again, we compute the delay bound in the n-server tandem
(Figure 1).

Proposition 10 (Delay Bound with PMOO and dependent
flows). If all arrival flows are dependent, the PMOO yields
in the n-server tandem with m flows:

Pr (d (t) > T )


tX

k0=0

0

B@E
h
ep1✓A1(k0,t)

i 1
p1

·

0

@
mY

j=2

E
h
ep2pj+1✓Aj(k0,t+T )

i 1
pj+1

·
t+TX

k1=k0

· · ·
t+TX

kn�1=kn�2

⇣
E
h
e�p2✓S1(k0,k1)

i

· · ·E
h
e�p2✓Sn(kn�1,t+T )

i⌘
1

A

1
p2

1

CA ,

where

1

p1
+

1

p2
= 1,

1

p3
+ · · ·+ 1

pm+1
= 1.

IV. EVALUATION

In this section, we evaluate several aspects of the per-
flow delay bounds in tandem queues by means of numerical
experiments. We compare the performance of the different
analysis techniques (SFA vs. PMOO), investigate the scaling
behavior of the delay bounds as we increase the tandem
lengths, and study the effect of stochastic dependencies. To
that end, we have implemented the delay bound computation
based on the equations from Section III using the general-
purpose programming language Python1, version 3.6.

For the arrival flows we choose the fractional Brownian
motion (fBm) traffic model [15]. As discussed above, it is both
a popular LRD model for Internet traffic and is amenable to
our analysis as the MGF exists.

Definition 11 (Fractional Brownian motion). A stochastic
process Ft is called fractional Brownian motion, if its MGF
has the form

E
⇥
e✓Ft

⇤
= e�✓t+

(�✓)2

2 t2H ,

with drift � � 0, variance at t = 1 equal to �2, i.e.,
var (Ft) = �2t2H , and Hurst parameter H 2 (0, 1).

Throughout the following experiments, the parameters in
the fBm arrival model are always chosen to be � = 0.5 (the
average rate of the flow), � = 1 (a burstiness parameter) and
Hurst parameter H = 0.7 (degree of long-range dependence).

1https://www.python.org

For the sake of simplicity, the number of flows traversing
the tandem queues is always set equal to the number of
servers. The servers are constant-rate and work-conserving.
If not stated otherwise, we allocate the service rate to be
3 · (number of flows).

As we also want to investigate the effect of optimiza-
tion in some of the experiments, we compare a thorough
systematic search through the parameter space with fixed
“natural” choices for the parameters. More specifically, in
the unoptimized calculations, we set ✓ = 1 for all MGFs
involved, and for the Hölder parameters we set 8i : pi = c.
The latter corresponds to using the Cauchy-Schwarz inequality
(for n = 2). For example, if the Hölder parameters have to
satisfy

1

p1
+

1

p2
= 1

1

p3
+

1

p4
+

1

p5
= 1,

we set p1 = p2 = 2 and p3 = p4 = p5 = 3.

A. Comparison between SFA and PMOO

In the first experiment, we compare the two analysis tech-
niques, SFA and PMOO, for the case of two servers and
independent flows. The delay bounds for both methods with
and without optimized parameters are shown in Figure 4.

Obviously, there is a huge improvement of PMOO over
SFA. Looking, for instance, at the optimized versions, there
is about 3-5 orders of magnitude of improvement in terms
of violation probabilities (increasing in the delay bound T
for which it is calculated). In terms of delay bounds, the
improvement is, of course, less spectacular but still very con-
siderable, e.g., the violation probability of the SFA for T = 6

is slightly above the one of PMOO for T = 4. That means
the delay bound improvement is, roughly speaking, more than
30% in this scenario. So, already in this short tandem, adhering
to the PMOO principle pays off strongly. This is because
much less dependencies have to be accommodated for in the
PMOO analysis than in the SFA, thus avoiding the obviously
“expensive” application of the Hölder inequality as much as
possible.

Regarding the unoptimized delay bounds in that experiment,
we can observe that the optimization plays a crucial role. For
example, for PMOO the optimized violation probabilities are
3-4 orders of magnitude better than those for the “natural”
choice (though these are still better than the optimized SFA).
As more and more parameters are involved in more complex
scenarios, this indicates to invest potentially high computa-
tional efforts to enable a thorough optimization instead of
searching only coarsely.

B. Different Tandem Lengths

In the next experiment, we focus on the (optimized) PMOO
and how its delay bounds scale with the tandem lengths and
the number of flows, respectively. To that end, we calculate the
violation probabilities for 2 to n servers in the tandem and a
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corresponding number of independent flows (for T = 3). The
results are shown in Figure 5.

At first sight, the observation that the violation probabilities
decrease with longer tandems may be surprising. Yet, since the
number of flows increases as well, obviously the degradation
effect of longer tandems is by far outweighed by the statistical
multiplexing effect for the independent fBm flows. Roughly
speaking, for each additional server we gain 2 orders of
magnitude for the violation probability.
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Fig. 5. PMOO delay bounds for different tandem lengths.

C. Independent vs. Dependent Flows

Next, we turn to the case of dependent flows and evaluate
the penalty we obtain in comparison to the independent case
(results from the experiment in Section IV-A). Hence, we run
another numerical experiment with the PMOO for dependent
flows for two servers. We also look again at the role of
optimization. The violation probabilities of different delay
bounds are shown in Figure 6.

Expectedly, we observe a high penalty for our analytical
treatment of dependent flows (using Hölder’s inequality),

although there are only two flows. Consequently, the optimiza-
tion plays maybe an even more important role for dependent
flows in order to bring them down to acceptable violation
probabilities (assuming we are interested in the typical range
of large deviations).
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and dependent arrivals for the standard and optimized parameter choice.
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D. Mixed Independence / Dependence Scenarios

In the previous experiments, we have seen that dependencies
can be very detrimental for the delay bounds. In this last
experiment, we now investigate a mixed scenario with some
flows being dependent and others being independent. More
specifically, we use 3 servers in the tandem and 3 flows
correspondingly. We evaluate the (optimized) PMOO delay
bounds for four scenarios:

1) (IND) all flows are independent;
2) (DEP) all flows are dependent;
3) (XDEP) the cross-flows are dependent, but the foi is

independent of them;
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(b) Exponential distribution.

Fig. 8. Comparison with simulations for two servers and two arrival flows.

4) (FDEP) the foi is dependent with one of the cross-
flows, but not with the other one, the cross-flows are
independent of each other.

The analytical derivation of the new scenarios XDEP and
FDEP can be found in the appendix.

In this special setting, we deviate from our usual choice
and set the service to r = 11. This was necessary to achieve
meaningful bounds in the dependent case. The results are
depicted in Figure 7.

As expected, the cases with partial dependencies appear
in the gap between full dependence and independence, re-
spectively. XDEP’s violation probability is three orders of
magnitude better than the full dependence for a delay bound
equal to 3. This gap increases over time. In the delay space,
this leads to an improvement of about 40%. Switching the
dependence from dependent cross flows to the dependence of
the foi and one cross flow, we gain another approx. 30%. The
independent case, on the other hand, outperforms the FDEP
by far, especially for larger delays.

The results suggest again that dependence leads to a high
penalty in the analysis. If, however, partial independence can
be assumed, making use of this property yields significantly
better bounds. As we observe, not only the number of de-
pendent flows is important, but also their relation. Apparently,
having a dependence among the cross flows is worse for our
analysis than between the foi and one of the cross flows
instead.

E. Comparison to Simulations
So far, we have compared different SNC analyses against

each other. Clearly, it is also interesting how close the bounds
capture actual system behavior. In order to assess this, simu-
lations are obviously a good candidate. However, simulations
of the previously described scenarios would, due to very low
violation probabilities as, e.g., 10

�20, lead to prohibitively
long runtimes. Furthermore, due to the very general treatment
of dependencies, in our method it is difficult to instantiate such
dependent traffic in an unbiased manner.

Therefore, we set up a new scenario in which we simulate
fBm traffic (parameters chosen as in the beginning of Sec-
tion IV) for two independent arrival flows that enter a tandem

in parallel and observe the delay of one of them. Here, the
service rate is reduced to r = 2.9 for both servers in order to
allow for higher violation probabilities and correspondingly
feasible simulation times. We compare the empirical delay
quantiles of the simulations to the corresponding delay bounds
obtained by the PMOO and SFA methods, respectively, in
Figure 8a.

We observe that, for given empirical delay quantiles, sim-
ulations have a significantly lower empirical delay than the
SFA and PMOO bounds, but with the latter being much closer
to the simulations, emphasizing again PMOO’s superiority.
Nevertheless, the gap between simulations and the PMOO
bounds is admittedly still considerable. However, this inac-
curacy for traffic with high correlations when using standard
SNC methods (in particular, the union bound) is known in the
literature [6]. Although it had not yet been shown explicitly
for FBM traffic, it is thus not surprising.

To investigate this further, we performed the same exper-
iment but now we used traffic with exponentially distributed
independent increments (with parameter � = 1.8). The experi-
ment’s outcome is shown in Figure 8b and should be compared
to the fBm traffic results in Figure 8a. Now, the bounds
are much closer to the simulated empirical delay quantiles,
with the PMOO performing superior over SFA again, though
somewhat less pronounced.

V. CONCLUSION

In this paper, we have derived stochastic delay bounds in
tandem queues using stochastic network calculus (SNC). To
that end, we transferred known network analysis techniques
from the deterministic network calculus to its stochastic coun-
terpart, to be precise, to the MGF-based SNC. We showed that
applying the pay multiplexing only once (PMOO) principle
was key to avoid taking into account too many stochastic
dependencies which, in turn, ruin the bounds’ quality. In
fact, in the MGF-based SNC the principle should rather be
renamed into “pay stochastic dependencies only if you must”.
Besides this major insight, we also showed how to deal with
dependencies among the flows or subsets of the flows and
evaluated the effects on the delay bounds. And, last but not
least, we observed in numerical experiments the important



role of parameter optimization, as, in particular, the PMOO
analysis showed a high sensitivity to a good parameter choice.

Overall, we perceive this paper as a promising first step into
the challenging field of more complex network analysis using
SNC. Clearly, future work will have to address more general
topologies like feedforward networks or even under cyclic flow
dependencies. As can be observed from our results, it will be
crucial to smartly deal with stochastic dependencies both on
the network analysis level (similar to our work) and the level of
inequalities finding, e.g., better tools than Hölder’s inequality,
possibly leveraging approaches as in [8].
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APPENDIX

a) XDEP Scenario: In the XDEP setting described in
Subsection IV-D, we obtain for the leftover service:
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where we applied Hölder’s inequality owing to the cross
flows’ mutual dependence. Using this result, the delay bound
yields
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b) FDEP Scenario: On the other hand, we calculate for
the delay bound in the FDEP case (only Afoi and A2 are
dependent)
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